
Real-time executives for 
microprocessors 
Frits van der Linden and lan Wilson review the concepts of real-time 
executives and compare three commercially available executives 
for 8080 /5  and Z80 systems 

Principles o f  real-time executives for microcomputer 
systems are discussed, together with some secondary 
functions. Salient features and limitations o f  three 
commercially available executives for 8080/5 and Z80 
systems are described. An example is given illustrating 
the use o f  an executive in a multitasking application 
involving a simple data logger with a high priority data 
acquisition task, a low priority data converting task 
and storage task. 

Real-time systems can often be analysed into a set of 
loosely coupled processes (tasks), each responsible for a 
single function or a group of related functions. In order 
to service and control more than one external device, 
the control system must be capable of running parallel 
tasks concurrently. With a single processor, true con- 
currency is evidently impossible as the processor can 
only execute one instruction at a time. Some mechanism 
for allocating processor time to tasks, and controlling the 
execution and synchronization of the tasks is required. 
In addition, most real-time systems are required to 
handle asynchronous I/O and respond to time-related 
events. 

In very small systems the controlling logic will be 
distributed throughout the program, but in a system 
comprising more than three or four tasks, the system 
control functions are best integrated in an executive. 
Tasks communicate with each other and with the 
outside world by means of requests to the executive: 
the overall effect is to provide each task with a similar 
protected environment: the virtual machine. In accordance 
with this concept, resources such as CPU time can be 
shared by several tasks, and each task appears to have 
control of the shared resource. The executive allocates 
CPU time on the basis of the relative importance, 
the priority, of the task. Tasks' requests for nonshareable 
resources such as a peripheral are serviced by the 
executive on the basis of first in, first out (FIFO). 
Hardware interrupts are treated as messages to or from 
peripheral devices for which a task can wait, as if the 
interrupt were a message from another task. Management 
of these activities is the primary function of the executive. 

PRIMARY FUNCTIONS OF THE EXECUTIVE 
An environment capable of supporting multiple real-time 
tasks must provide the following nucleus of functions 
(see Figure 1): 
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• task initiation and (re)scheduling (context control) 
• intertask communication and synchronization 
• timing 
• interrupt handling 
• dynamic task control 

Context control 

Each real-time task has an associated prioity and, at any 
instant, a state known to the executive. In the discussion 
below, we refer to the following task states (see Figure 2): 

• ready 
• waiting 
• suspended 

A ready task is one with no outstanding executive 
requests. It will be given control of the CPU when no 
higher priority tasks are ready. A waiting task requires 
the occurence of an event before it is readied. The event 
may be external (e.g. an interrupt) or internal (e.g. a 
message from another task). The running task is the 
highest priority ready task. The suspended task is a task 
that is not waiting or ready or competing for any system 
resource. It is the responsibility of the executive to 
maintain the state of the tasks, and to reschedule task 
activity whenever something significant happens. 
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Rescheduling (a context switch from the current running 
task) occurs when one of the following takes place: 

• running task waits for a message or time delay 
• a higher priority task is readied by an interrupt 

or a timeout 
• running task sends a message to a higher priority 

task which is thereby readied 

The rescheduling process is transparent to the task: the 
state of its 'virtual machine' is restored when the task 
resumes execution. 

The executives discussed in this paper maintain a 
ready list, containing references to ready tasks in order 
of priority: the running task is taken from the top of 
the ready list. A system-provided idle task is usually 
placed at the end of the ready list. This task runs 
whenever all the user tasks aie waiting for something 
(which should be a frequent occurenc(~ in a well 
designed system). 

