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An analysis is given of the conditions necessary for obtaining a thermodynamically stable dis- 
persion (TSD) of solid particles in a continuous aqueous solution phase. The role of the adsorption 
of potential-determining ions at the planar interface in lowering the interfacial free energy (3') 
to promote spontaneous dispersion is stressed. In this respect the importance of the point-of-zero- 
charge (PZC) and of the point-of-zero-surface tension (PZS) in the quantitative description of the 
dispersion process are discussed. It is reasoned that for simple inorganic solids a decrease in 3" 
by about 200 mN m -1 relative to its value at the PZC may be sufficient to yield a TSD. The 
equilibrium dispersion will be characterized by a very small but positive 3" and a near isodispersity. 
Suggestions are made for preparing by precipitation dispersions which may prove to be thermo- 
dynamically stable. The differences and similarities between these dispersions and the well-known 
kinetically stabilized sols of lyophobic colloids are briefly enumerated and discussed. 

INTRODUCTION 

Colloid science may be said to have de- 
veloped from a desire to understand the ob- 
served stability of many colloidal solutions. 
As these systems bridge the gap between 
molecular solutions and two-phase macro- 
systems it has proven convenient at times to 
treat the colloidal particle as one of the 
solute components of a solution phase and 
then again as the disperse phase of a two- 
phase system. Excellent treatments of the 
thermodynamics of disperse systems in 
which this dual description is emphasized 
have been given by Tolman (1), Hermans (2), 
and Rusanov et al. (3). 

It is also important to distinguish between 
a system which is thermodynamically stable 
and one which owes its stability to kinetic 
factors. Until quite recently it was believed 
that only certain types of colloidal systems 
may exhibit thermodynamic stability. Thus 
solutions of lyophilic colloids-- macromole- 
cules and association colloids--are known 
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to be thermodynamically stable over wide 
ranges of concentration. Dispersions of so- 
called lyophobic colloids (emulsions and 
finely divided solids) were considered to be 
thermodynamically unstable and to owe 
their observed stability to energetic and/or 
entropic barriers, the origin of which is 
largely accounted for by the well-known 
DLVO theory. It would therefore seem pos- 
sible to distinguish, solely on the basis of the 
nature and composition of the dispersed 
phase, between a thermodynamically stable 
dispersion (TSD) and a kinetically stable dis- 
persion (KSD). Yet it was realized that both 
types (TSD and KSD) have many common 
features. Thus, for example, the same types 
of forces are invoked to explain the inter- 
action between two soap micelles, two emul- 
sion droplets, or two solid particles in a 
silver iodide sol. 

As early as 1913 Tolman (1) argued that 
lyophobic colloids should form thermody- 
namically stable solutions if by adsorption 
the interfacial tension between the con- 
densed disperse phase (an emulsion droplet 
or solid particle) and the dispersing liquid 
medium were to become zero. Tolman's 
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theoretical treatment has, however, been 
largely ignored by workers in the field even 
though in 1952 Hermans (2) again stated and 
summarized his thermodynamic treatment 
of colloidal systems. Extensive studies of 
the physicochemical mechanics of metals 
and other solids have also led Rehbinder and 
associates (4) to propose the existence of 
TSD of solids in aqueous solution. These 
investigators noted that the interfacial ten- 
sion between the dispersed and the contin- 
uous phases should be slightly positive, not 
zero as advocated by Tolman, because of 
the gain in entropy on spontaneous disper- 
sion. Through observations made in our ex- 
perimental study of the formation of col- 
loidal AI(OH)a dispersions by controlled 
addition of a base to an acidified aluminum 
salt solution (5) we were also led to con- 
sider the possible existence of thermody- 
namically stable dispersions of inorganic 
solids. 

The experimental proof needed to dispel 
the notion that lyophobic colloids cannot be 
thermodynamically stabilized in solution 
was provided when Shulman and other in- 
vestigators (6, 7) were able to prepare micro- 
emulsions. In agreement with theoretical 
predictions the interracial tension 3" of these 
systems was found to be extremely small 
but positive (3' ~ 1 mN m -1) and systems 
were observed to be quite monodisperse. 
Microemulsions are now being used as 
model systems in studies of the interaction 
between colloidal particles in concentrated 
solutions (8). 

Although the existence of thermodynam- 
ically stabilized dispersions of inorganic 
solids has not yet been demonstrated une- 
quivocably there is no a priori reason for 
arguing against their discovery. In this paper 
we shall attempt to provide arguments in sup- 
port of this contention and derive the con- 
ditions necessary for the existence of TSD. 

Regardless of whether a dispersion be 
thermodynamically or kinetically stable, the 
"stable" state is usually achieved through 
the aid of adsorption. Ionic adsorption proc- 
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esses promote the formation around the dis- 
perse phase of an electrical double layer 
which in turn provides the repulsive part 
of the interaction between colloidal par- 
ticles. These processes also induce a lower- 
ing of the interfacial tension which may 
eventually become negative so that condi- 
tions are ripe for spontaneous dispersion and 
the formation of a TSD. 

LOWERING OF THE INTERFACIAL 
TENSION BY ADSORPTION AT A 

PLANAR SOLID SURFACE 

One of the consequences of adsorption 
is that the reversible work (3') required to 
create a unit of new surface can be reduced 
appreciably. We shall make use of this fact 
to establish the conditions under which the 
interfacial tension at a planar interface be- 
tween a (macro) solid phase and an aqueous 
electrolyte solution may become zero or 
negative. 

