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On Response Time and Cycle Time
Distributions in a Two-Stage Cyclic Queue
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We consider a two-stage closed cyclic queueing model. For the case of an exponential server at each queue we derive the joint
distribution of the successive response times of a cusiomer at both queues, using a reversibility argument. This joint distribution turns
out to have a product forin. The correlaticn coefficient is calculated and shown to be non-positive.

For the case of one general server and one exponential server we derive two approximations for the joint distribution of the
response times. The numerical results based on these approximations are compared with simulation results, The first approximation
which heavily relies on results for the M /G /1 queve with finite capacity, is somewhat complicated. but it yields exact margina!
distributions anc appears to be very accurate. The sccond one is less accurate, but very easily ar e,
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1. Introduction

We consider the iwo-stage cyclic queucing retwork shown in Fig. 1. Q, and Q, are single server gueues
with an FCFS discipline. The systerm contains A’ customer:, who cyclically visit @, and {,.
Service times in Q, are independent, identizally distributed stochastic variabies (s.v.t 7, i = 1, 2,..., with
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! stage 1-general stage 2 cxponcntial
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Fig. 1.

distribution function

def
B(t)=Pr{r, <t} >0,

and
i
B =E{rn; <o. (..1)
defl

B, E{). n=23,....

def

Blp) = E{e "™}, Rep=0.

Service times in @, are independent, negative exponentially distributec stochastic variables with mean a.
The service processes in Q, and Q, are also independent.

The model described above will be denoted as G/M /N, It is a simple model of a multiprogrammed
computer system with custcmers representing programs, stage 2 representing the central processing unit
and stage 1 representing a data storage and transier facility which has access to and can transfer
information for only one program at a time (cf. Lavenberg [8]). It has bcen observed by several authcrs
[7.8] that @, is equivaient with an M/G/1 finite capacity queue with capacity N (i.e., (N — 1) waiting
places). The queue length and waiting time distribations in such an M/G/1 — N queue (and hence in Q)
have been obtained by Cohen [5] (sce also [8,10] for algorithms which efficiently determine queue length
and waiting time distributions).

In the present study we are interested in the join distribution of the sojourn or response times (waiting
plus service times) at the two queues. In the case of expor:entially distribuied service times at both queues
(M/M/N) we obtain an expression for the Laplace-Stieltjes Transform (LST) of the joint distribution
of the response times 2t both queues (Section 2). Thus we generalize u result of Chow [3] who derived the
LST of the cycle time ( = sum of two successive respor.se times) distribution for the M /M /N‘© model.

As a by-product we obtain the covariance and correlation coefficient of the sojourn times at both
queues; they are shown to be non-positive.

For the general G,/M/N'©) case we did not succeed in obtaining an exact expression for the LST of the
Jont response time distribution. tiowever, in Section 3 we derive two approxzimations for this LST. The
first one. (3.7), is still rather complicated, but very accurate; in particular, it yields exact marginal response
time distributions.

In this approximatior. we use an exact expression, obtained in [2] for the M/G,/1 — N gueue, for the
joint distribution of the number of customers present immediately before an (admitted) arrival and the
response time of this arriving customer. The second approxiination can be used more easily to obtain

numerical vesults, but it i slightly less accurate. “xtensive numerical comparisons are displayed in
Appendix A.

2. Exponential cyclic queues

Consider the G/M/N'© cyclic model described above. Denote by z, the number of customers left
behind in Q, at r,, the epoch of the nth departure from Q, after 1 = 0. As is observed by Cohen [5] in his
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discussion of the M/G/1— N queue (which -~ as remarked above - is equivalent with .Q, in the
G/M/N© model), {z,, n=1, 2,...} is an aperiodic Markov chain with stationary transition probabilities
and with a finite and discrete state space. Hence all its states are positive recurrent, and the chain has a
stationary distribution. Defining

def .
z,= lim Pr{z,=i|z;,=z}, i=0,1,...,.N—1, (2.1)

n-> 30

we observe that in the M/M /1 — N queue (cf. [5]) and hence also in Q, of the M/M /N‘© model,

I 1-a a, a7*l,
z. =

! 1—a" i=0,1,...,.N—1, (2.2)
{1/N, a=1,
with
adgﬁ/a. (2.3)
By z we denote in the sequel an s.v. with distribution z,, i =0, 1,...,N — 1. Denote by s'" the sojourn

time which the customer leaving Q, at r, has just spent in Q,, and by s*2 the sojourn time this customer will
subsequently spend in @,. It is easy to see that a joint stationary distribution of 5., 5s'2 does exist, too. By
sV, s we denote in the sequel stochastic variables with joint distribution

Pr{s<s,sP<s,} = nlir?o Prisi’ <s,,s@<sy|s{V=1,,s{"=1,}, 5,.5,>0.
Restricting ourselves in the rest of this section to the M /M /N‘© model we now prove the following
theorem.