Communication and synchronization 
Tasks communicate by means of messages, transmission 
and control mechanisms for these messages being 
supplied by the executive. The messages themselves are 
not transmitted when a task requests the executive 
send-message primitive: instead, the executive deals with 
pointers. This method minimizes overhead, but requires 
a certain amount of discipline: once a message has been 
sent, its contents should not be modified until acknow- 
ledgement of receipt has been obtained. Rather than 
require the sending task to direct its message to a specific 
receiving task, the executives considered here maintain 
system nodes ('exchanges' or 'channels') where messages 
are queued on a FIFO basis. It is also possible that a 
number of tasks wait at an exchange for a message to 
arrive. A message arriving at this exchange will be 
accepted by the first task in the task queue. It is never 
possible for tasks and messages to be queued at an 
exchange at the same time. This communication method, 
with its built-in buffering, is an extremely powerful tool 
for real-time systems, as the example in the second part 
of this article illustrates. 

Intertask messages may be grouped into two classes 
(the 'virtual' analogues of I/O data and flags): 

• messages whose content is most important 
• messages whose occurence is most important 

The first class of message is used when tasks produce and 
consume data: for example, a terminal handler may build 
a string of characters entered from the keyboard and then 
transmit a line as a message to a command interpreter task. 

The second class of message finds application where 
two tasks require synchronization, and most importantly, 
where a mutual exclusion mechanism is required. Mutual 
exclusion is necessary whenever two or more tasks may 
compete for a nonshareable resource. An important 
example is a system with floating-point maths hardware: 
while it may be possible to make reentrant drivers, 
this may sacrifice most of the performance offered by 
the hardware. Instead, any task requiring use of the 
resource waits until i t  is granted exclusive access to that 
resource: it then performs a burst of activity before 
relinquishing the resource. Also, when two or more tasks 
of different priority have access to some global data, 
a 'lock out' mechanism is required to avoid a low priority 
task updating the data being 'preempted' by a high 

priority task also requiring access to the data. l-his 
exclusive access scheme is implemented as follows. Eacll 
such resource is associated with a single exchange. Duriug 
system initialization, a single (token) message is queued 
at this exchange. A task requiring use of the resource 
then waits at this exchange for the token. ~[his is held 
while the task uses the resource, thus locking out othe= 
tasks competing for the resource, and is sent back ~o 
the exchange when the task has completed its curr~nt 
burst activity. Note that through this arrangc'ment~ 
a higher priority task taking over control o[: the CPU is 
still excluded from using the ~esource. However, when 
two or more tasks require access to a number o[ non 
shareable resources they may become locked in 'deadly 
embrace '8'9 : the first task holds some of the resources 
and is waiting for the others which are held b~/a second 
task waiting for the resources held by the first task. 
Avoiding this potentially disastlous problem rnav require 
rigorous design discipline. 

Timing 
Some form of hardware timer is required to provide delay 
functions in real-time systems, for two main reasons: 

• software timing loops are defeated by interrupts 
• a high priority task in busy-wait, locks out all lower 

priority tasks, which could otherwise be usefully 
employed 

The executives discussed in this paper require a repetitive 
interrupt for timing purposes. The choice of the period 
between timing interrupts (the 'tick' time) has to be made 
carefully. The application tasks require as short a tick as 
possible, in order to specify elapsed times accurately. 
On the other hand, the executive has to use some CPU 
time each tick: if this time is Te, and the tick period is i", 
then the fraction of CPU capability available to the user 
tasks is 

]-e 
T 

As the clock frequency increases, the available processing 
power decreases. Figures for Te are rarely found in the 
executive specifications. The tick period is normally in 
the range 10- 100 ms. The main timing function provided 
is timed-wait, given in units of ticks. The executive 
maintains a delay list, similar to the ready list, with tasks 
linked in order of relative delay (in this way, the stored 
time intervals remain constant as tasks whose delay 
periods have been satisfied are removed from the list). 
A frequent, and very useful enhancement is the 'wait 
for time period or message' function which provides a 
timeout mechanism. 

