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Uniform emulations are a method to obtain efficient and structure-preserving simulations of large networks on smaller 
networks. We show that for every fixed graph H, which is connected (or strongly connected in the case of directed graphs) but 

not complete, the problem to decide whether another (strongly) connected graph G can be uniformly emulated on H is 

NP-complete. 
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1. Introduction 

Parallel algorithms are normally designed for 
execution on a suitable network of N processors 
with N depending on the size of the problem to be 
solved. In practice, N will be large and varying, 
whereas processor networks will be small and 
fixed. The resulting disparity between algorithm 
design and implementation must be resolved by 
simulating a network of some size N on a fixed 
and smaller size network of a similar or different 
kind, in a structure-preserved manner. For this 
purpose, a notion of simulation, termed emula- 
tion, was first proposed by Fishburn and Finkel 
[6]. Independently, Berman [l] proposed a similar 
notion. A detailed study was presented by Bod- 
laender and Van Leeuwen [4]. 

Definition. Let G = (V,, E,) and H = (I’,, EH) 
be networks of processors (graphs). We say that G 
can be emulated on H if there exists a function 
f : V, + VH such that, for every edge (g, g’) E EG, 

f(g) =f(g’) or (f(g), f(g’)) E EH. The function 

* This work was supported by the Foundation for Computer 
Science (SION) of the Netherlands Organisation for the 
Advancement of Pure Research (ZWO). 

f is called an emulation function or, in short, an 
emulation of G on H. We call G the guest graph 
and H the host graph. 

Let f be an emulation of G on H. Any 
processor h E V, must actively emulate the 
processors belonging to f-‘(h) in G. When g E 
f-'(h) communicates information to a neighbour- 
ing processor g’, then h must communicate the 
corresponding information either ‘internally’, 
when it emulates g’ itself, or to a neighbouring 
processor h = f( g’) otherwise. If all processors act 
synchronously in G, then the emulation will be 
slowed by a factor proportional to 

max I f’(h) I- 
he V, 

Definition. Let G and H be as above. The emula- 
tion f is said to be (computationally) uniform iff, 
for all h, h’ E V,, 1 f-‘(h) 1 = I f-‘(h’) I. 

Every uniform emulation has associated with it 
a fixed constant c, called the computation factor, 
such that, for all h E V,, I f-‘(h) I = c. It means 
that every processor of H emulates the same num- 
ber of processors of G. 
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Graphs and directed graphs representing the 
interconnection structure of a processor network 
will be connected and strongly connected, respec- 
tively. We shall therefore mainly consider uniform 
emulations of (strongly) connected graphs on 
(strongly) connected graphs. We assume the reader 
to be familiar with the theory of NP-completeness 

(see 171). 
In [2,5], the following problem was considered: 

UNIFORM EMULATION Proof. The proof uses a (simple) transformation 
Instance: Connected graphs G = (V,, Eo) and from BALANCED COMPLETE BIPARTITE SUBGRAPH. 

H = (v,, EH). 0 

Question Is there a uniform emulation of G on 
H? Definition. Let 

The problem was proved to be NP-complete, 
even if various additional constraints are imposed 
on G, H and the computation factor 1 V, I/ 1 V, I. 
In [3], the existence of polynomial-time approxi- 
mation algorithms that approximate 

min h2a; If’(h) I Ifemulates G on H) 
H 

was discussed. 
In [5]it was proved that UNIFORM EMIJLATION 

stays NP-complete if H is fixed to any graph, 
obtained by removing one edge from an undi- 
rected, complete graph with at least three nodes. 
(For instance, H can be fixed to the connected 
graph with three nodes and two edges.) In this 
paper we generalize this result to all (strongly) 
connected graphs that are not complete. 

2. Preliminary definitions and results 

Definition. Let G = (V, E) be an undirected, bi- 
partite graph. We say that G contains a balanced 
complete bipartite subgraph (abbreviated as BCBS) 
of 2K nodes, if there are two disjoint subsets V,, 
QCVsuch that IV,l=lV,l=K and UEV~, 
u E V, implies { U, u } E E. 

