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Two recommendations are made that can eliminate persistent confusion in the study of 
diatomic spectroscopy by providing uniform and consistent definitions of the electronic 
transition moments and the rotational line intensity factors. First, it is recommended that 
the equation for the line strength of asingle rotational line be adopted to specify the relation- 
ship between the electronic transition moment and the rotational line intensity factor. Second, 
it is recommended that the electronic transition moment operator for perpendicular transi- 
tions be defined by (1/2]“)( Jo, + iby). The adoption of these conventions results in a value of 
(2s + 1)(2J + 1) for the sum rule of the rotational line intensity factor for 2% * P+ 
transitions and a value of 2(2S + 1)(2J + 1) for the sum rule for all other spin-allowed 
transitions. 

INTRODUCTION 

Historically, electronic transition moments have been determined by one group 
of scientists and rotational line intensity factors (also known as Honl-London 
factors) by a second group. Thus, the user interested in absolute spectral intensi- 
ties is required to exercise extreme caution to ensure that compatible values of 
these parameters are used. In many cases factor-of-2 errors have been made be- 
cause of confusion with regard to the sum rules for rotational line intensity factors 
and the definitions of published electronic transition moments. This bothersome 
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situation could well become more acute in the future because electronic transition 
moments can now be calculated accurately by the methods of quantum chemistry. 
Obviously, the minimum requirement for eliminating ambiguities that are present in 
the calculation of absolute intensities is for all authors to define fully the param- 
eters that they publish. However, this will not eliminate the confusion arising from 
the use of different definitions or different notations for what is essentially the same 
physical parameter. Thus, we believe there is a need for a few additional standard 
definitions or conventions in the theory of molecular spectra. 

This paper contains two recommendations that we believe would be helpful if 
universally applied. One is the adoption of a standard expression that specifies 
the interdependence of the electronic transition moment and the rotational line 
intensity factor; the other is the adoption of standard definitions of the operators 
for the electronic transition moments. The combination of these two conventions 
leads to a simple and consistent sum rule for the rotational line intensity factors 
for spin-allowed transitions. 

Anyone desiring further information about the theoretical details on which these 
recommendations are based is referred to Refs. (I, 2). Anyone desiring to convert 
the electronic transition moments to other equivalent parameters, such as Einstein 
A coefficients, band strengths, and oscillator strengths, in a fashion consistent with 
the definitions made herein, is referred to Ref. (3). 

RECOMMENDATIONS 

A single rotational line is usually the simplest spectral element observed and 
measured in experimental applications, and is the feature we believe provides the 
most natural starting point to define the electronic transition moments and the rota- 
tional line intensity factors. It seems unnecessary to develop standards (for these 
parameters) based on line components (transitions between degenerate magnetic 
substates) or on the hyperfine structure; and to develop them based on a group of 
lines (composite line) requires additional approximations that can obscure the 
principal issues. 

A single rotational line is produced by the allowed transitions between all the 
magnetic substates of two rotational J levels. Each J level, in an electronic state it, 
is specified by the vibrational quantum number V, the resultant angular momentum 
quantum number without nuclear spin J, a single component of the spin multiplet 
(specified by Z in Hund’s case (a) coupling, for example), and the lambda sub- 
state p due to A-type doubling. That is, a J level is specified fully by (n,v, J, 
2,~). At the risk of being redundant, we note that a lambda doublet in a spectrum is 
composed of two rotational lines. Also note that an atomic line is formed by the 
transitions between two atomic J levels (see Ref. (4, p. 97)). This analogous defini- 
tion of atomic and rotational lines provides a natural conceptual link between 
atomic and molecular spectra. 

The line strength defined by Condon and Shortley (see Ref. (4, p. 98)) for atomic 
lines can be applied directly to rotational lines: 
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where p is the total transition operator, and Jly7 and GM,, are the wavefunctions 
for magnetic substates of the upper state (J level) and of the lower state (.7’ level). 
In this note, we shall restrict p to be the electric dipole operator, that is, p 
= Xeiri, where ri is a vector from the point at which the dipole moment is being 
defined to the charge ei. 