In Fig. 1 we give the expected variation of 
the interracial tension and the adsorption 
density Fi with changing chemical potential 
IX~ of the adsorbing species i in the solution 
phase on assuming localized adsorption at a 
finite number of surface sites. This figure 
introduces a new parameter characteristic 
of an adsorption system, namely, its point- 
of-zero-surface tension (PZS) where 3' = 0 
and IX~ =- Ix*. We also suggest that at the 
PZS saturated adsorption has already been 
reached, that is, F* = Fmax. We also note 
that for Ix~ >> Ix~ the variation of 3" with 
Ix~ may be approximated by 

3 '  - -  3"0 = - - F m a x ( / ' Z i  - -  I x [ ) ,  [ 1 1  

where at Ix;, 3' = 3'0- This expression for- 
mally introduces the two surface param- 
eters, 3'o and Fmax. The magnitude of these 
constants will largely determine whether for 
a given adsorption system the PZS may be 
reached and therefore the formation of a 
TSD may be expected. 

We proceed now to the derivation of a 
more exact expression for the dependence 
of 3" on Ix~ in the case of ionic adsorption at 
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the interface separating a sparingly soluble 
salt AB from an aqueous electrolyte solu- 
tion. Consider the solid AB to be in con- 
tact with an aqueous solution to which is 
also added a potential-determining elec- 
trolyte AY and a supporting electrolyte XY. 
For  this two-phase, four-component  system 
at constant temperature and pressure the 
Gibbs adsorption equation reads 

d y  = --(FA+ -- FB+)d/LAy - Fx+d/Lxv. [2] 

The relative adsorption density or surface 
excess of component  AY is rigorously de- 
fined by the relation 

(FA+ -- FB-) 

= _ (  0y tT, p, /Lxy [3a] 
\ 0 / L A Y  ] 

1-g-X-) 'p'ns2°'nAB'/LAY,/LXY. [3b] 

Equation [3b] serves as an operational defi- 
nition of  the adsorption density in systems 
where changes in y are not accessible to 
measurement,  A refers to the total interfacial 
area, and n~ to the number of moles of com- 
ponent  i in the system. 

We define the surface charge density or as 
the excess adsorption of lattice (potential- 
determining) ions 

or ~ F(FA+ - rB-), [4] 

where F is the Faraday constant.  On intro- 
ducing the electrochemical potential/2j of the 
ionic species j and making use of Eq. [4], 
Eq. [2] may be rewritten to yield 

or  o r  
dy  = - --F d # A  - -  Fx+d/zxv - -~- d/2y. [5] 

At constant ionic strength and Cxv >> fAy, 
Eq. [2] simplifies to 

dy  = -(FA+ - FB-)d/XAy 

and Eq. [5] becomes 

[6] 

or  
dy  = - - -  d/2A. [7] 

F 

I 

I/0 I t 
gt'i ~ i 

~t i 

FIG. 1. Illustrating the variation of adsorption 
density and interfacial tension with chemical potential 
of adsorbate. /x* is the chemical potential at the 
point-of-zero-surface tension (PZS) when satura- 
tion adsorption is already achieved. 

Equation [6] may be integrated to find the 
decrease in y at constant ionic strength if 
the dependence of  (FA+ -- FB-) on /LAy (the 
adsorption isotherm) is known. Equation [7] 
will serve as the starting point in a theo- 
retical evaluation of the decrease of the in- 
terfacial tension due to adsorption at the 
plane interface. 

On formally separating the electrochem- 
ical potential into a chemical and an elec- 
trical term and noting that at equilibrium 
/2i must be constant throughout the two- 
phase system, we may write the following 
equivalent expressions for d/2A: 

d f z  A = d[z I = R T d  In a A  [8a] 

= d f i~  = Fdda [8b] 

= d/2~. = d/z~ ,s) + Fdtoo, [8c] 

where ~b is the Galvani potential difference 
between the two bulk phases, namely, solid 
(b) and solution (1), and tOo is the average 
electrostatic potential at the surface (s) rel- 
ative to that of  the bulk solution (1) which is 
arbitrarily assigned a value of zero. The ac- 
tivity of  species A ÷ in the solution is repre- 
sented by aA and/L~.s) denotes the chemical 
part of  the electrochemical potential of A in 
the surface. On substituting expression [8c] 
for d/2A in Eq. [7] we find 

Journal of  Colloid and Interface Science, Vol. 75, No. 1, May 1980 



188 STOL A N D  DE B R U Y N  

(mNrn -1 ) ]]I 

-10 

-200 
-6 -4 -2 0 2 /. 6 

ApA 

FIG, 2. Calculated curves  of  AT versus  ApA. Curve 
I: Ionic s t rength  1 M; curve II: ionic s t rength 0,1 M; 
curve III: ionic s t rength 0.01 M. O'ma x = 1 C/m 2. 