Given a bipartite graph G and a K E N+, the 
problem to decide whether G contains a BCBS 
with 2K nodes is NP-complete [7]. In [5], the 
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following variant of BALANCED COMPLETE BIPAR- 

TITE SUBGRAPH was proved to be NP-complete. 

2.1. Lemma ([3]). Let n EN+, n > 3. The following 
problem is NP-complete: 

Instance: Bipartite graph G = (V, E), with 

nl IVI. 
Question: Does G contain a BCBS with 2 I V I/n 

nodes? 

p3= ({IV 2, 31, {0,2), (2,3)>) 

be the undirected graph with three nodes and two 
edges (= a path with three nodes)-see Fig. 1. 

n 
1 2 3 

Fig. 1. 

2.2. Lemma. Let VI, V, be disjoint finite sets, and 
let G = (V, U V,, Eo) be an undirected bipartite 
graph with edges between nodes of V, and V, on&, 
z.e., 

(u, w)EE~ ==z. (us V,=WE V,). 

Let d = (VI u V,, I!?~) be the undirected, bipartite 
graph with 

&={(u, w)~u~V~~wwV~~(u, w)4E,}. 

Then, there is a uniform emulation of c on PJ with 
f(V,) G (1, 2) and f(V.) c (2, 3) if and on& if G 
contains a BCBS with 2 ( V I/c nodes. 

Proof. First suppose f is a uniform emulation of 
6 on H. Choose W, =f’(l) and W, =f’(3). 
Now, WI c V,, W, c V,, and u E W,, w E W, 2 
(u, w) @ l&, hence (u, w) E Eo. So, G contains a 
BCBS with 2 I V I/c nodes.’ 

Now suppose G contains a BCBS with 2 I V I/c 
nodes, i.e., there are sets WI !Z V,, W, c V, with 
I WI I = I W, ) = I V I /c 2nd u E W,, w E W, a 

(u, w) E E, 3 (u, w) e EG. Let f(W,) = 1, f(K) 
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=3,andf(V1\W,)=f(T/,\W,)=2.1tiseasyto 
check that f is a uniform emulation of G on P3 

and f(V,) c (1, 2}, f(K) G (2, 3). 0 

2.3. Lemma. The following problem is NP-complete: 
Instance: Disjoint finite sets V,, V,, undirected 

graph G= (V, U V2, Eo). 
Question: Is there a uniform emulation f of G on 

P3 with f(V,) c (1, 2) andf(V*) G (2, 3}? 

Proof. This lemma can be proven using Lemmas 
2.1 and 2.2. •I 

2.4. Lemma. Let H = (V,, EH) be a directed graph, 

with V= (1, 2, 3) and (1, 2) E E,, (2, 3) E E,, 

(1, 3) e EH. (H is one of the eight graphs, shown in 
Fig. 2.) The following problem is NP-complete: 

Instance: Disjoint finite sets V,, V2, directed 
graph G = (V, U V,, E,). 

Question: Is there a uniform emulation f of G on 

H, withf(V1) c (1, 2}, f(V,) c (2, 3}? 

Proof. The proof is similar to the one for the 
undirected case. q 

3. Main results 

3.1. Theorem. Let H = (V,, EH) be a connected, 

undirected graph that is not complete. The following 

problem is NP-complete: 
Instance: A connected undirected graph G = 

(Vo, 4). 
Question: Is there a uniform emulation of G on 

H? 

Fig. 2. Eight possible choices for H in Lemma 2.4 

Proof. Let H = (V,, EH) be a connected, undi- 
rected graph that is not complete. Clearly, the 
problem is in NP. To prove NP-completeness, we 
transform the problem from Lemma 2.3 to it. 

Let disjoint finite sets V,, V2 and an undirected 
graph G = (VI U V,, EG) be given. We shall con- 
struct a connected graph G’ = (V’, E ‘) such that 
there is a uniform emulation of G’ on H iff there 
is a uniform emulation f of G on P3 with f (V, ) c 

{1,2} and f(Q) G (2, 3). Let c= 3 1 VG 1 (c is the 
computation factor of the emulation of G on Pj). 