Interrupt handling 
Normally, interrupts are intercepted by the executive, 
which translates the interrupt into a virtual I/O message 
queued at an interrupt exchange to be handled by a task 
as for any other message (the task may have special 
'interrupt task' attributes). The task fielding the interrupt 
message will normally invoke a lower priority task and 
then return to its wait state (to maximize throughput). 
The disadvantage of allowing the executive to service 
interrupts is in the response time achieved: the executive 
has to save the context of the interrupted task and 
schedule the interrupt task. The response time may be 
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many hundreds of microseconds rather than the few 
tens of microseconds typical of a 'naked' interrupt service 
routine. To overcome this, it is usually possible to over- 
ride the executive interrupt-handling mechanism and 
provide an interrupt routine which operates outside the 
executive framework. After servicing the interrupt, 
the routine is required to give the executive an 
~cknowledgement before exiting. The normal executive 
interrupt handling mechanisms are arranged in such a 
way that the interrupt control hardware of the target 
system fits nicely into the priority scheme already 
established. Thus, the asynchronous interface to real 
events has been integrated to form a coherent structure, 
rather than being an adhoc addition to the system. 

Dynamic task control 
In complex systems it is useful for tasks to be able to 
control other tasks. Tasks may be 

• created (made known to the executive and placed on 
the ready list) 

• suspended (rendered inactive temporarily) 
• resumed (activation of a suspended task) 
• killed (rendered permanently inactive) 

Suspension and resumption of tasks are the mechanisms 
used by the debug task for interactive control. These 
functions are also useful in systems which may be 
decomposed into well defined states with known 
transition paths. 

Running tasks can also modify the system configura- 
tion by creating or deleting exchanges. Dynamic system 
configuration alterations are most often used when a 
library function is added to the application tasks. 
A library function usually consists of more than one task 
and a number of exchanges but these are dynamically 
created and the user specifies only the master task when 
configuring his system. 

SECONDARY FUNCTIONS OF THE EXECUTIVE 
Commercial executives usually provide facilities over and 
above the minimal set described above, to support the 
development environment, the application, or both. These 
secondary functions are implemented as tasks, activated by 
requests from user tasks. Important secondary functions 
are (see Figure 3): 

• debugger 
• free space management 
• peripheral support 
• real-time clock 
• bootstrap loader 

Debugger 
Because of the complex and concurrent nature of real-time 
programs, the traditional static methods used to debug 
microcomputer programs (execution breakpoints and 
trace, register and memory examination and modification) 
are of very limited usefulness. Instead, dynamic methods 
are required, providing a window into the running system, 
and allowing interactive manipulation of the real-time 
environment. Real-time executives usually provide some 
form of debugger which may be configured into the 
prototype system, and omitted from the final production 
system. In the development environment, the debugger 
is useful not only in the true debugging phase (getting the 
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Figure 3. Secondary functions of  the executive 

system to run) but also for tuning the system (assigning 
priorities, stack allocation, etc.) The two most important 
functions of the debugger are: 

• activating and suspending tasks 
• visualizing the system data structures 

The first of these functions can, with careful planning, 
allow the real-time system to be built up incrementally. 
If the system is arranged so that only trusted tasks are 
activated during the initialization process, then the 
debugger can be used to incorporate the remaining tasks, 
one at a time, while system function is monitored. The 
second main debugger function allows the state of the 
system to be conveyed to the user in a readable form. 
Thus, on request, a snapshot of the queue at an exchange, 
or the state of a particular task, or the contents of a 
message, may be conveniently formatted and displayed. 

The debugger will usually share the system console, 
being activated by a control character from the console 
input. There is normally a mechanism for locking out 
task console output. Other common debug functions 
include dynamic execution and access breakpointing, 
and stack monitoring. 

One point must be noted. The debugger is implemented 
as a task, and thus perturbs the real-time environment. 
Care must be taken to ensure that the application system 
performs in the same way as the development model 
under worst-case conditions. 