O- 
dT = -o-drY0 - "T d/x~'s~" [9] 

This quasi-thermodynamic relation defines 
an electrical and a chemical contribution to 
the lowering of the interfacial tension. To 
evaluate the chemical contribution we shall 
assume localized reversible adsorption of 
the ions at noninteracting surface sites. 
Based on this simple Langmuir adsorption 
model we write (9) 

0 
d l~  ~e,~) = R T d  In ~ [10] 

1 - 0  

where 0 is the fraction of the total number 
of sites occupied by ion A ÷ at the solid/liquid 
interface. We distinguish two types of sites, 
one for occupation by A + and the other for 
occupation by B-. It may then be shown (5) 
that 

(o-~ax + O-) 
0 - , [111 

20-max 

where O-max = 2FFvzc and Fpzc is the ad- 
sorption density at the point of zero charge 
when O- = 0 and FA+ and FB- both equal 
~Fmax. On choosing a suitable model for 
the electrical double layer the dependence 
of O- on t~0 may be found and the evaluation 
of the electrical contribution to the inter- 
facial tension lowering can be made. Note 
that according to Eqs. [8a] and [8c] the mag- 
nitude of the potential difference tk0 is fixed 
once an expression for #e,~ is formulated. 
On substituting into Eq. [9] the defining ex- 

pressions [101 and [11] for/x (c'~) and 0 and 
applying the Guoy-Chapman theory of the 
electrical double layer to find a relation be- 
tween O- and tk0 (10), we find after integration 

AT = T - To 

8 c R T  

K 

R T  
+ - -  

F 

- - [  c°sh 2RTFtP-"-2"°- 1] 

O-max In 1 -- O-~max 

where c is the total electrolyte concentra- 
tion, To is the value of the interracial tension 
at the PZC, and K is the reciprocal Debye 
length. We note that both terms on the right- 
hand side of the above equation contribute 
to a decrease in Y- 

By introducing an alternative expression 
for the "double layer" term, Eq. [12] may 
be rewritten 

2 R T  
A T - _ _  (o-_ - O-+) 

F 

+ ~ O ' m a  x In 1 - , [13] 
F O-~max 

where O-_(o-+) is the charge density of the 
anions (cations) in the diffuse part of the 
double layer. The above result may be com- 
pared with a similar calculation by Hachisu 
(11) for ionized monolayers at liquid-liquid 
interfaces. It should, however, be noted that 
the adsorbing ions in the monolayer are as- 
sumed perfectly mobile in the Hachisu 
model. 

To relate our theoretical evaluation of A 7 
to experimental measurements we give in 
Fig. 2 a plot of AT versus ApA as derived 
from Eq. [12]. The parameter ApA equals 
the difference pA - pA0 where the subscript 
0 refers to the PZC of the system. 

With reference to Eqs. [12] and [13] we 
note that at low surface coverages, thus also 
low ApA values, the electrical term makes 
the major contribution to the value of A T. 
When the surface is nearly saturated (o- 
- O-max), the "chemical" term provides the 
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major contribution. Under these conditions 
(near adsorption saturation) tP0 will be ap- 
proximately constant and according to Eqs. 
[8] and [9] a linear dependence of Ay on 
ApA or A/x will result. This situation was 
anticipated when writing Eq. [1]. 

The linear dependence of Ay on ApA at 
large ApA values is evident from Fig. 2. 
The symmetrical shape of the curves is in- 
herent in the choice of adsorption model. 
This figure demonstrates that for large val- 
ues of O'rna x the decrease in the interfacial 
tension may amount to as much as a few 
hundred millinewtons per meter over a ApA 
range of about 6 to 7. 

Experimental evaluations of Ay may be 
done with the aid of Eq. [6] and the adsorp- 
tion isotherm (o- versus pA) obtained with 
the potentiometric titration technique (12, 
13). Adsorption studies with silver iodide as 
adsorbent indicate that at high ionic strength 
a negative surface charge density of only 
about 6 × 10 -2 C m -2 (13) for ApAg --- 6. 
From this low value for t ra  decrease in the 
interfacial tension of the AgI/solution inter- 
face of about 15 mN m -1 is derived. For 
oxides o- may reach values an order of mag- 
nitude larger than those measured on AgI 
(14, 15). Obviously for these systems a more 
pronounced decrease in the interfacial ten- 
sion will result. Values in the neighborhood 
of 150 mN m -1 have been quoted (16). 

In arriving at the Ay-ApA curves dis- 
played in Fig. 2 we have chosen model pa- 
rameters (for example, O'max) SO as to obtain 
over the same ApA range a decrease in the 
interracial tension of the same order of mag- 
nitude as that observed in oxide systems. 
Our calculations show that a combination of 
high ionic strength, a large ApA value, and 
a high trmax favors a strong reduction in the 
interfacial tension. The decrease in the inter- 
facial tension (A3") needed to make 3' nega- 
tive and promote spontaneous dispersion 
will depend on the value of To. Unfortunately 
no reliable experimental technique is avail- 
able for measuring the interfacial tension of 
solids in aqueous solutions. Experimental 

studies of the kinetics of precipitation from 
supersaturated aqueous solutions (17) and 
elementary calculations (18) suggest that for 
simple, sparingly soluble salts and some 
simple oxides 3' values ranging from 50 to 
300 mN m -1 are to be expected. One may 
therefore expect to find experimental proof 
of the existence of TSD of these solids. It is 
also interesting to note that if the thermo- 
dynamic stability of a dispersion has been 
demonstrated then a more exact value than 
hitherto possible may be deduced for the 
interfacial tension of a solid in aqueous 
solution. 