From the fact that H is not complete it follows 
that there exist nodes u,, u2, .q E VH with (u,, u2) 
E EH, (u,, Us) E EH, and ( ul, ug) @ E,. (The sub- 
graph of H induced by { u,, u2, u3 } is isomorphic 
to P3.) We let G’ consist of the following parts: 
_ 3c + 1 copies of H; from the first c copies of H 

we omit the nodes u,, u2, u3; we connect copies 
of the same and adjacent nodes; 

_ a copy of G. 
Each copy of u, and u2 is connected to each node 
in V, ; each copy of u2 and uj is connected to each 
node in Vz. 

Definition. Let G’ = (V’. E’) be the undirected 
graph, with 

V’=V,U{u,,,~xEV~,l<ig3c+l, 

x@ { u1, 5, us} Vi>c+l} 

and 

E’=E,U {(u,.,> u,.,,)Iu~.i> Q/E V’ 

and (x, r> EEL} 

U {(%,,7 Y> IYE v, WE {u1, 4) 

u {hw Y)lYE v,, WE {u23 %I)- 

3.1.1. Lemma. There is a uniform emulation of G’ 
on H if and only if there is a uniform emulation f of 

G on Pj withf(V,) 2 (1, 2) andf(Vz) c (2, 3). 

Proof. First suppose there is a uniform emulation 
g of G on P3 with f(V,)c (1, 2) and f(V,)C 
(2, 3). Define f: V’ + V, as follows: f(u, ,) =x 

and, for y E V,, f(y) = u,(,). It is easy to ‘check 
that f is a uniform emulation of G’ on H. 
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Now suppose there is a uniform emulation f of 
G’ on H. For every x E V,, let N(x) be the set 
consisting of x and its neighbours, i.e., 

Number the nodes in H with wr,. . . , w , vH,, in 
order of nonincreasing degree, i.e., if degree( w ;) > 
degree(wi), then i <j. 

3.1.1.1. Claim. Vi, 0 < i < 1 V, 1, there exists a 
uniform emulation f’ of G’ on H such that, vj, k, I 

with v, k,v,, 

I-‘( %?,,A.” ” 

E V’ A 0 (j ( i, f’(v,,,,) = 

Proof. We use induction on i. For i = 0, the claim 
immediately follows. 

Now, let fi be given. Notice that for wj, 
1 <j < i, and v,,+,,, E V’, 

Therefore, if wiil E { vr, v2, I_+}, then there are at 
most 3c nodes v E { vw,+,,, 11 < 1~ 3c + l} with 
3j, 1 <j < i, 

fib) =fj({ %,,k Ic+l<k<3c+l}). 

If WE {q, VI, v3}, then there are at most 2c such 

nodes in { v,,+,J I c+l,(I(3c+l}. Hence, there 
exists a v,,+,,[ E V, such that there is no j, 1 <j < i, 

with 

f’( { %,,k Ic+l<k$3c+l})=f’(u,,+,,,). 

Let such an I be given and write v = v,,+,,,. Look 
at the degree of f(v). Uniformity prevents that 

degree( f (v,, j)) -C degree(x), for all v,, j E V’\ VI. 

Hence, degree( f (v)) = degree( wi+ r ). (We use the 
fact that the degrees of wr,. . . , w ,“,, are nonin- 

creasing.) 
Further notice that for every y E N( f ‘( v)) there 

is a w E V, with f’(w) =y and (v, w) E E’. Now, 

let f ‘(VW,+,,, ) #f’(v). Every neighbour of v is a 
neighbour of u,,+,,,,. Hence, N( f ‘( u,,,,,,)) 2 
N(f’(v)). Choose a node y with f’(y)=f’(v> 
and y not of the form v~,+,,~ (1 <m < 3c + 1; 
if w~+~ E { vr, v2, q}, then c + 1 < m < 3c + 1). 
For all z E V,, (y, z) E EG implies f’(z) E 
N( f ‘(v)). We obtain a new uniform emulation 
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f’ by ‘exchanging’ the images of vw,+,,,, and y: 

z @ {Y, %,+,,m } -f(z) =fi(z), 

f(y) =f i(vW,+,,,), and f”i(v,,+,,J =f ‘(y). 
f’ maps every neighbour of y upon a node in 