Free-space management 
Real-time systems characteristically contain tasks whose 
main function is to fill up a buffer and then pass it on 
to a processing task, or to consume a buffer and then 
wait for more. Due to the nondeterministic nature of the 
system, it is nearly impossible to determine the memory 
requirements at any moment. Particularly, when a produc- 
ing task during short bursts of activity fills up a buffer 
much faster than the consuming task can process them, 
multiple-buffering is required. If the worst-case require- 
ments of all tasks can be met, then a static allocation 
can be made. In the majority of microcomputer 
applications, however, this is impractical, and the system 
RAM becomes a shareable resource. 

The free-space manager provides a mechanism for 
allocation of this resource to tasks. Now, instead of a 
producer task owning a buffer space, it requests memory 
space from the free-space manager for buffers when it 
needs them. (The physical memory space is static, 
of course: in common with other executive functions, 
the free-space manager only supplies a pointer to a 
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buffer.) Once the contents of the buffer have been 
processed by the appropriate consumer task, the buffer 
space is returned to the free-space manager which con- 
catenates all returned blocks into contiguous memory to 
reduce fragmentation. 

It should be noted that use of the free-space manager 
does not alter the statistics of the application environ- 
ment. Careful consideration must be given to peak 
loading and required throughput, and the system should 
be designed with wide margins of safety. 

Peripheral support 
Most microcomputer systems support some form of 
console I /0 for operator communication. The executive 
may provide (configurable) tasks to handle terminal 
functions such as line editing, type-ahead, etc. Even if 
not required in the target system, these utilities are 
valuable during the development phase (particularly to 
allow a debugger to be used). Some executives provide 
management functions for disc support, at the level of 
logical files. Basic functions such as create, delete, open, 
close, are provided, together with mechanisms for 
properly controlled access in the real-time environment 
and facilities for overlaying programs. Facilities for 
analogue I /0 and for management of hardware floating 
point are also common. 

Real-time clock 
Most of the executives provide a very low level real-time 
clock facility. Normally, time of day is updated from the 
hardware clock interrupt routine. The time of day may be 
set and read, but tasks cannot be scheduled for activation 
or suspension at a specified time. 

Bootstrap loader 
In some applications it may be desirable to store the 
program on disc rather than in ROM. A modification to 
the application program then involves changing a disc 
file rather than reprogramming the PROM. It is also 
feasible to use the same hardware for different 
applications and to store all programs on disc. The boot- 
strap loader is used to bring the required program into 
RAM. The nucleus of the real-time executive with the 
bootstrap loader and part of the disc manager must, 
however, reside in ROM. 

EXECUTIVE-RELATED DATA STRUCTURES 
Executives use several control structures for task and 
system management. In addition, tasks themselves have 
access to the system nodes used for communication and 
synchronization by means of task-generated messages. 
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Figure 4. Ready list with three tasks 
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The significance and general content of these various 
structures are given briefly below. 

Task control block (TCB) 
This is the RAM area where the executive maintains the 
information giving the task's current state. This informa- 
tion will include the task program counter, private stack 
pointer, priority, status (ready, waiting, etc.), link fields 
for threading tasks into ready, wait or delay lists (see 
below), and some form of task identifier for debug 
purposes. 

Static task descriptor 
This is the user-provided template from which a task's 
TCB is constructed during system initialisation. It will 
contain the initial program counter, stack pointer, 
and priority for the task, and may have other information 
such as stack length and task name in ASCII for debugging 
purposes. 

Ready list (see Figure 4) 
This is a list of ready tasks, ordered by priority. The 
executive keeps track only of the head and tail tasks of 
the list, the link field of the TCB being used to thread 
tasks together. (The information in the link field is the 
address of the next task's TCB.) 

Delay list 
This list contains waiting tasks, threaded in the same way 
as described for the ready list. Tasks are ordered by 
relative delay. The executive keeps only a pointer to the 
head of the list, and the number of ticks until the head 
task is to be awakened. 

Exchange control block 
Exchanges are the nodes where tasks and messages ate 
associated by the executive. Whenever there is a surplus 
of tasks, or messages, they are linked into a list using 
their link fields. This time, the list ordering is in order ot 
arrival, giving the required FIFO mechanism. Even though 
only tasks or messages can be queued at any one exchange, 
it is normally simpler to maintain pointers to both queues 
at an exchange. 