Assuming isotropic excitation and unpolarized radiation, one can write Eq. (1) in 
the Bron-Oppenheimer approximation for rotational lines as (see Ref. (I)) 

s - q,+U lR, [“~,*,, J’J” - (2) 

where ql+!is the Franck-Condon factor [dimensionless], R, is the electronic transi- 
tion moment [C m], and Y.,PJ,, is the rotational line intensity factor [dimension- 
less]. To reduce the chance for misunderstanding, the line strength in Eq. (2) is 
incorporated in the following equation for the power emitted per unit volume by a 
rotational line into 477 sr, due to spontaneous transitions from an upper J’ level to a 
lower J” level: 

E 
64~~~ fl,l 

./lJ” = (4TMQ)3C3 (23’ + 1) 
~&q~,,~,, 1 R, 1 29’J,.,w, (3) 

where 
E J’J” = power per unit volume (W ms3), 

fz.,’ = number density of J’ level (particles m-3), 

u,,,~,, = frequency of emitted radiation (set-’ or Hz), 

l g = permittivity ofavacuum(8.854 x IO-” C2 J-l m-l), 

c = speed of light (m set-I). 

Our first recommendation for standardization is that Eq. (2) for the line strength 
be adopted as the defining expression for the relationship between R, and YJnJ”. 
It is simple and it applies to a single rotational line. We recommend avoiding 
using an expression for a composite line, such as both rotational lines in a lambda 
doublet. 

Strength expressions for composite lines, or complete vibrational bands, can 
be derived from equations such as Eq. (3) by summing the intensity, power, etc., 
that is emitted or absorbed by each of the rotational lines and then making the 
appropriate approximations for average frequencies, etc. The reverse process, 
starting from an expression for a composite line strength and working backward 
to express the line strength for a single rotational line, is much more likely to lead to 
the kind of ambiguities mentioned in the Introduction. 

Equation (2) requires that the electronic transition moment used be compatible 
with the rotational line intensity factor. These parameters, or the operators that 
produce them, are defined simultaneously by splitting the total transition operator 
into separate electronic and rotational parts (see Eqs. (25)-(36) of Ref. (I)). This 
procedure would be straightforward except that the total transition operator con- 
tains a constant factor and there is no inherent “right” way for distributing this 
constant between the two operators. 

In the case of parallel transitions (Aa = 0; or AA = 0 for spin-allowed transi- 
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TABLE I 

Recommended Electronic Transition Moments and Corresponding Sum of Intensity Factors 
for Spin-Allowed Transition9 

Ek++Ei (2s+1)(2.J+1) 

0 <n'sE'~vz~nw'> 
n++Il 
A++4 

2(2s+1)(2J+l) 

m-+n n+-a 
+1 ll++A A++n 2(2s+1)(25+1) 

A+-M@++A 

a The electronic wavefunctions, / ASZ) shown are the nonrotating-molecule electronic bases 
wavefunctions, appropriate to Hund’s case (a) coupling, discussed in Ref. (2). Specifying the elec- 
tronic transition moments as matrix elements in terms of these electronic basis functions does not 
restrict the validity of the theory. Any degree of coupling of the angular momenta intermediate between 
Hund’s cases is incorporated into the rotational line intensity factors, as discussed in Refs. (I, 2). 

tions), the operator for the electronic transition moment is generally accepted to 
be CL, and the constant factor in the total transition operator is 1 .O. The remaining 
factor in the total transition operator is, of course, the rotational operator. Thus, in 
this case, there is no problem with definitions. This specification of the rotational 
operator for parallel transitions leads to rotational line intensity factors that satisfy 
simple sum rules. That is, the sum of all rotational line intensity factors from (or to) 
the group of (2 - ao,,J(2S + 1)J levels with the same value of J’ or J” is (2s + 1) 
X (2J + 1)forZ’ f, C’transitions and2(2S + 1)(2J + 1)forallotherspinallowed 
parallel transitions (see Table I). As usual, the Kronecker delta, &, equals 1 if 
A = 0 and equals 0 otherwise. 

In the case of perpendicular transitions (As1 = ? 1; or AA = * 1 for spin-allowed 
transitions), there is no generally accepted definition of the electronic transition 
moment operator and, thus, no generally accepted method for distributing the con- 
stant factor (55 in this case) in the total transition operator. In fact, most of the 
ambiguities referred to in the Introduction can be shown to arise from the way the 
constant factor is distributed for this case. 