F O R M A T I O N  OF T H E R M O D Y N A M I C A L L Y  

STABLE DISPERSIONS 

The thermodynamic conditions which de- 
termine the existence of stable and unstable 
equilibrium disperse systems and spontane- 
ously dispersing systems may be derived 
straightforwardly from a formulation of the 
free energy of formation (AG) of a disper- 
sion of arbitrary size. A number of investi- 
gators (19-22) have used this approach in 
an analysis of the stability of microemul- 
sions. A most elegant treatment applicable 
to all types of disperse systems has been 
given by Rusanov et al. (3, 23). A number 
of these authors introduced statistical ther- 
modynamical considerations to correct for 
deviations from ideal behavior of the col- 
loidal solutions and thus to account for the 
interaction between dispersed particles. 
Overbeek's treatment (20) is the most ad- 
vanced. He introduce s the Percus- Yevick- 
Carnahan-Starling approximation (24) for 
hard spheres to correct for nonideal behav- 
ior and estimates the magnitude of this cor- 
rection. This author also considers the effect 
of curvature on the decrease in the inter- 
facial tension in both W/O and O/W micro- 
emulsions. 

General Formulation of the Condition for 
Stable Equilibrium of Solid Dispersions 

We do not intend to give a detailed and 
rigorous treatment of the conditions for 
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stable equilibrium of solid dispersions in 
aqueous solution. In the preceding section 
the role of adsorption in promoting spon- 
taneous dispersion has been discussed. We 
merely wish now to arrive at an order of 
magnitude approximation of the degree of 
dispersion of the equilibrium system. Con- 
sider the formation of a dispersion by sub- 
division of a (macro)solid phase AB in an 
aqueous solution of fixed composition to 
yield spherical particles of radius r. At con- 
stant temperature, pressure, and composi- 
tion we may write for the free energy of 
formation of this dispersion 

AGT,p, all n's 

= TA + ~ n~A/xi + AGmix. [14] 

The first term on the right-hand side of Eq. 
[14] represents the amount of reversible 
work to increase the surface area of the sys- 
tem from an assumed negligible value in the 
initial state to its final valueA. It will make a 
positive contribution if 3' is positive and a 
negative contribution for 3' negative. The 
second term, referred to by Ruckenstein (21) 
as the "dilution effect" will be negative be- 
cause of adsorption at the newly created 
interface or zero in the absence of adsorp- 
tion. The last term represents the free energy 
of mixing of the dispersed particles into the 
continuous medium and makes a negative 
contribution because entropy is generated 
in the process. This term may be evaluated 
by assuming the formation of a dilute dis- 
persion ofn D noninteracting particles. In this 
case we may write 

AGmix = - k T n o { l n  (N/np)  + 1}, [15] 

where k is the Boltzmann constant and N 
>> n o is the number of solvent molecules in 
the system. This formulation corresponds to 
that derived by Rehbinder and Shchukin 
(25). For a dispersion of spherical particles 
of radius r we may also write 

3"A = 3"Bn 1/~, [16] 
where 

B = (36r/2Bf~27r) 1/3 [17a] 
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and we have made use of the identities 

3/3nAB 
np -= = (367rn~Bl?2)-lA 3 [17b] 

4 7 r r  a 

3 / 3 n a b  
A - [17c] 

r 

In these expressions nAB is the number of 
moles of the solid AB to be dispersed, ~ is 
the molar volume, and A is the total surface 
area of the dispersed phase. Note that pa- 
rameter B is a constant if the change in solu- 
bility of the solid with variation in particle 
size may be ignored. 

On applying the condition for thermody- 
namic equilibrium to Eq. [14] after having 
made the substitutions indicated by Eqs. [15] 
and [16] and recalling the Gibbs-Duhem re- 
lation, we find 

OAG 
- 0  

Onp 

= ½Bn~213"r - kT  In N/np. [18] 

From Eq. [18] we conclude that the inter- 
facial tension of the equilibrium dispersion 
must be posi t ive  irrespective of the partic- 
ular expression used to evaluate hGmix. 
Solving for the equilibrium value of the inter- 
facial tension (%), we obtain 

3kT N 
% = In - - .  [19] 

47rr~ np 

In the Appendix we list some values for "re 
as calculated with the aid of this expression. 

The condition for a stable equilibrium, 
02AG/O2np > 0, when applied to this ideal 
dilute dispersion requires 

1 Bn~21~ - 2 B y n ~ / a  + - 
9 3 

x + k T n ~  1 > 0 .  [20] 

Whether the equilibrium will be a stable one 
or not will depend largely on the sign of the 
partial derivative Oy/Onp which will be dis- 
cussed later. 
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Estimating the Particle Size o f  the 
Thermodynamically Stable 

Dispersion 

The condition for equilibrium, Eq. [18], 
does not allow one to solve explicitly the 
concentrat ion (and particle size) of  the equi- 
librium dispersion unless Ye is known. A 
reasonable  est imate of  the particle size may  
be obtained by considering the role of  ad- 
sorption in the dispersion process  at con- 
stant T, p ,  and composit ion.  The total num- 
ber  of  adsorbed potential-determining ions 
at the spherical interface (total area A) is 