Theorem 2.1. In the M/M/N'O model with mean service times B and a in Q| and Q,, respectively, for
Rep,, p,=0.

N-L oy, 1 k+1 | Nk
a* — ., a1
£ ~ps'M-p ,(2)]_[ k=0 I“QN (1+BP|) ( ]+aP2) »
Eie . i - N-1 k+1 Nk ( . )
) ) e
=0 N\ 1+Bp, 1+ap, ’ '

Proof. The key idea is i0 consider the system at departure epochs of Q,, and then to look back at the past
sojourn time of the leaving customer in Q, and to look forward to his sojourn time in Q,. Now
N-1
E[e”ﬂl’"’“l’z-"z’! =3 zkE[c"“l'"’ 'Pz"”iz = k]
k=0
N-1
= 3 zEle |z =k]E[e P "|z=k], Rep,,p,>0. (2.5)
k=0
using the cbvicus fact, based on the memoryless property of the negative exponential distribution, that
Pri{s® <s,|z, =k, sV <5} =Pr{sP <s,|z, = k}. (2.6)

Obviously

N-—k
E{e“l’:tmlz = k} = ( ] +lapz ) , Rep,=0, (2.7

since a customer who leaves k customers behind in @, finds (N — k — 1) customers present in @, and aence
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has & sojourn time in Q, consisting of (N — k — 1)+ 1 exponentially distributed phases.

Next consider Eie""”"'lz =k]. It is well known that the queue length process { y(¢), +>0} in an
M, /M/1— N queue is a birth- and death-process. A birth- and death-process is a reversible stochastic
process (sec Kelly [6)), i.e., for the stochastic process y(¢) holds:

(¥(2), 9(22)s09(1,)) and (p(r—~1,).p(7—1;),....9(7~1,))

have thc same distribution for all ¢, 1,,...,¢,, 7. (Or, as Keily remarks, “speaking intuitively, if we take a
film of such a process and then run the film backwards, the resulting process will be statistically indistinguisha-
ble from the original process™.)

Denoting by x an s.v. with disiribution the limiting distribution of the number of customers seen by an
arriving customer who is admitted to the M/M /1 — N queue, it is in particular seen that because of the
reversibility of the queue length process,

Efe»*"|z=k] =E[e~""|x=k], Rep,>0.k=0,1,. ,N—1 (2.3)

(see [2] for a more rigorous proof of the similar result for an M/M /1 queue with iafinite capacity).
Now (2.4) follows from (2.5}, (2.7), (2.8) and the following simple relation,

k+1
E[e'"""“'lx=k] =B“'(p,)=( ) . Rep,=0. (2.9)

1+ Bp,

(In fact it is possible to prove directly that

o - 1 k+1
E[ev.uph' 'zzkj :‘:‘_( l +Bpl ) R

but we prefer the intuitive reversibility argument above a very lengthy calculation.) [J

Remark 2.2. Performing the summation in (2.4) we obtain, for Re p,, p, =0,

[ : N ] N
l-a (TMPZ) A( 1+,e,,,)
. a#l,
o ret o] 2 [ 1@ 1 H Bo = all T apy)
[‘. ! . _ﬂ l N 1 .Y (2.10)
l (Hﬁpz) _(TTE‘Z) |
N . a=
N B(e, —"Pz)
Howaver, the form (2.4) seems to be more useful in general; in particular we find, for 5p» 8350,
...*?.._ (35} (2, _
as,asz Pl"{s <S)-S <32} =
= N:gl l—d__a"l e ™ % Bwl e"sz,’a(_{z_zg__-)N:l
(=0 1—a" B K (N—k=1)!
1 —a _l_ e N 'ﬁ_]_ e__‘_”,a(s,-l-sz)h—-x 1 l
=pioetf e ) vy e7h
L ks )
Na® T a=1}
! N o v @ (N— })’ .