Our second recommendation is that the constant factor in the total transition 
operator for perpendicular transitions be distributed so that the resulting sum rule 
of the rotational line intensity factors is consistent with the sum rule for parallel 
transitions. This recommendation requires that the electronic transition moment 
operators for perpendicular transitions be (1/29(pz f ipy). When the matrix 
elements are written as shown in Table I, the plus sign applies to An = R’ - CP’ 
= + 1 transitions and the minus sign to Afl = - 1 transitions. Using these opera- 
tors, the sum rule of the rotational line intensity factors for all spin-allowed 
perpendicular transitions is 2(2S + 1)(2J + 1); see Table I. 

The consistent use of the recommendations made in this paper leads to a single 
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expression for the sum rule for all spin-allowed transitions,’ that is, 

CYJ!Jl = (2 - iSQ&)&!)(2S + 1)(25 + 1). (4) 

where again the summation is over all allowed transitions from (or to) the group of 
(2 - &&(2S + 1) J levels with the same value of J’ or J”. The sum rule is sym- 
metrical in J’ and J” and, thus, explicit use of the primes on the right-hand side of 
Eq. (4) has been omitted. 

The factor of 2, which appears in the sum rule for all spin-allowed transitions 
except C* tf CT, is present because the summation is over both lambda substates 
of nonsigma states. Note that in C cf II and II t, 2 transitions, even though only the 
pi state contains two lambda substates, the factor of 2 is present regardless of 
which state is the initial state. The result unifies the sum rule for all perpendicular 
transitions and we hope it will eliminate one of the most frequent causes of con- 
fusion in molecular spectra; namely, the intuitive belief that the sum rule for 
X -+ II or II +-- C transitions should be one-half that for 2 +- II or II -+ Z transi- 
tions. Because this belief has caused such confusion we present in the Appendix an 
explanation that may make the concept of equal sum rules for these transitions 
plausible. 

Before concluding this paper, there are two other issues we would like to touch 
upon. First, there are other arguments, not developed here, for the adoption of the 
factor 1/2112 in the definition of the electronic transition moment operators for 
perpendicular transitions; for example, the desirability from a theoretical point of 
view of using spherical tensors for all such operators. Second, defining the elec- 
tronic transition moment as a matrix element in terms of the 1 ASIA) basis func- 
tions provides a convenient method for reporting theoretical values of these 
parameters in a manner that is consistent with experimental values. A particular 
concern about the reporting of theoretical electronic transition moments is dis- 
cussed in the following paragraph. 

The electronic basis wavefunctions used in Table I, and discussed fully in 
Ref. (2), are characterized by either A+ = + [ML ( or A- = - /ML 1 and, thus, 
enable the electronic transition moments to be defined in the simple manner shown. 
Further, they provide a direct association with the electronic wavefunctions 
normally calculated by ab initio methods using spherical atomic basis functions, 
Most such calculations are made for A+ and C = S, that is, IASZ) = IA+SS). 
However, some theoretical calculations on diatomic molecules, particularly those 
employing Cartesian-Gaussian or Gaussian-lobe functions, do not utilize 
cylindrical symmetry. The resulting wavefunctions, therefore, may not be char- 
acterized by the eigenvalues A,; that is, they may not transform like x ? iv. For 
example, rather than obtaining II, and II- as degenerate pi substates, one may 
obtain instead HZ and IIy as an equivalent pair of degenerate pi substates that 
transform like the coordinates x and Y. Then transition matrix elements such as 
(H,IxlZ) and (%\Y I%, where C is a sigma state transforming like the sym- 
metric representation, are the most convenient to calculate. It is straightforward 

’ Equation (4) is not valid for the first few rotational levels in any state where the full spin multiplicity 

is not developed (i.e., / < A + 3’). In this case, the general sum rule for a spin-allowed or spin- 

forbidden transition given by Eq. (75) in Ref. (i) can be used, as was done in Ref. (5). 
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to show, for II * C transitions, that the matrix element (&IX (2) is equal to 
(II, 1(x + i~)/2l’~ IX). F or other transitions, the relationship between matrix ele- 
ments can be much more complicated. We recommend strongly that all theoretical 
electronic transition moment matrix elements be reported as shown in Table I, 
rather than leaving them in a form that requires additional manipulation or 
conversion. 