_ o-A o- . [ 21 ]  nX+-n~- 7 - f  

A materials balance shows that 

(11 + (cA - cB), [22] CAr - VF \r } 

where ca r  is the number  of  moles of  the 
potential-determining electrolyte initially 
added per  unit volume of  liquid phase,  the 
concentra t ion difference (CA -- CB) refers to 
the excess  concentrat ion of  A + in the solu- 
tion when adsorption equilibrium is reached,  
and V is the volume of  the continuous phase 
which may  be assumed constant .  For  CAr 
large and therefore ca >> cB Eq. [22] trans- 
forms to 

CA Y - -  CA - -  y 

With the aid of  this express ion and the pre- 
viously derived relation between Ay and 
hpA (see Eq. [12], also Fig. 2) it is now 
possible to evaluate the change in interfacial 
tension with variation in r during the dis- 
persion process  for  a fixed value of  cAr. The 
results of  this calculation are displayed in 
Fig. 3 where we plotted A T versus log r at 
three different ionic strengths but at the 
same predetermined value of CAr. The 
dashed line in this figure locates the zero 
value of  3/on the assumpt ion that 3/0 equals 
150 mN m -1. We note that the macrosys tem 

5 y  

{mNm -11 

-10, 

JI 

-20C I 

~ m . , - -  log r (m} 

FIG. 3. Calculated curves depicting variation of 
hy with log r with r = average radius of the dis- 
persed phase. Curve I: Ionic strength 1 M; curve II: 
ionic strength 0.1 M; curve III: ionic strength 0.01 M. 
O'ma x = 1 C m-2; nab = 1 mole; V = 1 dma; pA (at 
PZC) = 6; b = 10 -5 m3/mole; cAy = 0.l M. 

at ionic strength 1 M and O. 1 M will be un- 
stable (y < O) under these  conditions. In fact  
negative y values will be observed  for r 
> 10 -s'5 m (ionic strength 1 M) and for r 
> 10 -s 'l  m (ionic strength O. 1 M). Sponta- 
neous dispersion will occur. Stable equilib- 
r ium dispersions character ized by  an a v e r -  
age particle size approximate ly  3 nm ( I  = 1 
M) and 8 nm (I  = O. 1 M) will thus form. 

If, however ,  y0 ~> 250 mN m -1 all disper- 
sions regardless of  ionic strength will be  un- 
stable. The stable state will be the two-phase  
macrosys t em characterized by a minimal 
surface area.  

At the point-of-zero-surface tension where 
y = 0 (lAy[ = y0) and pA - pA* we derive 
f rom Eq. [23] (see also Figs. 1 and 2) 

constant  
CAY - -  C ~  - -  (Tma  x.  [24] 

r *  

This useful relation shows that r*  is in- 
versely proport ional  to the difference (cAr 
- c * ) .  The larger this d i f ference the 
smaller r*  will be. Spontaneous dispersion 
occurs  for cAy > c~ (or ApA > ApA*) be- 
cause then the interfacial tension at a planar 
interface (r --> oo) will be negative. The equi- 
librium size of  the dispersion may  now be 
approximated  by Eq. [24]. However ,  be- 
cause  at equilibrium y must  be positive, the 
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I ° -200 
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012 0'./, 016 0'.8 "1,0 10 
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FIG. 4. The variation of the free energy of forma- 
tion (AG) of a dispersion with total surface area (A) 
at different ionic strengths. The dashed curve gives the 
contribution of the free energy of mixing to AG. For 
further details see text. 

equilibrium radius re will always be slightly 
smaller than r* (see Fig. 3). 

In Fig. 4 we give a plot of AG as a function 
of total surface area. In calculating AG we 
have assumed the same values for  CAr, 3'0, 
and O'ma x as were chosen for the construction 
of  Fig. 3. From Fig. 4 we see that the minima 
in the two curves I and II locate the thermo- 
dynamically stable dispersions. We also 
note that the contribution of  the AGmix term 
to the total free energy of  formation is small 
compared to the other contributions (dashed 
curve). 

Testing the Condition for 
Stable Equilibrium 

To demonstrate the existence of  thermo- 
dynamically stable sols we must establish 
as mentioned previously that OZAG/OZnp 
> 0. We consider two cases. First, we shall 
assume the two-phase macrosystem to have 
a low but positive interfacial tension and 
that no adsorption occurs during the disper- 
sion process.  In the second case we con- 
sider systems in which a significant role is 
played by adsorption in the dispersion 
process.  

The increase in free energy accompanying 
the increase in surface area in case I will be 
compensated entirely by the AGmix term. 
If a stable dispersion were to form then ac- 

cording to Eq. [20] the condition to be satis- 
fied is 

2 kT N kT 
- - - - I n - -  + - -  > 0 .  [25]  

3 np np np 

Now for dilute solutions to which the above 
criterion applies, the negative term on the 
left-hand side will be much larger numer- 
ically than the positive entropic term. Only 
for N/no < 4.5 will the criterion for stability 
be obeyed but then ideal behavior may no 
longer be assumed. We conclude therefore 
that for this case the condition for stable 
equilibrium is not met. This conclusion is 
not surprising. According to Eq. [18] the 
equilibrium radius will be quite large for a 
low equilibrium value of  the interfacial sys- 
tem (see Appendix). An additional decrease 
in particle radius will result in a large gain 
in entropy (approximately proportional to 
r -3) for a small decrease in the free energy 
of surface formation (proportional to r- l ) .  
The existence of an "en t ropy  stabilized" 
sol is therefore not to be expected.  It is 
possible that dispersions of  some organic 
solids in nonpolar liquids may belong to this 
category. 