N( f ‘( v)) c N( f’( y)), and every neighbour of 
V w,+,,m is v or a neighbour of u, so is mapped upon 
a node in N(f’(v)) = N(fmi(vW,+,,,)). So, f’ is 
again a uniform emulation of G’ on H, but now 

fli(%,+,,,) =f’(v). 
By repeated use of this ‘image-exchanging’ pro- 

cess one can obtain a uniform emulation f ‘+I 

with f ‘+l( v,,+,,, ) = f ‘+I( v) for all v,,+,,~ E V’\ 

V,. With the induction hypothesis one proves that 
Vj, k, 1 with v, k, v, ,E V’, andO<j<i+l, 

f i+l(uw,,k > =fi:lcvW;;,,. 0 

Now, let g=flVH,. g, restricted to the set of 
nodes { vjc+ 1 I x E V, } can be seen as a graph 
isomorphism of H. Hence, we have the following 
lemma. 

3.1.1.2. Lemma. There is a uniform emulation d of 
G’ on H with f ( vX,i) = x for all v~,~ E V’\ V,. 

Notice that if w E V,, then g(w) E { vl, v2, v3}, 
and S maps c nodes of V, on each of the nodes 

q, q_? vs. Further, w E V, implies that g”(w) must 
be adjacent to 

a({ ‘“,A Ic+l<k<3c+l})=u, 

and to 

g( { ‘4 Ic+l<k<3c+l})=v,. 

Hence, g(w) E { vl, v2 }. Likewise, w E V, implies 

g(w) E {u2, 91. So, the mapping h : V, + 

(1, 2, 3}, given by h(w) = i - g(w) = vi, is a uni- 
form emulation of G on P3 with h(VI) c (1, 2) 
and h(V2) c (2, 3}, therewith proving Lemma 
3.1.1. 0 

Finally, notice that the construction of G’ can 
be carried out in polynomial time in ( V, I. Hence, 
the problem stated in Theorem 3.1 is NP-com- 
plete. 0 
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With the following simple observation we have 
a complete classification of the complexity of find- 
ing uniform emulations on fixed, connected, undi- 
rected graphs. 

3.2. Proposition. Let G = (Va, Eo) be an undi- 
rected graph and let K, be the complete graph with 

n nodes. There is a uniform emulation of G on K,, iff 

nl Iv, I. 

For the general case of graphs that are not 
necessarily connected, we mention the following 
results. 

3.3. Corollary. Let H be an undirected graph such 
that at least one connected component of H is not 

complete. The following problem is NP-complete: 
Instance: An undirected graph G = (Vo, Ea). 
Question.- Is there a uniform emulation of G on 

H? 

Proof. The proof is done by transformation from 
the problem of Theorem 3.1. 0 

3.4. Proposition. Let H be an undirected graph such 
that each connected component of H is complete. 
Then there exists a polynomial-time algorithm that 

decides whether a graph G can be uniformly emulated 

on H. 

Proof. This problem becomes the question whether 
we can allocate the connected components of G to 
the connected components of H such that the 
numbers of nodes that are allocated to compo- 
nents of H are proportional to its size. By exhaus- 
tive search over all allocations this is solvable in 
polynomial time. (We use the fact that a graph 
can be separated in its connected components in 
linear time.) Cl 

For directed graphs, a result similar to that of 
Theorem 3.1 can be proved. 

3.5. Theorem. Let H = (Vn, En) be a strongly 
connected, directed graph that is not complete. The 

following problem is NP-complete: 

Instance: Strongly connected directed graph G = 

(V,, I&). 
Question. Is there a uniform emulation of G on 

H? 

The proof is similar to the one 
rected case, and uses Lemma 2.4. 
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