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We consider a two-stage closed cyclic queueing model. For the case of an exponential server at each queue we derive the joint 
distribution of the successive response times of a customer at both queues, using a reversihility argument. This joint distribution turns 
out to have a product form, The correlation coefficient is calculated and shown to be non-positive. 

For the case of one general server and one exponential server we derive two approximations for the joint dis[ribution of the 
response times. The numerical results based on these approximations are compared with simulation results. The first approximation 
which heavily relies on results for the M / G / I  queue with finite capacity, is somewhat complicated, but it yields exact marginal 
distributions an t  appears to be very accurate. The second one is less accurate, but very easily ar qe. 

Keywords. Two-stage Cyclic Queue, Multi-programmed Computer Syslem. Cycle T,me. Joint Distribution of ResFonsc Times. 
Reversibility. 
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L I n t r o d u c t i o n  

W e  c o n s i d e r  the  two-s t age  cyc l i c  q u e u d a g  n e t w o r k  s h o w n  in Fig.  1. Q :  a n d  Q2 are s ingle  se rver  q u e u e s  

wi th  an  F C F S  discipl ine .  T h e  s y s t e m  c o n t a i n s  N cus tomer~ ,  w h o  cyc l i ca l ly  visit  Q~ a n d  Q2. 

Service  t imes  in  Qt  a re  i n d e p e n d e n t ,  iden t ica l ly  d i s t r i b u t e d  s tochas t i c  va r i ab ies  (s.v.) ~ ,  i = l, 2,o..., w i th  
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I stage 1 -general ~ta~ 2 expo~ntiat  I 
i service times service times I 
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Fig. 1. 

distribution function 

def 
B(t) = Pr(~', < t }  

and 
dci" 

f l :  <oo. 

t > 0 ,  

d~ f 
/3, = Elf ; '} .  n = 2 , 3  . . . . .  

def 
fl(0)= ""}, Re0 0. 

(,.l) 

Servi,'e times in Q2 are independent, negative exponentially distributed stochastic variables with mean a. 
The service processe,; in QI and Q2 are also independent. 

The model described above will be denoted as G / M / N  ~c~. It is a simple model of a multiprogrammed 
computer system with custemers representing programs, stage 2 representing the central processing unit 
and stage 1 representing a data storage and transfer facility which has access to alld can transfer 
infl~rmation for only one program at a time (cf. Lavenberg [8]). It has been observed by several authors 
[7,8] that Q~ is equivalent with an M / G / I  finite capacity queue with capacity N (i.e., ( N -  I) waiting 
places). The queue length and waiting time distributions in such an M / G / i  - N queue (and hence |n Q~) 
haxe been obtained by Cohen [5] (see also [8,10] for algorithms which efficiently determine queue length 
:rod waiting time distributions). 

In the present study we a~'e interested in the joint distribution of the ~ojourn or response times (waiting 
plus service times) at the two queues. In the case of expo~entiall~q distributed service times at both queues 
( M / M / N  ~C~) we obtain an expression for the Laplace-Stieltjes Transform (LST) of the joint distribution 
of the response times zt both queues (Section 2). Thus we generalize a re:~ult of Chow [3] who derived the 
LST of the cycle time ( = sum of two successive response times) distribution for the M / M / N  ~c~ model. 

As a by-product we obtain the covariance and correlation coefficient of the sojourn times at both 
queues; they are shown to be non-positive. 

For the general G / M / N  ~c~ case we did not succeed in obtaining an exact expression for the LST of the 
joint response time distribution. However, in Section 3 we derive two approximations for this LST. The 
first one. (3.7), is still rather conlp!icated, but very accuratc; in particular, it yields exact marginal response 
time distributions. 

In this approximation we use an exact expression, obtained in [2] for the M / G / i  - N q~,~eue, for the 
joint distribution of the number of customers present immediately before an (admitted) arrival and the 
response time of this arriving customer. The second approximation can be used more easily to obtain 
~3umerical results, but it i slightly less accurate. Extensive numerical comparisons are displayed in 
Appendix A. 

2. Exponential cyclic queues 

Conslder the G / M / N  ~c~ cyclic model described above. Denote by z, the number of customers left 
behind in Qt at r,,, the epoch of the nth departure from Qi after : = 0. As is observed by Cohen [5] in his 
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discussion of the M / G / I - - N  queue (which - as remarked above - is equivalent with Qm in the 
G / M / N  ~c} motiel), {z,,, n = I, 2 .... } is an aperiodic Markov chain with statignary transition probabilities 
and with a finite and discrete state space. Hence all its states are positive recurrent, and the chain has a 
stationary distribution. Defining 

def 
z , =  lim P r { z , = i l z ~ = z } ,  i = 0 , 1  ..... N - I ,  (2.1) 

we observe that in the M / M / I  - N queue (cir. [51) and hence also in Qi of the M / M / N  ~c~ model, 

l - a  , 
z , = ~  l - - ' : ~  a '  av~ l '  i=O,  ! . . . . .  N - l ,  (2.2) 

I 

[ l / N ,  a = l ,  

with 

def 
a = ~8/a. (2.3) 

By z we denote in the sequel an s.v. with distribution z,, i = 0 ,  i , . . . , N -  I. Denote by .,,,"~ the sojourn 
time which the customer leaving Q, at r, has just spent in Q1, and by s~ 2~ the sojourn time this customer will 
subsequently spend in Q2. It is easy to see that a joint stationary distribution of o,,¢t ~0 o,,'a> does exist, too. By 
s ~ ,  s cz~ we denote in the ,;equel stochastic variables with joint distribution 

P r { s ' " < s , , s ' 2 ' < s 2 } =  lim P r { s ~ " < s , , s ~ 2 ' < s 2 l s l " = t , , s i Z ' = t z } ,  s~,.%>0. 