In case II the partial derivative Oy/Onp is 
not zero. We must introduce an adsorption 
model to evaluate the derivative as was done 
by Wagner (19) for a microemulsion system. 
The last term in Eq. [20] may be neglected 
because as already pointed out the first term 
is much larger numerically than it. The con- 
dition for stable equilibrium then becomes 

Oy 2 y 
> - -  [26a] 

Ono 3 n~, 
o r  

3 c3y 
np ~ > 3/. [26b] 

On v 

The term on the left-hand side of these in- 
equalities can be evaluated with the aid of 
the adsorption model introduced in previous 
sections of  this paper. Starting with the 
Gibbs adsorption equation in the form - d y  
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= (RTFA+/CA)dCA and utilizing Eqs. [1761 
and [24] it is readily shown that 

07 RTF~max 4:7r .2 

Onv c~V 3 

To test the stability criterion, Eq. [26], we 
show calculations of the term 

3 07 3nABf~F~axRT 1 
np Onp c*V r- ~ [281 

for appropriate values of the relevant phys- 
ical parameters (r/AB,Ca,Fmax) in the Ap- 
pendix. We note that under these conditions 
Oy/On v is larger than the quotient y/n,.  

The Isodispersity o f  a TSD 

In performing the preceding thermody- 
namic analysis and in constructing Figs. 3 
and 4 we have tacitly neglected the depend- 
ence of the solubility of the dispersed phase 
and of the interracial tension on the particle 
size (or its curvature). Starting with the defi- 
nition of the chemical potential of a one- 
component phase, /z = (OG/On)r,p, an ex- 
pression may be obtained for the change in 
solubility with particle size. Thus for an iso- 
tropic solid of finite dimensions we may write 

tz = Ixo + 3,(OA/On). 

On introducing the identity OA/On = bOA/OV 
and assuming spherical geometry for the dis- 
persed phase we find 

27~3 
/ z  - / z  0 - 

r 

where /x0 is the chemical potential of an 
infinitely large solid. This expression re- 
duces to the well-known Gibbs-Kelvin 
equation if we assume both 7 and ~ to be 
independent of r. The value to be inserted 
for 7 in Eq. [30] is then that of a plane inter- 
face separating the solid and liquid phases at 
a given temperature and composition. From 
the above expression we conclude that when 
7 is small, as would be true for a thermo- 

dynamically stable dispersion, the correc- 
tion to be applied because of the solubility 
effect may be negligibly small. 

[27] The dependence of 3' on r (or curvature) is 
also expected to provide only a second-or- 
der correction to the solubility as calculated 
from the Gibbs-Kelvin equation. Tolman 
(26) and Kirkwood and Buff (27) calculated 
that the surface tension of a liquid droplet 
should decrease with decreasing r but con- 
cluded that this effect would be detectable 
only if the radius of the droplet is smaller 
than 10 nm and will become appreciable for 
r < 1 nm. Recent investigations by Ahn et 
al. (28) and by Kim and Chang (29) confirm 
these conclusions. Whether the same trend 
(decreasing 3/ with decreasing r) holds for 
solid particles has not yet been established 
with any degree of certainty. There are indi- 
cations of a similar trend to be expected (30) 
but also of an opposite behavior (31). Re- 
gardless of the direction in which y will vary 
with particle size, this effect will only be- 
come of importance when the size of the 
dispersed particles approaches molecular di- 
mensions. A statistical mechanical treat- 
ment of the system is then to be preferred 
to a thermodynamic description of such 
small-particle systems. 

In deriving the Gibbs- Kelvin equation we 
[29] have also ignored a third effect, namely, 

the thermal motion of the dispersed par- 
ticles. From a statistical mechanical analysis 
Kuhrt (32) was able to show that the trans- 
lational and rotational motions of small 
liquid droplets in a continuous vapor add a 

[30] term, -4/v, where ~, is the number of mole- 
cules in a droplet, to the Gibbs-Kelvin 
equation when written in the form 

c(r) 2fJ 7 
- - - .  [ 3 ~ ]  

In c(r = ~) rRT 

The rotation of solid particles in a liquid 
medium will probably be greatly hindered so 
that the correction term may amount at the 
most to - 3/2 v. Again this effect will only be- 
come noticeable when the dispersed phase is 
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extremely small. It might be important when 
one treats, for example, a polynuclear metal- 
hydroxocomplex as a second phase (5). 