Remark 2.3. Putiing p, = p,=p in (2.4) we obtain an etpression for the LST of the distribution of
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e =51+ 5D, the cycle time in the M/M /N model,

f](l)"_a”{ 1 )"’ oy
1—a"\T+ap] ~1-g"\1+8p) * “7%

E[e "] = Nl Rep=0;
1
( l-'-BP) ’ a=l
hence, for r >0,
d I RSN €77 AT hA RN (7] )
a <} = 1 t/a _ — /BA L)
de Prie<t} l_aNae (N—-1)! l—a"’ﬁe (N—1)!
1 l (t/a)N“l —t/a _ o~t/8
T (N—-l)!(e e '3, a#l,
l e“’,/p.(.f_/_.g_l_”. a:]
B NY '

185

(2.12)

(2.13)

a result found by Chow [3] (see his extensive discussion of (2.13)). (2.13) also follows from (2.11) after a

simple integration.

After sometimes lengthy calculations we obtain expressions for moments, covariances and correlation

coefficients of the response times in 9, and Q,.

Corollary 2.4.
( B__ BN
E[s"V] =1 BN+1—a 1—a"’ a1
L%ﬁ(N-*—l), a=1;
1 Y
aa aNa
E{s<2’]=<“N—l-a+1—a”’ arl
| 3a(N+1), a=1;
N+1 _ N+I1
JN_B____.__.__“_.__., a.—,ﬁl,
E[c]=E[s"+5s?]= BY—a¥
(N + 1)a, a=1;
af |N(I1+a¥*) 20 a1
E[sMs@]=! 1—a| |—g¥ t—al ’
1 (N+I1}N+2), . a=1,
. a AJZaN
. af] — 5+ 51 a#1l,
cov(s™V, sP) = (1-a) (-a")
na’(1—-N?), a=1;

def Ly o
p(s(“, 3(2)) = COH(S(D, s(2)) =

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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‘”’“‘“ Q, o a, ) — — "/L‘—‘ Cy

L N customers
Fig. 2.

[ a__ . NV I_ Na® + 1 N2a¥ }‘/2

(-aP (-a"¢| |l 1-4" (-a) (-a"y]
- 2 2,8 172 2.19
W e N~+ a 5~ Na 4} . a1, ( )
1-a” (1—-a)y ((1-4")
.L.::.y. a=1
| N¥S”

Remark 2.5. (2.16) has already been obtained by Chow [?]; (2.15) follows from (2.14) by interchanging «
and [B.
It can be seen from (2.18) that, for each a >0,
cov(s'", s?¥) =<0, (2.20)

with equality iff N = 1. Since the first expression in (2.18) does not change if we interchange & and g, it
suffices to consider the case a < 1, and to prove that, for cach 0<a <1,

1 - Nig™ ! 1—a”

= or
(]"0)2 (l-—a“’)2 1-a

=l+a+ --+a¥ '=Nag'VN P2, (2.21)

(2.21" follows immediately from the basic arithmetic mean - geometric mean inequality (Beckenbach and
Bellman [1, p. 4]) - with equality iff N=1.

The fact that cov(s'V, s'2)<<0 and p(s'", s'*)=<0 agrees with our intuitive expectation. Further,
numerical calculations point out that p(s'", s®') reaches its minimum at a = 1 for fixed N.

Finally note that from (2.18) and (2.19) it follows that

Y A

lim cov(s" sV) =1 (1-4)* (2.22)

N+
- o0, a=1,

() .(2))._._{ 0. a#l, (2.23)

li ’.
Nl-{noc P(S s -1, a=1.

Remark 2.6. In [4] Chow generalizes his exponential cyclic model 10 the case of K parallel servers replacing
Q,. He again obtains the cycle time distribution. In a future study we plan to show how one can extend his
results to the joint sojourn time distribution at @; and the parallel system.

In another future study ' the case of a cyclic model of M (= 3) exponential servers, depicted in Fig. 2,
will be considered.

' Note added in proof: O.J. Boxma, F.P. Kelly and A.G. Konheim. The product form for sojourn time distributions in cyclic
exponential queues, Rept., Univ. of Utrecht, February 1982,
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Konheim, from the 1.LB.M. Thomas J. Watson Research Center, made the following conjecture, after
seeing Theorem 2.1.
For the model of Fig. 2, with mean service time &; in Q,, i =1, 2,..., M, and with

M M
pUirs--wiia) = 1L ot/ 3 11 o (2.24)
i= i=
ky+ - +kpy=N—1
the probability that immediately after the departure of a customer from Q,, there are j,,...,j,, other

customers in Q,,...,0Q,,, the LST of the joint distribution of successive response times s‘V,...,s™ in
Qys..., Q) has the following product form:

E[e' PIS(”—""‘pMs(M’] — 2 o i) ﬁ ( 1 )j,.+|
Jieeeesdig>0 oM i=1\ 1+ a,p, ’
]!"' +]:M=N"‘

Repy,...,py =0, M=1,2,.... (2.25)

The proof proceeds by induction, using reversibility.