Restricting ourselves in the rest of this section to the M / M / N  ( °  model we now prove the following 
theorem. 

Theorem 2.1. In the M / M / N  {c} model with mean service times fl and a in Qi and Qz, respectively, for 
Repj,  P2 ; ~ 0  

r , l - - a  N a  1 + f l P l  l + a p 2  , a ¢  I .  
~i ,.-p,,'"-p~,' '] t,=0 (2.4) 
" - [ "  J = k+ l  N-~  

I,=0 ~ 1 +flPl 1 +'~P2 " u =  !. 

Proof. The key idea is to consider the system at departure epochs of Q~, and then to look back at the past 
sojourn time of the leaving customer in QI and to look forward to his sojourn time in Q2- Now 

N - I  
"f - "~ k] 

J 
k=O 

N - I  
z . J  $ I 

k=O 

using the (,bviGus fact, based on the reemoryless property of the negative exponential distribution, that 

Pr{.,~2' < s2Jz . - k ,  s~," <s ,  ) = Vr{s~ 2' < szJz,, = k }. (2.6) 

Obviously 

, ~ 2 ,  ( 1 ) N - * ,  Rep2~>0 ' (2.7) 
E [ e  - p :  [ z - ' k ]  = 1 + otp2 

since a customer who leaves k customers behind in Qi finds (N - k - 1) customers present in Q2 and aence 
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has a sojourn time in Q2 consisting of (N - k - 1 )  + 1 exponentially distributed phases. 
Next consider E[e I z = k ] .  l t i s  well known that the queue length process {.v(t), t;~0} in an 

M / M / I - N  queue is a birth- and death-process. A birtla- and death-process is a reversible stochastic 
process (see Kelly [6]), i.e., for the stochastic processy(t) holds: 

(Y( t l ) , y ( t2 ) ,  .... Y(G))  and ( y ( ¢ - t l ) , y ( r - t 2 )  . . . . .  y ( ¢ - t # ) )  

have the same distribution for all t ,  t 2 ..... t,,, ~. (Or, as Kelly remarks, "'speaking intuitively, i f  we take a 
filn, of such a proces,¢ and then run the film backwards, the resulting process will be statistically indistinguisha- 
ble front the original process ".) 

Denoting by x an s.v. with distribution the lirrqfing distribution of the number of customers seen by an 
arriving customer who is admitted to the M / M / I  - N  queue, it is in particular seen that because of ',he 
reversibility of the queue length process, 

E[e-O'""lz=k]=a[e-P'""ix=k]. P-ep,~>0. k=O. I ..... N - - 1  (2.3) 

(see [2] for a more rigorous proof of the similar result for an M / M / I  queue with infinite capacity). 
Now (2.,I) follows from (2.5), (2.7), (2.8) and the following simple relation, 

( 1 ) k+' 1+/39, E[e °~'""1 x : k] = P ' + ' ( 0 , ) =  g e o , ~ > 0  (2.9) 

(In fact it is possible to prove directly that 

( 1 ) '+ '  E[e o,,'"{z 
k ]  :" I • 

but we prefer the intuitive reversibility argument above a very lengthy calculation.) [] 

Remark 2.2. Performing the summation in (2.4) we obtain, for Re p~, P2 >~ 0, 

E[e  P,~'" P2*':'] = 

( , ) - (  o ) 
1 - a 1 + aP2 i + flp~ 

1 - a  '~ 1 + f l P l - a ( l  + a P 2  ) 

( , ) , ,  ( , ) ,  _ 
1 1 + B p 2  1 +flp~ 
~' #(P,-p2) " 

/%' 

, a ~ l ,  

a = l .  

(2.1o) 

Hog.ever, the form (2.4) seems to be more useful in general; in particular we find, for s~, s 2 > 0, 

• . ~ S 1 , $ ( 2 ) ~ . S ~ }  0sl0s2 Pr(s' ') . = 

N,~ I z a  ,,1 e_, , . .a(sjB) ~' 1 ,,..o(s~/a) N-~-' 
- -  " - - - - -  - - e  - <  . , ,  

~=0 l - -  ''a ~ k~ ,~ ( , ~ ' - k - l ) i  

I '-°t,_°," o .  . ,  .: +. . ) .  , o  - ,~ ~ ~ N ' l ) ; '  , , 4  l, 

e (sv+sz)/a  S~..+ S 2 %'- 1 
~ -  , a ( N -  1 ) ! '  a = l  

(2.10 

Remark 2.3. Putdng p, = 02 = P in (2.4) we obtain an e:pression for the LST of the distribution of 
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e - s (n) -I.- s (2), the cycle time in -,~nc') - the M/M/~v  model, 

f 1 { I 
1 1---~ leap 

E[e- ' ] - - I /  1 / "+ '  

hence, for t > 0, 

d P r { c < t } -  ! I e _ t / . ( t / a ) x " '  
dt 1 --at¢ ¢~ ( N -  I)! 

I - a  s 1 + ~ S p  
a ¢ l ,  

¢ / ' -  l ,  

a 1¢ 1 e _ t / i j ( t / ~ )  tv-I 
l - - a  ~ j8 ( N -  1)! 