Although one may justify the neglect of 
the solubility effect in the derivation of the 
criteria for stable equilibrium of solid dis- 
persions, it does play an important role when 
we come to consider the degree ofdispersity 
of the TSD. It is the Gibbs-Kelvin equation 
that accounts for Ostwald ripening proc- 
esses in dispersions with positive interfacial 
tension. A narrow size distribution of the 
dispersed phase in the TSD is to be expected 
because of two opposing effects, one of 
which is Ostwald ripening. The natural tend- 
ency for small particles with positive y to 
grow larger, as expressed by the Gibbs- 
Kelvin equation, will be opposed by the so- 
called adsorption effect which will limit the 
growth by imposing a negative y on the 
larger particles in the dispersion. With refer- 
ence to Fig. 3 we may then conclude that 
the steeper the slope (Oy/Or or Oy/OnD) at 
the point-of-zero-surface tension, the nar- 
rower the size distribution and therefore the 
more nearly isodisperse will be the TSD. 
The size distribution of equilibrium disper- 
sions in liquid/liquid systems has been con- 
sidered by Volmer (32) and in more detail by 
Overbeek (20) for microemulsions. The 
latter author also concluded that a thermo- 
dynamically stable emulsion should be near 
isodisperse. 

DISCUSSION 

We have seen that the formation of a ther- 
modynamically stable dispersion of solid 
particles in a liquid medium is possible if by 
adsorption at the planar interface a signifi- 
cant lowering of the interfacial tension is 
achieved such that I ATI >- 3'0. The smaller 
the interfacial tension at the PZC (Y0) the 
greater the likelihood that by adsorption 
spontaneous adsorption would occur. A low 
3'0 value is however not an absolute neces- 
sity. In systems characterized by a large 3"0 
value the required decrease in 3t to promote 
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the formation of a TSD may be achieved by 
a combined, cooperative adsorption of a po- 
tential-determining and another surface-ac- 
tive electrolyte. The observed spontaneous 
emulsification in some mercury-aqueous 
solution systems at an applied potential dif- 
ference of about 1 V (33) may be cited as an 
example. An asymmetric location of the 
PZC in the case of simple inorganic solids 
will also favor the formation of a stable posi- 
tively or negatively charged sol. 

Aside from the small but positive value 
of the interfacial tension stable dispersions 
may also be recognized by the absence of 
marked Ostwald ripening and by a relatively 
simple relation between the average particle 
size and the amount of adsorbate needed 
to create the stable state (see Eq. [24]). 

The observations made by Voet (34) in a 
study of colloidal sols in concentrated elec- 
trolyte solutions suggest that he may have 
been dealing with TSD. This investigator 
noted, for example, an improved stability of 
slightly soluble salts and also metal sols in 
concentrated solutions of sulfuric acid. A 
positively charged silver iodide sol in a con- 
centrated electrolyte solution was observed 
to have a greater stability than the corre- 
sponding sol in a dilute aqueous solution. 
Yates (35) observed the remarkable stability 
of silica sols at high pH and suggested that 
this might imply thermodynamic stabiliza- 
tion. This observation is in general agree- 
ment with the earlier statement that an asym- 
metric location of the PZC (for silica pH 
(PZC) = 2) should aid the formation of a 
TSD. In our investigations of the prepara- 
tion of aqueous dispersions of AI(OH)a and 
FeOOH from acidified metal/salt solutions 
(5, 36) we also noted at low pH the formation 
of small particles (r -~ 2.5 nm) which show 
no tendency for Ostwald ripening. With in- 
creasing pH these sols first gelled and then 
flocculated. 

As reverse Ostwald ripening (spontaneous 
increase in the degree of dispersion) may be 
kinetically unfavorable we should look for 
examples of TSD in precipitation studies. 
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Consider, for example, a hypothetical dis- 
persion of a solid AB in an aqueous solu- 
tion saturated with respect to the solid 
phase. Suppose the PZC of the dispersed 
phase to be located at pA = 5 and that due 
to ionic adsorption the PZS falls at pA = 2.5. 
In Fig. 5 we distinguish three types of sys- 
tems depending on the excess concentration 
of the potential-determining electrolyte AY. 
Dispersions of type A fall in the concentra- 
tion range 2.5 < pA < 5 and will through 
the agency of Ostwald ripening strive to at- 
tain a minimum of surface area. Unlimited 
growth of the solid phase is possible, but 
kinetically stabilized colloidal dispersions 
may form. Dispersions of type B represent 
thermodynamically stable sols of a specified 
degree of dispersion. The dependence of 
particle radius on pA as determined by Eq. 
[24] is also depicted in this figure for type B 
systems. The lower concentration limit for 
TSD has been fixed quite arbitrarily by 
choosing a value of 1 nm for the minimum 
particle size. Systems of type C are then 
best considered to be homogeneous solutions 
(not two-phase systems) but may include as 
possible components the charged, small 
polynuclear complexes extensively referred 
to in solution chemistry. 

In the extensive studies by Tezak and co- 
workers (37) of the precipitation of poorly 
soluble salts from aqueous solutions ex- 
amples of TSD may be uncovered. In a typ- 
ical experiment performed by these investi- 
gators two solutions containing soluble salts 
AY and XB are mixed in various ratios to 
form the insoluble component AB and elec- 
trolyte XY. By turbidity measurements the 
boundary between a dispersed system and 
a clear solution is delineated. The results 
are presented in so-called precipitation dia- 
grams where log [AY] is plotted versus log 
[XB] and regions in which precipitation 
is observed are indicated ("precipitation 
bodies"). 