The applicability of the reversibility concept is, however, less obvious than it is in the proof of Theorem
2.1 (except for the case that o, =¢q, i = 1,...,M).

Recently Schassberger and Daduna [9] proved, using a nice recurrence relation between LST’s, that the
LST of the cycle time distribution in the model of Fig. 2 is given by (2.25) with p,=p, i=1,..., M.

3. The G/M/N‘© model

Consider the mode! described in Section 1 (see Fig. 1), with general service time distribution B(-) in Q,.
(2.5) and (2.7) are still valid for this model, hence

N-1 l N—k
—_ S”y";l 3(2' _ — ls(l) —

E[e ) 2 ]_lzozk( H—apz) E[e i Iz--k}, Rep,.p,=0. (3.1)
{z:» k=0, 1,...,N — 1}, the stationary distribution of the number of customers left behind in Q, (or in the
equivalent M/G/1 — N queue) by a departing customer, is known: Cohen [5, p. 576] derives an expression
for z, involving a contour integral, while Lavenberg [8] gives a recursive algorithm for the determination of
the z,.

A more complicated problem is, however, the determination of E{e”’"“’lz =k} in an M/G/1—N
queue. The fact that customers can be refused admission makes a straightforward analysis extremely
difficult, while the queue length process is not reversible when G # M, thus rendering (2.8) invalid.

Still, there is some support for an introduction of the fcllowing.

Approximation Assumption (cf. (2.8))
E[e=>|z=k] =E[e**"|x=k], k=0,1,..,N—1,Rep,>0. (32)

Firstly, (3.2) is not only exact for G = M, but also for N = 1. Secondly, consider the case N = 0. In [2]
we have derived the joint distribution of s, z and x in the M/G/1 — (20) queae. Although E[s‘"x]+#
E[s™:] if G M, the difference is often rather small, and in particular both tend to zero for a — 0 (with
one exceptior. and their quotient iends to one for g — 1.

Thirdly, there is at least some symmetry in the M /G /1 —~ N queue w.r.t. arrival and departure epochs:

Cohen [5, p. 577] remarks that z, = Pr{z = k} is equal to x, = Pr{x =k}, with x the number of customers
seen by an arriving « ustomer who is admitted. This implies in particular the following. Substituting the
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approximation (3.2) in (3.1) and using the fact that z, =x, we have (with subscript A denoting
approximation and (-) denoting an indicator function)

N—1 N—k
' [ 1 Rt}
E e—p‘u).-pu 2 — (_ ) Ele 7 (.t:k)], Rep . P =0. (3,3)

A{ ] k§0 1 +ap2 [ 1> P2

{2)

Hence the LST of the marginal dist:ibution E[e "] is exact in this approximation (as is Efe"?*"}).

We now have to consider the joint distribution of s and x in the M/G/1 - N queue. It can be
determined exactly {2}, the main problem being the determination of E[e™”1(x = k)] with { an s.v. with
distribution the stationary distribution of the residual service time considered at the epoch a customer is
admitted to the system. It is proved in [2] that

E[s*e "] =2,8(p,) + P(sB(p). p1). Rep,>0, (3.4)
with
def
P(s,p) = E[s* e 5(x>0)]
o -0 B -w)/a)=Bl[, _ ., w1 s
wz°2ﬂij;;uw*ﬂ((l ~w)/a) ap+w—1 [1- G0 ]S“wdw’
Rep=0,|w|<py; (3.5)
here D, is a circle with center at zero and radius w, g, is the smallest zero (in absolute value) of

P~ B(1—-p)/a),

11 1 do | ,
‘““{ﬁfowﬂ((l—w)/a)—w ) B ) (3.6)
From (3 3) and (3.4) we finally obtain the following approximation for the LST of the joint distribution

of the response times at Q, and Q,:

1

EA[C"'p,s“"—p;sm] — , E[(l + ap, )x e ‘P|s“’}

(1+ ap,)
] 1
=2,8(p,) + F{(t +ap,)B(p,).p;). Rep,,p,=0.
N+ apy)” (1 +apy)” R v
(3.7)
In particular, the approximation of the LST of the cycle time distribution is given by
rope 1 1
Eaie 7] =2,8(p) 7 P((1+eap)B(p).p), Rep=0. (3.8)

=+
(1+ap)”  (1+ap)

New consider moment approximations based on (3.7). It has already been noted that the marginal
respense time distributions are exact. Obviously,

N-1 N1
E[s@]= 3 zkE[s‘z’!z =k]= 3 z(N—k)a. (3.9)
k=0 k=0
Ls'"'] can be obtained from [5, P- 577]; here we shall use Lavenberg’s simple expression [8]:
N-1
E[s"]=M8— ¥ z,(N—k)a. (3.10)
k=1

Hence
E[¢] = N8B + Naz,, (3.11)
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(which yields (2.16) if G = M).

