LETTER TO THE EDITOR

LUMINESCENCE OF NATURAL CALCITE (CaCO₃)

G. BLASSE

Physics Laboratory, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands

M. AGUILAR

Universidad Autonoma, Facultad de Ciencias, C-IV, Cantoblanco, Madrid 34, Spain

Received 9 September 1983

Recently the luminescence of $\mathrm{Mn^{2+}}$ in natural calcite (CaCO₃) has been reported [1]. The crystals showed a red luminescence which was ascribed to the ${}^4\mathrm{T_{1g}} \rightarrow {}^6\mathrm{A_{1g}}$ transition on the $\mathrm{Mn^{2+}}$ ion. In addition, an ultraviolet emission was observed which was also ascribed to the $\mathrm{Mn^{2+}}$ ion. It is the purpose of this letter to present a more satisfying explanation of this emission band.

The uv emission band is rather broad and shows two emission maxima, viz. at 345 and 367 nm [1]. This corresponds to an energy difference of about 1800 cm⁻¹. Such an emission band is characteristically given by the Ce³⁺ ion, the two maxima corresponding to the two levels of the 4f¹ ground state, viz. $^2F_{5/2}$ and $^2F_{7/2}$ [2]. The Ce³⁺ ion might be present in the natural calcite crystals as an impurity.

The uv emission shows an excitation spectrum with band maxima at 313, 285 and 245 nm [1]. These correspond to $4f \rightarrow 5d$ transitions on Ce^{3+} and were also observed in the absorption spectrum of the crystals. This is not surprising since these transitions are fully allowed.

The luminescence of Ce^{3+} in $ScBO_3$, which has also calcite structure, has been reported years ago [2]. The excitation spectra could be interpreted completely in view of the simple site symmetry in this lattice (distorted octahedron with D_{3d} symmetry). A comparison of the Ce^{3+} absorption bands in $ScBO_3$ and $CaCO_3$ is interesting:

ScBO ₃	28.0	31.2	36.1	38.5
CaCO ₃	31.9	35.1	40.8	

All values are in 10^3 cm⁻¹. The two lower values relate to the cubic t_{2g} components, the higher ones to the e_g components [2]. Note that the bands for Ce^{3+} in $CaCO_3$ are at about 4000 cm⁻¹ higher energy than in $ScBO_3$. This is probably related to different crystal fields, since there is less space for Ce^{3+}

0022-2313/84/\$03.00 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

(r = 1.15 Å) in ScBO₃ $(r_{\text{Sc}^{3+}} = 0.745 \text{ Å})$ than in CaCO₃ $(r_{\text{Ca}^{2+}} = 1.00 \text{ Å})$, where the ionic radii are taken from ref. [3].

The uv emission can, therefore, be ascribed to Ce³⁺. It is interesting to note that the Ce³⁺ excitation bands occur also in the Mn²⁺ excitation spectrum [1]. This shows that energy transfer from Ce³⁺ to Mn²⁺ occurs. In fact, Botden [4] already stated "that CaCO₃ activated with manganese cannot be excited by uv radiation, but CaCO₃ activated with lead, thallium or cerium and manganese shows an orange-red manganese luminescence under uv radiation at room temperature". X-ray irradiation may change the cerium valency. This explains the result reported in [1] that the uv excitation bands disappear after X-ray irradiation.

Using the data in ref. [1] it is possible to discuss the $Ce^{3+} \rightarrow Mn^{2+}$ transfer in $CaCO_3$ in more detail. It is possible [5] to calculate the critical distance R_c for electric dipole-dipole interaction from

$$R_{\rm c}^6 = 0.63 \times 10^{28} Q_{\rm A} E^{-4} \int f_{\rm s}(E) F_{\rm A}(E) dE.$$

Here Q_A is the absorption cross section of the acceptor (Mn²⁺), given by $Q_A = 4.8 \times 10^{-16} P_A$, where P is the oscillator strength; E is the energy of maximum spectral overlap; the integral presents the spectral overlap [6]. The latter is calculated from the spectral data in ref. [1] and amounts to 1.5 eV^{-1} . Especially the overlap of the Ce³⁺ emission band and the Mn²⁺ excitation band at 359 nm is very favourable, for P_A we took 0.5×10^{-6} [7]. This yields $R \simeq 5.0\text{Å}$. If transfer by electric dipole–dipole interaction spans this distance, possible contributions by exchange interaction cannot be of great importance.

Using the crystallographic data of $CaCO_3$ (calcite) and $R_c = 5$ Å, it is found that the Ce^{3+} ion is able to transfer to Mn^{2+} ions on the 8 nearest-neighbour calcium sites. Here a statistical distribution is assumed and $Ce^{3+} \rightarrow Ce^{3+}$ transfer neglected.

From the analytical results the Mn mole fraction is found to be 2×10^{-3} . The probability that a Ce³⁺ ion has no Mn²⁺ ions on these 8 sites is $0.998^8 = 0.984$. This predicts that Ce³⁺ excitation is followed by emission consisting of 98.4% Ce³⁺ emission and 1.6% Mn²⁺ emission. Since the Mn²⁺ excitation bands of Ce³⁺ are one order of magnitude more intense than those of Mn²⁺ in the Mn²⁺ excitation spectrum [1], the Ce³⁺ ions give an absorbance which is about 600 times as large as that of the Mn²⁺ ions. This explains why the absorption spectrum of the crystals shows only Ce³⁺ and no Mn²⁺ transitions [1]. Since the oscillator strengths of the two ions differ about 10^6 [7], the Ce³⁺ mole fraction in the crystals is estimated to be $600 \times 10^{-6} \times 2 \times 10^{-3} \approx 10^{-6}$. Such a low amount of Ce³⁺ can easily be present in natural crystals. The results show that the presence of a small amount of strongly absorbing and emitting ions can have drastic influence on the luminescence spectra.

References

- [1] M. Aguilar and M.I. Osendi, J. Lumin. 27 (1982) 365.
- [2] See e.g., G. Blasse and A. Bril, J. Chem. Phys. 47 (1967) 5139.
- [3] R.D. Shannon, Acta Cryst. A32 (1976) 751.
- [4] Th. P.J. Botden, Philips Research Repts. 7 (1952) 197.
- [5] G. Blasse, Philips Res. Repts. 24 (1969) 131.
- [6] D.L. Dexter, J. Chem. Phys. 21 (1953) 836.
- [7] C.K. Jørgensen, Absorption Spectra and Chemical Bonding in Complexes (Pergamon Press, Oxford, 1962).