Re p ~ O ;  (2.12) 

I 1 i (t/~)"-'(e_,/a_e_,/~), ~ I, 
= ! --'a ~' a ( N -  l)! (2.13) 

I e_,,/a(t//p) ~ 
-~ N !  ' a =  l, 

a result found by Chow [3] (see his extensive discussion of (2.13)). (2.13) also follows from (2.11) after a 
simple integration. 

After sometimes lengthy calculations we obtain expressions for moments, covariances and correlation 
coefficients of the response times in Q, and Q2. 

Corollary 2.4. 

E[s(,) ] =  BN 4 1 a ! ---~"' a÷ l, 

[½/~(t¢ + 1), a = l :  
(2.14) 

E[s'~'] l ½.(t~+ 1)' 

a N a  ,v I a¢~l,  
i - a  rc' (2.15) 

a = l ;  

I ]~N+I aN+l 
E[e]=E[sO,+s , , , ]  = N - - - ~ ; ~ - ~  , a ¢ : l ,  

[(to+ 1)~, a=l;  
(2.16) 

[ ~ [_N0+a ,V+:) 2~. ] a¢i ,  
E[,,,,,,,,]-~ l - a [  l -a"  i-a ' 

L'~2( to+ I)(N+ 2), a= 1; 
(2.17) 

/v2aN ] 
+ 0-a#) 2 ' ~I, (2.18) 

a=l; 

p($(1) $(2))~-~f COIT($(I)~ ,(2))= 
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N customers 
4 " ' 

( ! - a )  (1 l -  ( I -a )  (i-,,")-'J 

I N  a 2 N2a  N 11/2] 
× ~ - - -  - ~  , a ~ l ,  I 1 - a  N ( l - a )  2 ] 

1 - N  
a = l ,  

N + 5 "  

(2.19) 

Remark 2.5. (2.16) has already been obtained by Chow [72]; (2.15) follows from (2.14) by interchanging a 

and ft. 

It ca ,  be seen from (2,18) that, for each a > 0, 

cov(s ~l', s ~2~ ) '~ 0, (2.20) 

with equality iff N = I. Since the first expression in (2.11~) does not change if we interchange a a n d / / ,  it 
suffices to consider the case a < 1, and to prove that, for each 0 < a < 1. 

I N 2 a N  I l _ a  N 
- - ~ >  or - - - l  + a 4  . .  ~ - a N - I > - N a  'N-l~/2.  (2.21) 
(1 - a)  ~ (! --a'V) 2 ! - - a  

(2.21) follows immediately from the basic arithmetic mean - geometric mean inequality (Beckenbach and 
Bellman [1, p. 4]) - with equality iff N = 1. 

The fact that cov(s ~j~, s ~2~) ~ 0 and p(s ~ ,  s ~2~) ~ 0  agrees with our intuitive expectation. Further,  
numerical calculations point out  that p(s  °~, s ~2~) reaches its min imum at a = 1 for fixed N. 

Finally note that from (2.18) and (2,19) it follows that 

fl~ a ~ l  
lira cov(s" t , s~2))=  ( 1  a)  2" " (2.22) 

--oO, a - -  1 

lim p(s  't '  s '2') = { 0, a S  !, (2.23) 
.,v.~¢ ' - 1 '  a = l .  

Remark 2.6. In [41 Chow generalizes his exponential cyclic model to the case of K parallel servers replacing 
Q:. He again obtains the cycle time distributioo. In a futare study we plan to show how one can extend his 
results to the .joint sojourn time distribution at Qi and rite parallel system. 

In another  future study ~ the case of a cyclic model  of M ( ~  3) exponential  servers, depicted in Fig. 2, 
wilt be considered. 

Note added in proof: O.J. Boxma, F.P. Kelly and A.G. Konheim, The product form for sojourn time distributions in cyehc 
exponential queues, Rept.. Univ. of Utrecht, February 1982. 
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Konheim, from th~ I.B.M. Thomas J. Watson 
seeing Theorem 2.1. 

For the model of Fig. 2, with mean service time a, in Q~, i = 1, 2 . . . . .  M, and with 

P(Jl . . . .  . j , ~ ) - -  I I  aJ'/ ~,, I I  a('. (2.24) 
i = l  kl . . . . .  kM~O i = l  t j 

k l + ' ' "  +ks t=N- -1  

the probab.ility that immediately after the departure of a customer from QM there are j~ . . . .  ,JM other 
customers in Q~ . . . .  ,QM, the LST of the joint distribution of successive response times s m . . . . .  s {M~ in 
Qi . . . . .  QM has the following product form: 

Z ..... JM ;~0 
l, . . . . .  +jM=N-- i 

Research Center, made the following conjecture, after 

p(2 ,  . . . .  ,JM) 1I 1 
i=l 1 +%p ,  ' 

R e o I , . . . , o M ~ O , M =  1,2 . . . . .  (2.25) 

The proof proceeds by induction, using reversibility. 
The applicability of the reversibility concept is, however, less obvious than it is in the proof of Theorem 

2. ! (except for the case that a~ = a, i = 1, .... M). 
Recently Schassberger and Daduna [9] proved, using a nice recurrence relation between LST's, that the 

LST of the cycle time distribution in the model ,.,f Fig. 2 is given by (2.25) with p, = p, i = 1 ... .  ,M. 

