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A recursive procedure for expressing all nonleading logarithms in terms of the coefficients of the t~-function and the ano- 
malous dimensions is derived. A part of the nonleading logarithms, which dominates not far from the Landau singularity, is 
summed to all orders. The behaviour of the running coupling constant in this region is different from that predicted by the 
simple Landau pole. 

The problem of the nonleading corrections to the 
leading-logarithm (LL) predictions of  gauge theories 
attracts a lot of  at tention.  Their understanding from 
the point of  view of  diagrams [1 ] and their extension 
to other hard processes [2] is intensively studied and 
is being adapted to practical calculations. The only 
complete calculation up to now provides the first non- 
leading corrections for deep inelastic scattering (DIS) 

[3]. 
In this letter we would like to discuss the structure 

of all nonleading logarithms as it emerges from the so- 
lution of  the renormalization group (RG) equation. 
A recursive procedure for computing all nonleading 
logarithms will be derived. As an example the first 
few nonleading terms for the proton/ghion propagator 
will be calculated explicitly. It turns out that there 
also exists a region of  q 2 (which we propose to label 
as "not  far from the Landau ghost pole")  where expli- 
cit summation of  an important  part of  the nonleading 
contributions can be carried out. Hence an analytic 
expression for the photon propagator will be obtained 
and the approach to the Landau singularity will be dis- 
cussed. 

1 On leave of absence from the Institute of Physics, Krakdw, 
Poland. 
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The following discussion, if not stated otherwise, 
will apply to both  QCD and QED. For definiteness let 
us consider the inverse of the "invariant charge" 
[ad(q 2, a)] -1  of  QED. It satisfies the RG equation 
[4] 

[a/Ot - 3 (a)~  O/aa] (o~d ) -1  = O ,  ( I )  

where 

t = log (-q2/m2),  a = a m = e2/47r, 

~f~> =.d log ~(~)/d log u 2 . 

It is convenient to introduce the following parametriza- 
tion: 

o o  

( a d ) _  1 = 1  ~ aNdN(at)  " (2) 
a N = 0  

Here otNdN(X ) corresponds to the nonleading logarithms 
of the N th  order (x = a t). d O is just the LL result. Sub- 
stituting (2) in ( i )  and comparing the same powers of  
a one obtains 

(1 -- [Jl X)d'N -/31(N - 1)d N 

N+I O) 

= ~ ~K[(N-K)dN+I_K+Xd)+I_K], X>~ 1, 
K=2 
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with Table 1 

N CN(~) a) 
• t 

~(Ot) ~ otNl~N , d]v = ddN(x) ldx .  
N=I 

Eq. (3) can be simplified using the standard method of  
variation o f  constants. Introducing the new variable 
t = 1 -/31 x one obtains 

d N ~ CN( t ) /U  -1 , ('4) 

and 

N+I 
5N:- tK-  

X [ (N-K)CN+I_K+t( t - -1 )CN+I_KI ,  (5) 

where CN = dCN(t)/dt" With the boundary conditions 
C0(t ) = 1, and CN(1 ) = 0 forN~> 1, the set of  equa- 
tions (5) determines CN(t) once CO, ..., CN_ 1 are 
known. The recursive procedure suggested by eqs. (5) 
is a simple alternative to the usual algebraic determina- 
tion of  the nonleading corrections. In table 1 we quote 
the first few nonleading contributions to (ad)  -1 [5]. 
We emphasize that we concentrate here on the struc- 
ture of  the relation between/3(o 0 (/71,/32, "") and 
d -1  (a, t)* 1. The problem of calculating higher coeffi- 
cients of  fl(a) is outside the scope of  this letter. 

Combining eq. (5) with the present knowledge of  
fl(a) gives some nontrivial information about the re- 
gion t ~ a  *2. To this end substitute eq. (4) in (2) to 
obtain 

oo 
(ad)  - 1 =  ~ (ot l t )N-iCN(t) .  (6) 

N=O 

It follows from eq. (5) that the CN'S have the structure 

N-1 

C N ( t )  = ~ WNLtLIogKt,  N > / 2 .  (7) 
K,L=O 

Needless to say that any conclusion about the nature 
of  the singularity at t = 0 (Landau ghost) must be based 
on the full series (6) (cf. ref. [5]). Summation of  (6) 

+1 Generalization to quantities with nonzero anomalous dimen- 
sion 3,(a) is straightforward. 

4:2 For QCD this corresponds to Q ~ A. 