Much of the discussion presented has been restricted to spin-allowed transi- 
tions. The extension to the more complicated spin-forbidden transitions is de- 
scribed in Ref. (I). Analogous results are obtained; that is, the choice of pz for the 
electronic transition moment operator for parallel transitions and (1/2l’*)( pz k ipu,) 
for perpendicular transitions, results in a simple, general sum rule for the rotational 
line intensity factors that is consistent with Eq. (4) and is valid for parallel and 
perpendicular transitions and for spin-allowed and spin-forbidden transitions. 

SUMMARY 

We believe that the theory of diatomic molecular spectra can be applied in a less 
confusing way by the adoption of two standard conventions: first, that the line 
strength expression for a single rotational line given by 

s - 9”‘V”I&12%‘J” J’d” - (3 

be adopted to specify the interdependence of R, and ~7~~~~~; second, that CL, and 
(1/21’2)(~, k ipLy) be adopted as the electronic transition moment operators for 
parallel and perpendicular transitions. The adoption of these conventions results 
in the uniform sum rule 

C.YJ9J! = (2 - 6~,&),,U)(2S + 1)(25 + 1) 

for the rotational line intensity factors for spin-allowed transitions. 

(6) 

APPENDIX 

The reason that the sum rules for Z f* II or II f, Z transitions are the same, whether 
the sigma state is the initial or the final state, can be seen by carrying through the 
analysis using (1/21’*)(pr k ipu,) as the transition moment operators, and then 
summing the resulting rotational line intensity factors from (or to) any singleJ level 
in either state. In this way, one finds the sum for each singleJ level in the pi state to 
be (25 + l), and for.! levels in the sigma state, 2(23 + 1). Thus, even though there 
are twice as many J levels, with the same value ofJ, in the pi state as in the sigma 
state (because of lambda doubling), the sum rule, which sums the intensity factors 
over all J levels with the same value of J’ or J”, is the same regardless of which 
state is considered. 

The result-that the sum of the intensity factors from (or to) any single J level in 
the sigma state of Z ++ II or II ff 2 transitions contains an extra factor of 2-is con- 
sistent with the concept that all transitions between single J levels are equivalent. 
This is shown easily by considering singlet transitions in terms of the 1 ASZ) 
= 1 AOO) basis functions. The extension to higher spin states is conceptually 
straightforward and the transformation from basis functions to properly sym- 
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FIG. 1. Transitions between basis function states: ‘z .+ ‘IL. 

FIG. 2. Transitions between basis function states: ‘n, - ‘II?. 

FIG. 3. Transitions between basis function states: In, t ‘A=. 

metrized wavefunctions is unitary. Unitary transformations do not alter the effect 
of each transition on the sum rule [see discussion preceding Eq. (56) in Ref. (I )I. 

In Fig. 1, we show both ‘2 + ‘II, (emission) and ‘Z + ‘Il, (absorption) tran- 
sitions, where as before ‘II+ denotes the basis function substates / + 100) and 
I-100). The corresponding transitions with the ‘C state as the lower state 
(‘II, f-, ‘2) would be conceptually similar. The figure illustrates that the selection 
rules AA = +I permit transitions between the ‘X state and both ‘II, substates. 
Hence, in terms of basis functions, each J level in the ‘2 state is involved in two 
transitions, where each J level in the III, substates is involved in only one transi- 
tion. In all other transitions, ‘2 * ‘Z, III c-, ‘II, III t-, ‘A, ‘A H I@, etc., the selection 
rules AA = 0, -C 1 permit transitions to occur only from a single basis function sub- 
state to a single basis function substate. This is illustrated in Fig. 2 for ‘II, + ‘Il, 
transitions (AA = 0) and in Fig. 3 for ‘II_, +- ‘A_ transitions (AA = 2 1). 

Because all transitions are equivalent, an extra factor of 2 must appear in the 
sum of the intensity factors from (or to) each J level in the sigma state of 2 ++ II 
or II * I; transitions. The recommendations we have made fully account for this 
effect by including the factor of 1/2l’* in the definition of the transition moment 
operators for all perpendicular transitions. 
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