3. The G / M / N  (c) model 

Consider the model described in Section 1 (see Fig. !), with general service time distributioa B( . )  in Qi- 
(2.5) and (2.7) are gtill valid for this model, hence 

E e -OIsm-J2s~z~ : 2 Zk l + O~P2 ~ ' 
k=O 

{z k, k = 0, 1 . . . . .  N - 1 }, the stationary distribution of the number of customers left behind in Ql (or in the 
equivalent M / G / I  - N queue) by a departing customer, is kr~own: Cohen [5, p. 576] derives an expression 
for z k involving a contour integral, while Lavenberg [8] gives a recursive algorithm for the determination of 
the zt,. 

A more complicated problem is, however, the determination of E[e-P,*'"Jz = k ]  in an M / G / I -  N 
queue. The fact that customers can be refused admission makes a straightforward analysis extremely 
difficult, while the queue length process is not reversible when G =~ M, thus rendering (2.8) ir~valid. 

Still, there is some support for an introduction of the following. 

Approximation Assumption (cf. (2.8)) 

(3.2) 

Firstly, (3.2) is not only exact for G = M, but also for N = 1. Secondly, consider the case N = ~ .  In [2] 
we have derived the joint  distribution of s m, z and x in the M / G / 1  - ( ~ )  que,ae. Although E[s~')x] 
E[s°~] if G ~z M, the difference is often rather small  and in particular both tend to zero for a --, 0 (with 
one excep t ion  and their quotient tends to one for a ~ 1. 

Thirdly, there is at least some symmetry in the M / G / 1  - N  queue w.r.t, arrival and departure epochs: 
def 

Cohen [5, p. 577] remarks that z k = Pr{z = k} is equal to x k = Pr{x = k}, with x the number of customers 
seen by an arriving L '~Jstomer who is admitted. This implies in particular the following. Substituting the 
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approximation (3.2) in (3.1) and  using the f a c t  that zl, =xk  we have (with subscript 
approximatioa and (.) denoting an ~:dicator function) 

k=o I qFap 2 E[e-P'"'(x=k)], Rep,.p2>~0. (3.3) 

Hence the LST of the marginal distribution E[e -a, '{'] is exact in this approximation (as is E[e-a="~]). 
We now have to consider the jt~.~t distribution of s O) and x in the M / G / !  - -N  queue. It can be 

determined exactly [2], the main problem being the determination of E[e-P,~(x--k)] with ~" an s.v. with 
distribution the stationary distribution of the residual service time considered at the epoch a customer is 
admitted to the system. It is proved in [2] that 

E[s ~ e -p' ' ' ' '] =Zofl(p,) + P(sfl(pi),pr), Rep,  ~>0, (3.4) 

~vith 

A denot ing  

1 fo~, !-~o fl((1--~o)/a)--[J(Pl[l_(s/a~)N-, ] s dw, 

g e p ~ o ,  I,~1 <t~o; (3.5) 
here Do, is a circle with center at zero and radius ¢o, #o is the smallest zero (in absolute value) of 
p -/~((l -p)/a) ,  

z°= ~ j S ( ( l - ~ ) / a ) - ~ 0  w N-' • Iwl<#o • (3.6) 

From (3 3) and (3.4) we finally obtain the following approximation for the LST of the joint distribution 
of the response times at Q~ and Q2: 

1 ),, e _,,,~,,, ] Ce °'"" 
(l -~- otp2 ) N 

l I 
= z°~(P') (l +ap2 (l +ap2) ~r~( )N 4 "/ l + a o 2 ) , 8 ( p , ) , p , )  ' R e p . , P 2 ~ 0 .  

(3.7) 

In particular, the approximation of the LST of the cycle time distribution is given by 

1 I P((1 + a p ) f l ( p ) , p ) ,  Rep~>O. (3.8) EA[e -°c] = z°/~(O) (1 + a p )  N + (1  + a p )  n 

N~w consider moment approximations based on 0.7). It has already been noted Sa t  the marginal 
response time distributions are exact. Obviously, 

N - I  N - I  

e[s'2'l  = E zkE[s'2']z=k] : E zk (N-k)a .  (3.9) 
k = 0  k = 0  

L[sllq can be obtained from [5, p. 577]; here we shall use Lavenberg's simple expression [8]: 
N - !  

E I s " ; I = N / ~ -  ~ zk(N-k)a .  (3.10) 
k = l  

Hence 

E[cl = N# + N,,~0, (3.1 l) 
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(which yields (2.16) if G -- M). 
Furthermore, 

N - - I  

E[ s°)s'2'] = 2 zkE[sa ' l z  = k ]E[s" ' l z  -- k] 
k=O 

N--I 

2 N - k ) . E [ , ' " l  x = k ]  
k = O  

= NaE[s °'1 - aE[xs O'1 = E^[s° ' s t2 ' ] .  

H e n c e  

E[s")s '2'1 - E.,. [sO)st2)] = ½ { E[ e 2 ] - E^[ e2]} = aE[ xs ") ] - aE[zs  °) 1. 