Furthermore,
N-1
BLsOs@] = 3 2 E[s®|z = kJE[s]c =4]
k=0
N—1
~ Y x,(N—k)aE[s"|x=k]
k=0 _
= NaE[sV] — aE[xs V] = E,[s"s®]. (3.12)
Hence
E[sVs?] — E,[sVs®P] =1 {E[cZ] —E,[€?]} = aE[xs"] — «E[zs"]. (3.13)
It is shown in [2] that in the M/G /1 — N queue
1 1 1--8((1 -w)/a)
Mj= 2 -
E[xsV] ﬁE[x]+z°2'ﬂi—/;ww-ﬁ((l——w)/a)[ B+a g
(1 —(l/w)‘N"’)Tﬁ—)—z*'(N“ 1)(1/«:)”";—,;].-;;]@, ol <pe.  (3.14)

Evaluating this expression and using (3.10) and (3.12) we find an approximation for E[s'!s(?],

A drawback of the approach presented above is that some contour integrals have to be evaluated; this
may be quite cumbersome if N is not too small and if B8(-) does not have a simple form (although it is in
general not difficult to calculate the values of these integrals numerically, see Appendix A). Therefore we
now present a very simple approximation, which does not differ much from the approximation (3.7) if the
distribution of the residual service time { is rather insensitive to the value of x = k (some thinking will make
clear that { will be rather insensitive to the value of x unless a << £ and N is small). Returning to (3.2) and
using the well-known result

Ele™¥] = (1-8(p))/Bp.

we put for Re p, =0

I _ I—B(P)
Ele ?*"|x=k|=B*(p,)Ele S| x==k| = B*(p,) ——=, k=1,2,...,
[e=o" e =i = B (p0JELe ™8] x = ] = B(p1) —5 - .15
E[e ") x=0] = B(p,).
Hence our second approximation (indicated by subscript A2) reads

EAz[e_plsl”_pzs(Zi] —_

1 S 1 o 3 B(p)
= 7 o me———— s et - Repy, 0. 3.16
70(1 +ap2)NB(pl)+k§1 zk(l +ap2)N_kﬁ (p:) B, €p. /= (3.16)

This transform can easily be inverted. Note that (3.15) and hence also (3.16) is exact for G= M.
From (3.16)

E ,[e™"] =Zo—'1'—’B(P)+N2—le""—'L_/3k(P)l:‘M. Rep=0, (3.17)
(1+ap)” izt (1+ap)”* Bp
EAz[c]=Na+Bzo+—2%(l-—zo)+(ﬁ—a)E[z], (3.18}

E,,[s"s®] = Na| BE[z] + %,-(1 —z0) + Bzo| ~ aBE[z?] - aE[zlé%- (3.19)
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In Appendix A we compare our approximations with some simulation results. P’res,entl_y we only
consider a special case, for which the exact joint response time distribution can be ob‘tamed, viz. the case
N =2, G =D (constant service times 8 at Q,). In this particular case s{” and s'¥ are independent, s can
easily be seen in cither of the following ways: o - .

(i) A straightforward caiculation of Efe™#'* '|z = k] by conditioning on x (a calculation which can be
made in this simple case). '

(ii) Reasoning that for the nth customer X, in Q, after r=0, s{" = g or B<s{" <28, but in bloth cases a
service in @, starts st the same epoch that K,’s service in @, starts; hence Pr{z =1|s! 1’} =g A/
independent of whether s{" = 8 or B <s{" <28, This implies that 5%, too, is independent of sV,

As a consequence of the independence we have

E[s"s®] = E[sV]E[s?]. C(320)

P(s, p), occurring in the approximation formulae, can easily be evaluated in this case. A contour
integration yields for N = 2 (cf. (3.5), (3.6) and {2])

zy=p(1/a), 2y =1-8(1/a), p(s,p)zﬁ(l/a)"ﬁ(l))s

ap — 1

Els*e"] = B(o)B(1 /o) + LB :,?: B2 op ). (3.21)
E[xs"] =28~ a+(a—B8)B(1/a).
In particular for G=D

EA[e*""“'“"Z’”’] =e A '/‘““ Y +ehmZ ;p-l_e_ 1,,,,. I +'ap2, Rep,. p,=0, (3.22)