Message control block 
These are the structures most relevant to the tasks. One or 
more fields in the message are reserved for executive use 
only, for threading messages in an exchange queue. The 
remainder of the message is relevant to the generating and 
receiving task. 'As messages are usually the sole means of 
intertask communication in a well structured system, 
it is important  to define protocols for their structure. 
Often there is a defacto standard employed by utility tasks 
supplied with the executive (e.g. terminal handler). In this 
case, it is advisable to adopt this standard for use with the 
application tasks. Most practical protocols treat the first 
part of the message as a header giving message length and 
type, followed by either the data or a pointer to the data. 
A good example is the protocol where for short messages 
(length one to four bytes) the data is contained in the 
four bytes following the message header: for longer 
messages, these four bytes contain a buffer pointer and 
buffer length. 
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COMMERCIALLY AVAILABLE REAL-TIME 
EXECUTIVES 

There are three real-time executives commercially available 
for 8080-family microcomputers: RMX/80, RTM8 and 
REX-80. Minimum system requirements for the executive 
nuclei are similar (typically 2 -3k  ROM, 0.5k RAM and a 
hardware timer/counter), but there are many differences 
in implementation, configurability and the extensions 
available. Major features and limitations are discussed 
below. 

RMX/80 
Intel's RMX/802 was one of the first real-time executives 
for 8080-based microcomputers. It is designed for the 
Intel SBC range, and is closely bound to the specific 
system architecture (there are different RMX/80 versions 
for the various environments). RMX/80, apart from the 
architectural dependency noted above, is highly configur- 
able: for example, several primitives typically required 
only during development (e.g. suspend and resume) may 
be omitted. All RMX/80 primitives observe the 
parameter-passing conventions of the high level language 
PL/M 6. Furthermore, PL/M provides for operations on 
data structures for which only a pointer is given ('based' 
variables). Thus it is natural to write noncritical tasks 
in PL/M and to use assembler only for time-critical 
items such as interrupt routines outside the RMX/80 
framework. 

One of the idiosyncracies of RMS/80 is the WAIT 
primitive which returns either after a timeout or when 
a message is available at the exchange concerned. This 
means that a pure wait-for-message has to specify 
infinite delay (by specifying a zero delay under 
RMS/80) and a simple delay can be achieved only by 
waiting at an exchange where no message is ever sent. 

RMS/80 is supplied together with a terminal handler 
and debugger. The latter, when configured in its active 
form (which allows interaction rather than just 
observation) is a very powerful tool for system develop- 
ment and timing. There is also a configurable free-space 
manager. 

One of the strengths of RMX/80 lies in the range of 
secondary functions available. To some extent this reflects 
the time RMX/80 has been available and the level of 
investment involved, but it'also emphasis the ready 
portability of tasks given a well defined message protocol. 
In addition to the terminal handler tasks already 
mentioned (configurable for a wide range of options), 
there is an analogue handler, floating point hardware 
manager, a disc file handler, and a bootstrap loader. 

Also available are a BASIC run-time package based 
on RMX/80 which provides the user with a resident 
programming language, with a FORTRAN run-time 
package for number crunching applications. 

In conclusion, RMX/80 offers a flexible, well 
supported nucleus, with configurable extensions, for 
real-time systems. Use is restricted (by licence) to 
Intel SBCs with 8080 and 8095 microprocessors. 

RTM8 
RTM84 is a straightforward executive with no frills 
designed for the AMC 95/4000 series Monoboard 
computers. It provides most primary functions, but 
secondary functions only include a real-time clock, 

a file manager, a (static) debugger, and a terminal 
handler. 

RTM8 intercepts all interrupts and may perform on 
behalf of a task the inbound or outboard transfer. 
Byte I/O in fixed or variable format, ASCII input with 
echo are supported. 