It is shown in [2] that in the M / G / I  - N queue 

z l f . .  ! [ - - f l + a  E[x~'"I=,E[~'I+ 0T~ 7 ,o- /~( (1- ,~) /~)  

,o ~- ( N -  1)(1/,o)"-' X ( 1 - - ( i / w ) / v - l )  ( l _ w ) 2  - - - - -  

(3.12) 

(3.13) 

~ ' - ~  1 l-- /3(t , , )  
- a l p2 ) Pc f l ( P ' ) +  ~" z~ ( - i l k (p , )  , R e p , , p 2 ~ 0 .  (3.16) 

Z°(l  + k=i 1 + ap2)/¢-k tiP' 

This transform can easily be inverted. Note that (3.15) and hence also (3.16) is exact for G -= M. 
From (3.16) 

1 N--I  1 

E"2[e-"~] = z" (1 +,,,o) ' ' s (° )  + ,,=~2 z~ (1 + ,,,o) ~-~'s~(°) 

E m [ e  ] = Na + flz o + 2 ~ ( I  -- Zo) + (fl--  a)E[z ], 

t .-.,p 

l -  ~(p) 

- ,,.sE[z q - ,~E[z ] 2~" 

, R e p ~ > 0 ,  (3.17) 

(3.18) 

(3.19) 

l - ,8((1 -- , , , ) / . )  ] t - , , ,  

I ld,~, I~1<~o. (3.J4) 
1 - ' ~  

J 

Evaluating this expression and using (3.10) and (3.12) we find an approximation for E[s°)sc2q. 
A drawback of the approach presented above is that some contour integrals have to be evaluated; this 

may be quite cumbersome if N is not too small and if f l ( ' )  does not have a simple form (although it is in 
general not difficult to calculate the values of these integrals numerically, see Appendix A). Therel'ore we 
now present a very simple approximation, which does not differ much from the approximation (3.7) if the 
distribution of the residual service time ~" is rather insensitive to the value of x = k (some thinking will make 
clear that ~" will be rather insensitive to the value of x unless a < < fl and N is small). Returning to (3.2) and 
using the well-known result 

E [ e - ~ ]  = (I - f l (p ) ) /~p ,  

we put for Re p~ ~ 0  

E[e_p , . , , , [ x = /c ]__ f l k ( p t ) E[e _~ , ,~ ; [ x : : k ]~ f l k (p , )  l - f l ( p , )  k =  l 2 . . . . .  
~Pl ' (3.15) 

x = 0] = 

Hence our second approximation (indicated by subscript A2) reads 
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In Appendix A we compare our approximations with some simulation results. Presently we only 
consider  a special case. for which the exact joint  response t ime distribution can be obtained,  viz. the case 
N = 2. G ---- D (constant service times ~ at Qi). In  this particular case $~i) and .,~2) are independent ,  ~s can 
ea.,;ily be seen in either of  the following ways: 

(i) A straightforward calculation of  F.[e-P,'"'[z = ~ ] by conditic, n ing on x (a calculation which can be 
made  in this simple case). 

(ii) Reasoning that for the n th customer K,, in Q~ after t = 0, s~ i~ : fl or ~ < s~ I) < 2,8, but  in both  cases a 
service in Q2 starts zt the same epoch that  K,,'s service in Ql starts; hence Pr{z = ! Is,, °~} =e -p/~ 
independent  of whether s,, °)  = ~8 or ~8 <s, ,  °~ < 2~8. This implies that  s~ (2~, too, is independent  of  s~ ~). 
As a consequence of the independence we have 

EIs (''s(2, l = E[s  ~'' ]E[s(2)]. (3.20) 

P(s, P), occurring in the approximation formulae, can easily be evaluated ir~ this case. A contour  
imegrat ion yields for N = 2 (cf. (3.5), (36)  and [2]) 

= z, = l P ( s ,  p )  - P ( o )  s ,  
~p- -  1 

e-O.'"]  = o )p(  l + o ). (3.21) 

E[x$"'] = 2fl - a + (a - . 8 ) B ( I / a ) .  

In particular for G _--_m D 

EA ['e-p''' ' '-o:''~']t ] = e - a '  " ' "/'~' 1 e - ' ~ -  e -a° '  ! 
( l  + o t p 2 )  2 -be-#P' apl - -  1 - - ' 1  + a p 2  Rep~,p2~>0,  (3.22) 

EA[S")s (2'] = a2[(a + l) e -~ + 2a - 1], (3.23) 

while from (3.9), (3.10), (3.20) and (3.21) the exact result is 

E[s¢')s*:)] = a212a - 1 + e -~] [ l  + e-'~]. (3.24) 

Our second approximation yields for this case 

I EA2[$(I)S (2)] = a-[~a e -~ + ~a]. (3.25) 

Note t h a t  EA[$iI~$~2~]/E[$°)$(2)] tends to one for both a - 0  and a--. oo, whereas EA2[$~I)st2)]//E[s°~s t2)] 
tends to one for a -~ 0 but to ~ for a -* oo. 

Table 4 cc atains a comparison of (3.24) wi~:h the app~ oximations (3,23) and (3.25). 

Remark 3.1. c ru . .  '3.1 I) and (3.18) 

1, a - - 0  

EA2[c ] /E[c ]  ~ 1 +  P2/(2P')- 1 " (3.26) 
N . a ---~ c~.  

As remarked above (3.15) ~" will not be insensitive to the value of  x if a > > l and N is small; moreover if 
~ is small, the contribution of ~" to $(~) will be substantial and therefore in this case the second 
approximation will yield bad results, as is illustrated above. 
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Appendix A. Numerical results 

We now describe the numerical experiments, performed to test the accuracy of the two approximations 
A (cf. (3.7)) and A2 (cf. (3.16)); we also present four tables with numerical results and error percentages 
( { ( E A [ . ] / E  [ - ] )  - 1 } * 1 0 0 ~ ,  e t c . ) .  