EalsVsP)=a?[(a+1)e "+ 2a—1]. (3.23)
while from (3.9), (3.10), (3.20) and (3.21) the exact result is

E[s''s?]=a’[2a— 1 +e ][l +e“]. (3.24)
Qur second approximation yields for this case

Eao[sWsP]=a?[lae "+ 1d]. (3.25)

Note that E,[s'"s?]/E[s*"’s¥] tends to one for both a -0 and a — oo, whereas E,,[sVs®]/E[sVs?]
tends to one for a — 0 but to 2 for a-» o0.
Table 4 cctains a comparison of (3.24} with the approximations (3.23) and (3.25).

Remark 3.1. cro.. “3.11) and (3.18)

I, a—-0
Exalel/Ele] =1 By/(28%) —1 g (3.26)
e :

a-—

As remarked above (3.15) § will not be insensitive to the value of x if a>> 1 and N is small; moreover if
N is small, the contribution of { to s' will be substantial and therefore in this case the second
approximation will yield bad results, as is illustrated above.
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We now describe the numeﬁcal experiments, performed to test the accuracy of thé two approximations
A (cf. (3.7)) and A2 (cf. (3.16)); we also present four tables with numerical results and error percentages

({(EAl-1/E[-]) — 1)+ 100%, etc.).

In the present study. the emphasis has been on the joint distribution of the response times at Q; and Q.,
rather than on the cyclc time distribution (which may be of greater practxca] interest). However, we now
compare the apprcximations of both E{sVs@] and E[¢?] for A and A2 with simulation results.

The numerical experiments are organized as follows.

(1) The service time distribution G at Q, is chosen to be E,, E;, H, (with

B(t)=q(1—e™"/™)+(1—g)(1—e™"/™);

g=14(1+0.6),

m,=B/(1+/06),

hence E{r} = B, E{r?} =58%) and D; a =1 (fixed) and a=B/a =

,=8/(1-06);

3, 3.1,2,4,N=23,46,10.

(2) Simulation results for, among others, mean and standard deviation of ¢, 5V, s have been obtained;
we have used the regenerative method of simulation, using the IBM RESQ2 package. The accuracy of the
simulated means of ¢, sV, s® could be checked with exact results; errors are generally very small. From the

Table 1
G=E,
N a E[sVs®) % error in % error in Ele?) % error in % error in
(sim.) E[s'"s®) E{s‘Vs] (sim.) E{¢?] E{c?]
(A) (A2) (A) (A2)
i ‘1 .50 ~2.01 —-2.17 6.34 -0.31 —1.28
% 0.9 —3.53 —4.03 7.28 —-0.96 ~2.97
1 1.95 —-34 --4.86 10.77 —~1.25 —-3.57
2 3.79 ~1.23 ~4.52 25.16 -0.37 —5.63
4 1.57 ~0.24 —6.08 £4.09 —-0.04 - 1543
3 2 0.77 ~0.82 -0.95 12.27 -0.10 - 1.68
% 1.65 —35.05 —547 13.38 -i.25 —5.18
1 333 —6.39 -~7.57 18.32 -2.33 ~4.41
2 6.32 -389 -6.52 45.87 -1.07 —-373
4 12.08 -—1.65 —-5.97 169.68 -0.24 -6.70
4 % 1.08 ~0.87 -0.96 20.10 -0.09 —0.55
% 2.39 —4,71 - 5,02 21.02 -1.07 -3.12
1 4.86 -345 -4,38 27.17 -1,23 -~171
2 9.27 ~4,94 -~ 6.90 77.36 ~1.19 -592
4 16.56 —-0.74 -3.96 292,93 -0.08 —6.45
6 i 1.70 —0.49 -0.55 4204 —-0.04 -0.19
% 4.03 -3.33 —~3.52 42.46 -0.63 -1.18
1 9.36 —~528 ~5.83 52.04 —1.90 -1.71
2 15.57 -3.92 -5.14 157.56 —-0.85 -1.76
4 25.38 —0.84 -291 626.96 —0.07 -3.91
10 ;'; 233 .47 0.43 109.92 0.02 0.03
% 7.46 -~ 1.46 -~ 1.56 108.92 -0.20 0.7
1 21.87 ~2.88 -3.14 127.45 -(.,99 ~2.63
2 25.04 —449 —5.14 417.36 -0.62 ~5,22
4 45.24 —2.45 ~3.63 1673.74 -0.13 ~1.80
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Table 2
G=E,
N a E[s«Ms D) % error in % error in E[?] % error in % error in
(sim.) E[s"s] E[ss®] (sim.) Elc?] Eje?]
(A) (A2) (A) (A2)
2 ) 0.50 -371 ~3.91 6.40 —0.58 —-2.87
! 0.98 —3.80 —4.44 7.11 —1.05 —-271
1 1.91 —358 ~5.49 10.28 ~133 --4.40
2 317 —3.25 ~-7.18 2391 -1.02 —9.44
4 7.49 -141 -9.70 30.45 ~0.26 —15.78
3 L 0.78 -2.82 -297 12.08 ~-0.40 —0.45
! 1.59 ~3.75 -427 12.64 ~0.95 -1.13
1 5.24 —6.40 ~7.94 17.35 —2.40 --397
2 6.25 —5.73 -9.21 44.47 ~1.61 -7.29
4 12.20 -5.02 --10.72 165.55 -0.74 —~11.59
4 ! 1.08 - 1.65 -1.76 2047 ~0.18 ~246
! 2.35 - 498 ~5.36 20.93 -1.12 -3.64
1 487 ~5.80 -6.96 26.39 -2.14 ~3.06
2 8.80 -3.20 —5.85 74.09 -0.76 ~665
4 16.71 ~443 —~8.65 280.00 —-0.53 -1.75
6 ! 1.71 -2.26 -2.33 43.23 —-0.18 —2.80
! 3.95 -3.84 —408 4233 ~0.7} -1.19
1 9.56 -8.96 -9.62 51.83 ~3.31 -4.50
2 14.97 --4.73 -6.33 156.31 —0.91 —4.15
4 24.74 0.18 -2.68 619.25 —-0.01 —6.55
10 ! 2.94 -1 ~1.74 114.45 -0.09 -394
! 7.44 ~ 446 —-4.59 1i257 —0.59 —2.56
1 22.49 ~6.72 -17.02 12378 —2.44 —1.88
2 26.56 ~1.50 ~2.40 42273 -0.19 ~3.64
4 43.69 ~2.90 ~4.53 1€96.75 -3.32 —5.49