System configuration is performed by the highest 
priority task which gets control after system initialization 
by RTM8. This task creates all other tasks and channels. 
In accordance with this, tasks can set the priority of 
other tasks. 

Particularly cumbersome in RTM8 is passing parameters 
to and returning results from system primitives. Before a 
system call can be made the task must set up a block 
containing the function code, and parameters required by 
the system primitive. The result of a primitive invocation 
is written again into this parameter block. (In other 
executives parameters and results are passed through the 
internal registers and stack.) 

In conclusion, RTM8 is an easy-to-use executive, 
which offers sufficient functions for simple real-time 
applications. The absence of a free-space manager, 
the parameter block convention for system primitive 
calls, and the purely static debugger are serious dis- 
advantages. An advantage is that the user does not have 
to provide interrupt service routines or interrupt tasks. 

REX-80 
REX-803,s has recently appeared on the market and has 
been developed by an independent software house. This 
executive has several features not found in other 
executives. 

The system nodes where messages are queued are 
called channels. Two types of channel exist: interrupt 
and software channels. Any task may send an interrupt 
message to an interrupt channel, requesting an inbound 
or outbound transfer. Associated with each interrupt 
channel are four user-written routines for initializing 
the transfer, handling each interrupt, terminating the 
transfer, and error handling. In addition to a channel 
control block, REX-80 requires a static channel 
descriptor providing pointers to these routines. The 
initialization routine enables the interrupt and initializes 
the device. The interrupt handler receives from REX-80 
a pointer to the interrupt channel and the interrupt 
message containing information on type of transfer, 
buffer to be used, etc. This routine does the actual 
transfer and signals completion to REX-80. The terminat- 
ing routine invoked by REX-80 disables the particular 
interrupt. After transfer termination, the requesting task 
is informed by means of its own interrupt message 
whether the transfer was successful. The main advantage 
of REX-80 interrupt handling is that it does not require 
a full context switch at every interrupt. 

Unsolicited interrupts, i.e. interrupts for which no 
task is waiting at an interrupt exchange, should normally 
be avoided, but can be handled within the framework 
of REX-80. 

Task synchronization with other tasks or I/O may occur 
at 'message hand-off' or some time after this. In the former 
case the sending task will wait until the receiving task 
accepts the message. The highest priority task then gets 
control of the processor. In the case that synchronization 
occurs some time after 'message hand-off', the sending task 
associates one of its 16 event flags, the 'virtual interrupts', 
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vdth the 'message hand-o•. After sending the message the 
task continues processing if it is the highest priority task. 
At some time the task may wait to synchronize with the 
receiving task, and will wait for the event flag to change 
state. The message receiving task, when it is running, signals 
the sending task by means of the event flag at some stage 
during processing that the message has been accepted. 
The highest priority task then continues processing. 

The event facility in REX-80 is potentially very 
powerful and avoids introducing acknowledge channels 
(as in RMX/80). Unfortunately, REX-80 cannot distinguish 
between events that never have been requested or have 
already occured. 

REX-80 maintains a real-time clock and a time-of-day. 
Tasks can be delayed for certain time periods and also the 
future occurence of an event can be timed out. This is not 
achieved by waiting at dummy channels but by the 
MARK TIME AND WAIT primitive. Furthermore, REX-80 
provides an elegant primitive for waiting for the first of a 
number ot events to occur. 

Dynamic task control in REX-80 is very limited: 
it allows tasks and channels to be created dynamically, 
but only channels to be deleted. A task can only suspend 
itself. A useful feature of REX-80 is that a running task 
may alter its priority in case it does not want to be 
preempted by other tasks during critical operations. 