In the present study the emphasis has been on the joint distribution of the response times at QI and Q:, 
rather than on the cycle time distribution (which may be of greater practical interest). However, we now 
compare the approximations of  both E[s°)s t2J] and E[c 2] for A and A2 with simulation results. 

The numerical experiments o are organized as follows. 
(1) The service time distribution G at Q1 is chosen to be E 2, E3, H2 (with 

B( t )  = q ( l  - e - t /m ' )  -k (1  - -  q ) ( l  - e - t / m 2 ) ;  

q = ½ ( l +  0 ~ . 6 ) ,  m , = # / ( l + f O - ~ ) ,  m z = f l / ( l -  0~.6); 

h e n c e  E { ' : ' }  = f l ,  E { ¢  z} = 5 f l  z )  a n d  D ;  a = 1 ( f i x e d )  a n d  a = f l / a  = ~ ,  ½, 1, 2 ,  4 ;  N = 2 ,  3 ,  4 ,  6 ,  I 0 .  

( 2 )  S i m u l a t i o n  ~ ' e su l t s  f o r ,  a m o n g  o t h e r s ,  m e a n  a n d  s t a n d a r d  d e v i a t i o n  o f  e ,  s ~lJ, s ~z) h a v e  b e e n  o b t a i n e d ;  

w e  h a v e  u s e d  t h e  r e g e n e r a t i v e  m e t h o d  o f  s i m u l a t i o n ,  u s i n g  t h e  I B M  R E S Q 2  p a c k a g e .  T h e  a c c u r a c y  o f  t h e  

s i m u l a t e d  m e a n s  o f  ¢ ,  s ° ) ,  s ¢z~ c o u l d  b e  c h e c k e d  w i t h  e x a c t  r e s u l t s ;  e r r o r s  a r e  g e n e r a l l y  v e r y  s m a l l .  F r o m  t h e  

Table  1 

G ~ - E  2 

N a E[sO)s(2~] ~ error  in ~ e r ror  in F_.[c 2 ] ~ er ror  in ~ er ror  in 
(sim.) E[s°~sa) ]  E[ s(t~s ~] (sire.) E[ e 2 ] E[ c 2 ] 

(A)  (A2) (A) (A2) 

2 ~ 0.50 --2.01 - -2 .17 6.34 - 0 . 3 1  - 1.28 
! 0.99 - 3.53 --  4.03 7.28 - 0.96 --  2.97 
2 

! 1.95 -- 3.44 - -4 .86 10.77 -- 1.25 --  3.57 
2 3.79 - 1.23 - 4.52 25.16 - 0.37 - 5.63 
4 7.57 - 0.24 - 6.08 84.09 - 0.04 - 15.43 

3 41 0.77 -- 0.82 - 0.95 12.27 - 0.10 - 1.68 
! 1.65 --  5.05 --  5.47 13.38 - i .25 --  5.18 
2 

1 3.33 - 6.39 "- 7.57 i 8.32 - 2.33 - 4.41 
2 6.32 - 3 . 8 9  - 6 . 5 2  45.87 - 1.07 - 3.73 

4 1 2 . 0 8  - 1.65 - 5.97 169.68 - 0.24 - 6.70 

J 1.08 - 0.87 --  0.96 20.10 - 0.09 - 0.55 4 
' 2.39 - 4.71 - 5.02 21.02 - 1.07 - 3.12 
! 4.86 - 3 . 4 5  - 4 . 3 8  27.17 - 1.23 - 1 71 
2 9.27 - -4 .94 - -6 .90  77.36 - i .19 - 5.92 
4 16.56 --  0,74 --  3,96 292,93 --  0.08 --  6.45 

6 ~ !.70 - -0 .49 --  0.55 42.04 --  0.04 - 0.19 
-J 4.03 - 3.33 - 3.52 42.46 - 0.63 - 1.18 
2 
I 9.36 --  5.28 - 5.83 52.04 - 1.90 - 1.71 
2 15.57 --  3.92 --  5.14 157.56 - 0.85 - 1.76 
4 25.~ 8 - -  0.84 --  2.91 626.96 - 0.07 - 3.91 

10 ~ 2.93 0.47 0.43 109.92 0.02 0.03 
_1 7,46 --  1.46 --  i .56 108.92 - 0 . 2 0  0.78 
2 
! 21.87 - 2 . 8 8  - 3 . 1 4  127.45 - 0 . 9 9  --2.63 
2 29.04 --4.49 - -5 .14  417.36 - 0 . 6 2  - 0 . 2 2  
4 45,24 --2.45 - -3 ,63 1673.74 --0.13 --  1.80 
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T a b l e  2 

G - - E  3 

jv a r- l~",aq % error i ,  % error in F4c2l ~ ~ror  in ~ error in 
(sire.) E[#(I)$~2)] F4,('s(2) 1 (sin.) q¢~l  eic21 

( A )  ( A 2 )  ( A )  ( A 2 )  