simulation results mentioned above we have calculated
Bl E[6OV] E[PV] eovss®). p(ss®).

These calculations may propagate simulation errors somewhat; still it is safe to say that the percentage
errors i the tables give a good idea of the accuracy of the approximations.

(3) E,,[s'Vs'®] and E,,[c?] are calcuiated in a straightforward manner from (3.19) and (3.17); the z,’s
are evaluated by the recursion scheme of Lavenberg [8].

(4) Because E,[(s")?] and E,[(s®)?] are exact, we have not bothered to calculate them by contour
integrations; E,[c?] is determined by summing the simulation results for those two second moments to
twice the numerically determined value of E,{ss?].

E [s%s@] is evailuated using (3.14) (see also (3.12)); the contour integral in (3.14) is analyzed by
deermining the residues for |w| = p,. For E,, E; and H, this is simple, because all zeros of w — 8((1 — w)/a)
are easily found. For D a complication arises {uniess N =2, see at the end of Section 3).

« — B{(1 — w)/a) now has two real zeros w, =1, @,, and an infirite set of pairs of complex conjugate
ZEIGS Wa,, Wy, Wy;, Wag,..., (Written in nondecreasing order of modulus) all of which have real part greater
than w,, w,. We have calculatzd the residues of w,,,...,w,,, and have incorporated these coniributions in
the contour integral evaluation. If a=1, all zeros w# 1 have residue zero. If a> I, the contributions of
aven w,), Wy, are aimost negligible. If a <1 the contributions of the residues decrease more slowly. The sum
of the contributions of w;,,... has been estimated by using theoretical results about the position of these
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Table 3