0 1 
1 -~2 log 

3 :#-"~ log2l j  + ~273 log lj + ~" (~2 + fl-273 - 74) ({j2 _ 1) 

+ 72~-~2 + 73) (~j - 1 )  

a) ~X  = - n K / n ~ ,  K = 1, 2 . . . . .  

with the exact CN'S cannot be done. However, in the 
region 

I l o g t l > l ,  a / t < l ,  (8a,b) 

t < l log tl ,  (a/t)log t ~ const . ,  (8c, d) 

the main contribution to eq. (7) is given by the highest 
power o f  log t and lowest power of  t.  Closer inspec- 
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Fig. 1. The test of formula (10) for QED. Curve 1: exact solu- 
tion of eq. (l) with fl(c0 approximated by the first two terms 
of the power series. Curve 2: same as curve 1 but/3(c0 approxi- 
mated by the first three terms of the series expansion. Curve 
3: Leading logarithms of the ~ approximation [eq. (10)]. 
Curve 4: Leading logarithms and first nonleading correction. 
Dashed line: leadingqogarithm approximation. 
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tion of  eq. (5) shows that 

W N = ( N - 1 ) - l ( - f l 2 / f l l )  N N > / 2  (9) N- l ,0  ' ' 

Neglecting other contributions gives the "leading log ~" 
(LIJj) approximation for the invariant charge: 

ad = a (10) 
~J- a(fl2/fll)lOg [~ + a032/fll)lOg ~] " 

Formula (10) contains the nonleading logarithms to 
any order calculated in the leading log ~ approximation. 
It is expected to work in the region (8). Note that the 
highest power of log ~ in eq. (7) is generated only by the 
fll and f12 coefficients. Hence the result (10) is indepen- 
dent of  the renormalization prescription. 

Fig. 1 compares the "exact" solutions of eq. (1) with 
the LL formula (dashed line), LL plus first nonleading 
(1NL) correction (curve 4) and the LL~ result (curve 3) 
given by eq. (10). By "exact" we mean the solutions of 
eq. (5) obtained by the standard method of  character- 
istics with fl(a) approximated, for QED, by 

(1) the first two terms (curve 1) and 
(2) the first three terms (curve 2) [6]. 

Q CD / ~  

2 
4NL / . 

..%"" 

"1. 4.5 23 ~.3 q.J 7. 403. 
> 
~6ev3 

Fig. 2. Same as fig. 1 but for QCD. No f13 coefficient is yet 
available for comparison. 
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Accidentally curves 1 and 2 coincide, on the graph, 
with curves 3 and 4, respectively. It is apparent from 
fig. 1, that below ~ ~ 0.02 higher terms in the expan- 
sion of  fl(a) will be important, hence our test is trust- 
worthy only for ~ > o(0.02). It turns out that for ~ > 
0.02 the main correction is due to the first nonleading 
term. All nonleading logarithms of higher order change 
the 1NL result by at most 10%. They get more impor- 
tant for ~ < 0.02, but the exact result, to compare with, 
is not known there. At the estimated lower limit of  
validity of the LL~ approximation the 1NL result is 
changed by 100% ,3 .  

In conclusion, we have proposed a recursive.proce- 
dure which allows easy generation of the nonleading 
logarithms provided fl(a) and 7(a)  are known to the 
required accuracy. The analytic summation of  the im- 
portant pieces of  all nonleading loga; i thms was per- 
formed for the example of  the running coupling con- 
stant of  QED (for QCD the procedure is the same, c.f. 
fig. 2). The region of  validity, of  the approximation 
used, ends not far from the Landau singularity 1 - 
f l laln ( - q 2 / m 2 )  = O/a). The running coupling constant 
rises faster, with _q2 ,  than both the leading-logarithm 
formula and the LL with the first nonleading correc- 
tion. For QCD, a similar method allows one to explore 
a region of  smaller Q2 than considered up to now but 
larger than the confinement scale. 

One of  us (J.W.) would like to thank the Theory 
Division of  Rutherford Laboratory and the Theoretical 
Physics Group in Utrecht, where this work was done, 
for hospitality and support. 

,3 In fact the bound (8b) has to be restricted to ~ > ~* where 
~* is the pole of eq. (10). At ~ = ~* the two leading terms 
cancel, hence the nonleading contributions become impor- 
tant (for QED ~* ~ 0.011). 

[ 1 ] R.K. Ellis, H. Georgi, M. Machacek, D. Politzer and 
G.G. Ross, Nucl. Phys. B152 (1979) 285. 

[2] A.H. MueUer, Phys. Rev. D18 (1978) 3705. 
[3] A.J. Buras, E.G. Floratos, D.A. Ross and C.T. Sachrajda, 

Nucl. Phys. B131 (1977) 308; 
N;A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Phys. 
Rev. D18 (1978) 3998. 

[4] D.J. Crewther, Lectures given at the 1975 Carg~se Summer 
Institute on Weak and Electromagnetic Interactions, pre- 
print TH, 2119-CERN (1976). 

[51 F. Wieczorek, Seminar at CERN, Berlin Preprint (Summer 
1979). 

[6] E. de Rafael and J.L. Rosner, Ann. Phys. (NY) 82 (1974) 
369. 

[7] D.W. Duke, Rutherford Lab. preprint RL-79-044. 