* 0 . 5 0  - -  3 . 7 1  - -  3 . 9 1  6 . 4 0  - - 0 . 5 8  --' 2 .87  

~- 0 .98  - 3 .80  - 4 . 4 4  7.11 - 1 0 5  - 2.71 
2 
1 1 . 9 1  - 3 . 5 8  - -  5 .49  10.28 - -  I 33 - -  4 .40  

2 3.77 - 3.25 - -  7 .78  23 .91  - -  1 .02 - -  9 . 4 4  

4 7 .49  - 1.41 - - 9 . 7 0  80 .45  - - 0 . 2 6  - -  15.78 

3 ~ 0 .78  - -  2.82 - -  2 .97  12.08 - - 0 . 4 0  - - 0 . 4 5  

1.59 - 3.75 - - 4 . 2 7  12.6~ - - 0 . 9 5  - 1.13 
2 
I .3 .24 - 6.40 - -  7 .94  17.35 - -  2 . 4 0  - -  3 .97  

2 6.25 - 5 .73 - -  9.21 4 4 .4 7  - -  ! . 61  - -  7 .29  

4 12.20 - 5 .02 - 10.72 165.55 - 0 . 7 4  - -  1 i . 5 9  

4 ' ! .08  - ! .65  - 1.76 20 .47  - O. i 8 - 2 4 6  

! 2 . 3 5  - 4 . 9 8  - 5 . 3 6  20 .93  - 1 . 1 2  - 3 . 6 4  
2 

I 4 .87 - 5.80 - 6 .96  26 .39  - 2 . 1 4  - 3 .06  

2 8 . 8 0  - 3.20 - 5 . 8 5  74 .09  - 0 . 7 6  - 6 . 6 5  

4 16.71 - 4 . 4 3  - 8 .65 280 .00  - 0 .53  - 7 .75  

1.71 - 2 .26  - 2 .33 43 .23  - 0.  | 8 - 2 .80  6 
3.95 - 3 .84 - 4 . 0 8  42 .33  - - 0 . 7 1  - ! . 1 9  

I 9 .56  - 8 .96 - 9 .62 51 .83  - 3.3 ! - 4 . 5 0  

2 14.97 " l 4.73 - 6 .33  ! 56.31 - 0 . 9 1  - 4 .15  

4 24 .74  O. i 8 - 2 .68  619 .25  - 0 .01 - 6 .55  

10 ' 2 .94  - 1.71 --  1.74 114.45 - - 0 . 0 9  - - 3 . 9 4  

7 .44  ~ 4.46 - 4 . 5 9  I i 2  57 - - 0 . 5 9  - - 2 . 5 6  
2 

! 22.49 - 6 .72  - 7 .02  123." 8 - 2 .44  - 1.88 

2 26 .56  - 1.50 - 2 .40  42'~.78 - - 0 . 1 9  - 3 .64  

'1 43 .69  - 2 .90  - 4 .53  I ( ,96.75 - 3 .32  - 5 .49 

simulation results mentioned above we have calculated 

These calculations may propagate simulation errors somewhat; still it is safe to say that the percentage 
errors it, the tables give a good idea of  the accuracy of the approximations. 

(3) E~2[s(I)s ~2)] and EA2[e 2] are calculated in a straightforward manner from (3.19) and (3.17); the zk's 
are evaluated by the recursion scheme of  Lavenberg [8]. 

(4) Because EA[(s~')  2] and EA[(s(2)) 2] are exact, we have not bothered to calculate them by contour 
integrations; EA[e 2] is determined by summing the simulation results for those two second moments  to 
tw':.ce the numerically determined value of  EA[sO~s(2)]. 

EA[sC:)s (2~] is evaluated using (3.14) (see also (3.12)); the contour integral in (3.14) is analyzed by 
determining the residues for I, 1 For E 2, E 3 and H 2 this is simple, because all zeros of  m - fl((l  - o)/a) 
are easily found. For D a complication arises (unless N = 2, see at the end of Section 3). 

,z - /3 ( (1  - ~ ) / a )  now has two real zeros ~0 = 1, o~l, and an infinite set of pairs of  complex conjugate 
zeros ~ ,  ¢22, "~3~, ¢32, . . . .  (written in nondecreasing order of  modulus)  all of which have real part greater 
than wo, ~ -  We have calculat,;d the residues of ~2~ . . . . .  o4~, and have incorporated these contributions m 
the contour integral evaluation. If a = 1, all zeros oJ ~ 1 have residue zero. If a >  [, the contributions of  
ev en to 2t, ¢ ~  are almost negligible. If a < 1 the contributions of  the residues decrease more slowly. The sum 
of  the contriburons of  ~s~ . . . .  has been estimated by using theoretical results about the position of  these 
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G-----H 2 

N a 
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E[sO~s (2~] $ error in ~ error in E[¢ 2] ~ error in ~ error in 
(sire.) E[$O)s ~2)] E[sO)8~2)] (sire.) E[c 2 ] F ie  2 ] 

(A) (A2) (A) (,~) 
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2 ~ 0.52 3.42 8.08 7.02 0.5 ! 0.08 
-~ ! .07 1.26 ! 1.82 9.64 0:28 6A6 2 

! 2.20 -- 1.12 18.92 19:35 " 0 . 2 5  28'59 
2 4.50 --4,82 26.90 57.58 --0.75 60i27 
4 8.56 -- 2.05 43.86 210.94 -- 0 . !7  87,86 

3 ~ 0.84 5.81 10,49 ! 3.08 0.75 -- 0.'~ 5 
-I 1.73 7.40 19.19 16.07 1.60 8,02 2 

I 3.77 0.03 22.09 31.81 0.01 21.74 
2 7.12 2.52 38.52 91AI 0.39 56.17 
4 ! 3.23 3.93 50.53 325.66 0.32 87.55 

_l 1.20 6.32 .10.30 2 !.60 0.70 "- 2.65 4 
I 

2.59 7.03 17.54 25.26 1.44 3.30 
! 5.34 7.89 29.76 43.47 1.94 23.38 
2 10.51 4.34 37.12 i 30.94 0.70 48.95 
4 19.62 0.2 ! 37.52 504. I 1 0.02 65.35 