GEH 2
N a E[s®s@y % error in % error in E[¢?] ' % error in % error in
(sim.) E{,('),(Z)] E[s")s(z’] (sim.) E[cZ] F( czi
(A) (A2) (A) (AD)
2 1 0.52 342 8.08 7.02 0.51 0.08
3 1.07 1.26 11.82 9.64 0.28 6.:46
1 2.20 ~L12 18.92 19:35 ~0.25 28.59
2 4.50 ~4.82 26.90 57.58 -0.75 §0.27
4 8.56 ~205 43.86 210.94 ~0.17 87.86
3 i 0.84 5.81 10.49 13.08 0.75 —0.15
3 1.73 7.40 15.19 16.07 1.60 8.02
1 3.7 0.03 22,09 31.81 0.01 21.74
2 7.12 2.52 38.52 91.41 0.39 56.17
4 13.23 3.93 50.53 325.66 0.32 87.55
4 : 1.20 6.32 .10.30 21.60 0.70 ~2.65
3 2.59 7.03 17.54 25.26 1.44 3.30
1 5.34 7.89 29.76 43.47 1.94 23.28
2 10.51 4.34 37.12 130.94 0.70 48.95
4 19.62 0.21 37.52 504.11 0.02 65.35
6 H 1.96 747 10.28 43.37 0.68 - 1.16
3 454 8.61 16.52 41.70 1.64 243
1 9.57 13.06 30.70 75.46 3.31 17.54
2 19.07 423 28.43 249.92 0.64 27.28
4 3L19 3.23 29.29 924.23 0.22 47.53
10 ! 3.94 ~1.03 0.44 112.28 -0.07 —1.47
3 9.54 7.20 11.73 118.65 1.16 —1.62
1 20.99 18.59 29.58 160.31 4.87 13.79
2 38.40 7.73 22.11 554.08 1.07 18.86
4 55.77 3.82 18.73 2137.84 0.20 31.33

zeros (see Wright [11]). This extra contribution to E,[s'Vs'¥] varies between 1% (a=1, N =2) and less
than 0.1% (a=4, N=10).

Apparently in most practical cases its suffices to consider only a few zeros in evaluating contour
integrals like (3.14).

Numerical results are presented in Tables 1, 2, 3 and 4. These and other results yield the following,

A.l. Conclusions

(1) The ‘A’ approximation is very accurate: marginal response time distributions (and hence their
moments) are exact, errors in E, [c?] are generally well below 5%, errors in E,[s‘'’s‘”] are generally below
10% (in particular, resuits are very good for a— 0, g —» o). ‘

(2) The ‘A2’ approximation is accurate unless a>>1 or N is small (in which cases the distribution of
sV is badly approximated).

Further we have performed some calculations on cov(s, s@) and p(s'V, ), based on simulation
results, and these show the following,

(3) In all cases of Tables 1, 2, 3 and 4 cov(s*V, s¥) <9, and p(s'?, s®) < 0; p(3'V, s'¥) tends to zero for
N = o0, a# 1, whereas it seems to tend to —1 for N — o0, a=1 (cf. (2.20), (2.23) for G = M); in fact our
numerical results suggest that p(s, s®) is rather insensitive to the choice of service time distribution G.
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Table 4
G=D
N a Ef[sVs'D] % error in % error in El¢?] % error in % error in
(sim.) E[sVs?) E[s"Ms'D] (sim.) F[c?} E{c?)
(A) (A2) (A) (A2)
2 H 049 —-4,05 —4.28 6.20 ~0.65 —:.02
! 0.96 ~590 ~6.74 6.82 ~1.67 -3.09
1 1.85 ~6.51 -9.30 9.18 ~2.63 -543
2 3.48 -2.29 ~10.05 19.80 ~0.80 —12.01
4 7.14 —0.73 —15.50 66.58 ~0.16 -23.27
3 ! 0.78 -3.59 ~492 12.20 ~0.46 -1.91
! 1.60 -7.02 —~8.29 12.25 ~1.83 -1l
1 3.21 —11.18 -13.22 16.03 —4.49 —6.98
2 5.87 ~-6.31 —11.66 3941 —1.88 -9.94
4 11.36 -2.11 —11.63 146.21 ~0.33 ~16.41
4 ' 1.08 ~3.78 ~4,73 20.68 -0.40 ~3.66
; 2.31 -6.86 ~71.74 20.24 ~1.57 -2.01
( 4.99 - 13,04 ~ 1445 25.16 =517 —7.46
2 8.21 ~4,16 -~ 8.04 67.03 -1.02 ~17.35
4 15.14 0.55 ~6.60 257.98 ) 0.06 -12.51
6 ' 1.64 -1.23 ~1.86 42.01 ~0.10 -023
: 3.75 ~3.87 -4.41 41.93 -0.69 -0.73
1 9.50 ~12.07 -12.86 48.67 -41 ~5.13
2 13.21 —-2.81 ~5.23 147.08 -0.56 —~4.90
4 22.99 1.58 ~-3.12 577.81 0.13 ~8.49
10 ' 2.81 -0.84 —121 109.84 -0.04 0.07
: 6.83 —-343 -373 110.28 -0.43 ~0.62
1 22.62 ' ~9,63 -997 120.84 ~4.08 ~3.93
2 23.50 —~2.65 —-4.01 403.16 -0.31 —2.83
4 40.00 -0.80 —3.50 1601.34 -0.06 ~5.15
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