Chapter 2, Figure 1. Phenotype of 35S::ATB2 plants. (a) Wild-type tobacco (Samsun NN), (b) mild overexpressor line E1 and (c) severe overexpressor line E2. Clearly visible is the progressive phenotype as leaves mature in both lines. Furthermore, the light green-yellow patches and severe crinkling of the source leaves are two distinctive features. Bar indicates 3 cm.

Chapter 3, Figure 3. Phenotypes of the ATB2 overexpressor lines. (a) Seedlings of Col-0 (top panel), AX8.1 (middle panel) and BX4.1 (bottom panel). Seedling growth and germination rates are inversely correlated to ATB2 transcript levels in AX8.1 and BX4.1. (b) Rosette and inflorescence size of BX4.1 (right) are severely reduced compared to wild-type Col-0 (left). (c) Flower size is reduced in BX4.1 (right) and unaffected in AX8.1 (middle) compared to wild-type (left). (d) Opened carpels with exposed ovules of the BX4.1 severe overexpressor line.

Chapter 3, Figure 4. Effect of DEX addition to ioeATB2 9.1 inducible overexpressor plants at the rosette stage. Plants were grown for 3 weeks under standard conditions and then watered with or without 10 μg/ml DEX. After 2 weeks, uninduced plants flowered as wildtype ((a) left) while DEX treatment caused crinkled, curled roset leaves and inhibition of inflorescence elongation (a (right) and b).
Chapter 4, Figure 5.
Expression pattern of bZIP2 in (a) 7 day-old seedling, (b) rosette, (c) mature source leaf, (d) floral organs.

Chapter 4, Figure 6.
Expression pattern of bZIP44 in (a) an unfertilized flower, (b) a fertilized flower and (c) anthers.

Chapter 4, Figure 7.
Promoter-GUS-directed staining of (a) ATB2, (b) bZIP2 and (c) bZIP44 in siliques with seeds at early (top), intermediate (middle) and late stages of development (bottom).

Chapter 4, Figure 8.
Sucrose repression in transgenic PGbZIP2 and PGbZIP2Δ seedlings in response to increasing amounts of sucrose. Histological staining of (e) PGbZIP2 and (f) PGbZIP2Δ seedlings, respectively grown in (from left to right) ½ strength MS medium with 0, 20 and 100 mM sucrose.