-f 1.96 7.47 10.28 43.37 0.68 - I. 16 6 

I 4.54 8.61 16.52 47.70 1.64 2.43 2 

I 9.57 13.06 30.70 75.46 3.31 17.54 
2 19.07 4.23 28.43 249.92 0.64 27.28 
4 3 I. 19 3.23 29.29 924.23 0.22 47.53 

10 ~ 3.94 - 1.03 0.44 112.28 -0 .07  - !.47 
! 9.54 7.20 i 1.73 118.65 1.16 - 1.62 2 

I 20.99 ! 8.59 29.58 160.31 4.87 13.79 
2 38.40 7.73 22. I 1 554.08 1.07 18.86 
4 55.77 3.82 18.73 2 ! 37.84 0.20 31.33 

zeros t, see Wright [l iD. This extra contribution to EA[s"~# 2~] varies between 1~ (a = ~. N =  2) and less 
than 0.1$t~ (a=½, N =  10). 

Apparently in most practical cases its suffices to consider only a few zeros in evaluating contour 
integrals like (3.14). 

Numerical results are presented in Tables 1, 2, 3 and 4. These and other results yield the following. 

A.1. Conci~ffons 

(1) The 'A' approximation is very accurate: marginal response time distributions (and hence their 
moments) are exact, errors in E^ [e 2] are generally well below 5%, errors in EA[s ° ~'s ~2)] are generally below 
10~ (in particular, results are very good for a --, 0, a ~ oo). 

(2) The 'A2' approximation is accurate unless a > > 1 or N is small (in which cases the distribution of 
s °) is badly approximated), 

F u ~ e r  we have Ferforraed some calculations on cov(s (1), s (2~) and p(s (', sC2~), based on simulation 
results, and these show the following. 

(3) In a l l ~ s  of Tables 1, 2, 3 and 4 cov(s °), s~2~) ~ 0, and p(s (!), $(2)) d0;  p(${!), $(2,) tends to zero for 
N -~ o0, a ~ l ,  whereas it seems to tend to - 1 for N --* o0. a = l (cf. (2,20), (2.23) for O ~ M); in fact our 
numerical results suggest that p(s °), s (2)) is rather insensitive to the choice of service time distribution G. 
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Tab le  4 
G ~ - D  

O,J, Boxma~ P. Dank / On response time and cycle time distribution.~ 

N a E[sC*)s~2) l % error  in ~ e r ror  in F]¢21 $ e r ro r  in ~ e r ror  in 
( s i m . )  F4s~l)s (2~] E [ s  (t ~s ~2~] ( s ire . )  E[ e 2  ] E [ ¢ 2  ] 

(A) (A2) (A)  (A2) 

2 ~ 0 . 4 9  - 4 , 0 5  - 4 . 2 8  6 . 2 0  - 0 . 6 5  - ~ .02 
J- 0.96 - 5.90 - 6.74 6.82 - 1.67 - 3.09 2 

I !.85 - 6 . 5 !  - -9 .30  9.18 - -2 .63  --5.43 
2 3 .48  - - 2 . 2 9  --  10.05 19.80 - -0 .80  --  12.01 
4 7.14 - 0 . 7 3  --  15.50 66.58 - 0 . 1 6  - 2 3 . 2 7  

3 4 s 0.78 - 3.59 --4.92 12.20 - -0 .46  - i.91 
I !.60 - 7.02 - 8.29 12.25 --  1.83 - !.  I 1 2 

! 3.21 - ! i .18 - 13.22 16.03 - 4 . 4 9  - 6 . 9 8  
2 5.87 - 6 . 3 1  - 11.66 39.41 - i .88 - 9 . 9 4  
4 11.36 - 2 . 1 1  - I i.63 ;46.21 - -0 .33 - 16.41 
I 

,~ , 1.08 - 3.78 - 4.73 20.68 - 0.40 - 3,66 
2.31 - 6 . 8 6  - 7 . 7 4  20.24 "- 1.57 - 2 . 0 1  2 

I 4.99 - { 3 . 0 4  - 14.45 25.16 - .5 .17  - 7 . 4 6  
2 8.21 - 4 . 1 6  - 8 , 0 4  67.03 - i .02 - 7 . 3 5  
4 15.1 ! 0.55 - 6 . 6 0  257.98 0.06 - 12.51 

6 ~4 1.64 - 1.23 - i.86 42.01 - 0 . 1 0  - 0 . 2 3  
t 3.75 - 3.87 - 4.41 41.93 - 0.69 - 0.73 1 

I 9.50 - ! 2.07 - 12.86 48.67 - 4.7 ! - 5.13 
2 13,21 - 2 . 8 1  - 3.23 147.08 - 0 . 5 6  - 4 . 9 0  
4 22,99 1.58 - 3.12 577.81 O.! 3 - 8.49 

IO ~4 2.81 - 0 . 8 4  - 1.21 109.84 - 0 , 0 4  0.07 
i 6.83 - 3.43 - 3,73 i 10,28 - 0,43 - 0,62 2 

1 22.62 -- 9.63 - 9.97 ! 20,84 - 4.08 - 3.93 
2 23.50 - 2 , 6 5  - 4 , 0 1  403.16 - 0 . ] !  - 2 . 8 3  
4 40.00 - 0.80 - 3.50 | 601.34 -- 0.06 - 5.15 
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