Based on the theoretical treatment devel- 
oped by us we indicate schematically in Fig. 
6 the construction of a precipitation diagram. 

log r-3 A~/ .~U/ /~  
(m) -4 

-6 

-g 

-10 
-4 

B C 

i I 

:-2 0 2 

log CAy [tool 1-1 ) 

FIG. 5. Illustrating the different types of systems 
to be encountered in precipitation studies. For details 
see text. (A) Kinetic stabilization of dispersion is 
possible but not thermodynamic stabilization. (B) 
Thermodynamically stable dispersions may exist. The 
dependence of the equilibrium particle size of the 
equilibrium composition is depicted by the solid curve 
(see Eq. [24]). (C) Molecular solutions with as- 
possible components polynuclear complexes exist in 
this concentration region. 

If the interracial tension of solid AB is posi- 
tive irrespective of the value of ApA or ApB 
then growth and Ostwald ripening will not be 
restricted. The boundary between precipita- 
tion and "dissolution" will be determined 
by the solubility product. The result is a 
simple precipitation diagram as sketched in 
Fig. 6a. We now consider the hypothetical 
system already referred to for which pA 
(PZC) = 5 and pA* = 2.5 (points Q and Q' 
in Fig. 6b). Between Q and Q' unlimited 
growth is possible whereas outside this re- 
gion Eq. [24] will be applicable and small 
charged particles of AB will form. In Fig. 6b 
the ruled area includes the dispersions of type 
A described in Fig. 5 whereas in the blank 
area labeled "clear" TSD should form. The 
boundary between these two areas is deter- 
mined by the condition cAy = c* or CxB 
= c*. The turbidity of the systems falling in 
the "clear" areas will be low as the concen- 
tration of the stable sol will be small. The 
"clear" areas should merge into the "disso- 
lution" regions which represent simple mo- 
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FIG. 6. Illustrating the construction of a precipitation diagram. For details see text. (a) Absence 
of TSD; (b) TSD possible in region marked "clear ."  

lecular solutions. It is possible to detect a 
similarity between our construction (Fig. 6b) 
and many of the precipitation diagrams of 
Tezak (37). 

In concluding this discussion we wish to 
compare a kinetically stabilized dispersion 
(KSD) of which the stability is well accounted 
for by the DLVO theory to our TSD. A KSD 
is thermodynamically unstable compared to 
the two-phase macrosystem which features a 
minimum of surface area. Spontaneous 
coarsening of such a dispersion may be hin- 
dered kinetically by a high (repulsive) energy 
barrier to flocculation and/or the very tow 
solubility of the dispersed phase. The van 
der Waals attraction will, however, eventu- 
ally overcome the double-layer repulsion 
when the interacting particles come close to- 
gether. The system will then find itself in a 
deep primary energy minimum fromwhich it 
cannot escape into the dispersed state again. 

In the DLVO treatment of colloid stability 
it is tacitly assumed that the interfacial ten- 
sion is positive throughout the coagulation 
process. Once the aggregates of particles of ~ 
an initially KSD have formed by flocculation 
irreversible aging processes such as cement- 
ing of the particles by recrystallization and 
Ostwald ripening will take over. Depending 
on the rates with which these processes pro- 
ceed the primary particles originally under- 
going Brownian motion will have lost their 
individuality as pointed out by Frens (38); 
This author also argued and supplied experi- 
mental proof that it is possible to reestablish 

the double layer by recharging the "precipi- 
tated" flocs and thereby to promote redis- 
persion of flocculated systems. However, he 
was careful to note that redispersion by re- 
charging cannot break up recrystaUized and 
aged aggregates. This is in contrast to a ther- 
modynamically stable dispersion where in 
principle this reverse Ostwald ripening or 
comminution process should be thermody- 
namically feasible but may be hindered by a 
huge activation barrier. 

Obviously the same interaction forces 
which are invoked in the DLVO treatment 
of KSD are also operative in TSD. Thus, for 
example, microemulsions are known to 
cream, a process similar to that of floccula- 
tion of a solid dispersion, but the creamed 
particles will not coalesce as would be the 
case in a thermodynamically unstable emul- 
sion. This observation implies that a TSD 
may be in a sense kinetically unstable. The 
potential energy diagram of two interacting 
particles in a TSD may exhibit a reversible 
secondary minimum and thus show some 
form of kinetic instability. A clustering of 
particles may be expected in a concentrated 
salt solution but were the system to maintain 
its thermodynamic stability at closer dis- 
tances repulsive interactions must prevail 
over attractive actions. Actual contacts be- 
tween particles are prevented because other- 
wise the system will land irreversibly in the 
primary minimum. It might even be possible 
to consider some of the oxide-gel systems 
to be immobilized TSD. 
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APPENDIX 

E s t i m a t e s  of  the equi l ibr ium interfacial  
t ens ion  (Ye) and (3/2)np(Oy/Onp) f rom Eqs .  
[19] and  [28], ba sed  on the  fol lowing 
r easonab le  values  o f  the needed  phys ica l  
pa r ame te r s :  

T = 300°K, ~ = 3 x 10 -4 m3/mole,  nAB 
= 10 s mole/m s, N = 3.4 x 10 ~8 molecules/  
m s, Ca = 1 mole /m s, V = 1 m s, Fm~x = 1.7 
x 10 -6 mole /m 2 (16/xC/cm2).  

3 Oy 

Equi l ib r ium ~/e 
radius  (A) ( m N  m -a) ( raN m -a) 

5 18.4 13,000 
10 6.7 6,500 

100 0.13 650 
1000 0.002 65 
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