REX-80 is available for Z80 and 8080/8085-based 
systems. As the source is distributed as well, the nucleus 
of the executive can be tailored to the application. The user 
decides which I/O addresses to allocate to the interrupt 
controller, timers, etc. and selects the system clock 
frequency satisfying his requirements. The free-space 
manager is integrated in the nucleus. It does not provide 
a facility for a task to wait for space to become available 
(as the RMX/80 free-space manager does). An interrupt 
handler for the Am9511 arithmetic processor capable of 
accepting entire expressions (in reverse polish notation) 
is a useful addition to REX-80 secondary functions. Other 
peripheral support include a terminal handler and an 
analogue I/O handler. REX-80 is not directly PL/M 
compatible but an interface has been developed by the 
authors. 

In conclusion, the rich REX-80 nucleus offers more 
flexibility than RMX/80 or RTM8 (at the expense of its 
complexity). Novice users will find it difficult to select 
the functions they require for their particular problem. 
This may be partially due to the rather academic users 
guide. The absence of a debugger and more peripheral 
support functions is a cerious shortcomina. 

E X A M P L E  

One of the most common applications of microprocessors 
is in data logging. A number of I/O ports are connected to 
sensors and changes in the input values are stored in a data 
buffer with the time of the day. When the data buffer has 
been filled, it is dumped on to, for example, a cassette. 
The data logging function can be broken down into two 
tasks, a data acquisition and data storage task. This is 
shown graphically in figure 5 where circles represent 
channels, rectangles are tasks, and the arrows connecting 
circles and rectangles, the sending or receiving of  messages. 
The number in the rectangle indicates the task priority 
(1--7, 7 being highest priority). 

The data acquisition task reads the input ports at 
regular intervals (e.g. 10 system time units) and if the 
inputs have changed, a message is sent to channel 1 with 

the new input values and the time of the day. l h e  storage 
task waits at this channel and when a message arrives the 
data in the message is converted (e.g. add cffsets etc.) and 
stored in a buffer. If this would cause buffer ove~ flow, 
the current buffer is emptied on to cassette and the datd 
written into the empty buffer. 

Essentially, each task in this example has the following 
structure (using PL/M): 

TASK: 
/* declarations */ 
DO FOREVER; 

/* body of task */ 
END; 

END TASK; 

To implement the acquisition task under REX-80, the 
following primitives are required: 

• MRKTW (DELAY) -- marks a time delay in system 
time units 

• SEND (CHANNEL, MESSAGE, EVENT) .... send a 
message to a channel and wait till message has been 
received 

Inputs 

~[ Data J 
acquisition I 

Cassette 
recorder 

Figure 5. Two-task data logger 

DECLARE MESSAGE STRUCTURE( 
RESERVED_FOR_REX80(3) ADDRESS, 

/* initialise BUFFER POINTER with address of MESSAGE.REMAINDER *, 
BUFFER POINTER ADDRESS INITIAL (.MESSAGE.REMAINDER), 

/* TRANSFER COUNT is initialised to 16 bytes */ 
TRANSFER COUNT ADDRESS INITIAL (16), 
REMAINDER(16) BYTE); 

DECLARE EVENT BYTE; 

DATA_ACQUISTIONTASK: PROCEDURE PUBLIC; 
DO FOREVER; 

/* wait for 1O system time unlts */ 
CALL MRRTW(10); 
/* read new input values into message; if they have changed, ret~Jr 

TRUE, else return FALSE */ 
IF READ_INPUTS(.MESSAGE.REMAINDER+3) THEN DO; 

/* get time of day into message */ 
CALL GTIMD(.MESSAGE.REMAINDEE); 
/* send the message to channel 1 and associate evet~t ] */ 

CALL SEND(I,.MESSAGE,I); 
/* wait on event l indicating that message ~as beer~ accepted * 

EVENT=WAITE([); 
END; 

END; 
END DATA ACQUISITIONTASK; 

DATA_STORAGETASK: PROCEDURE PUBLIC; 
DECLARE PTR ADDRESS; 

DO FOREVER: 
/* wait for message at channel i and return with p~inter * ,  

PTR= RECVW{I); 
/* add offsets, etc. */ 

CALL CONVERT_DATA(PTR); 
/* add message to buffer and empty buffer c>nt~ cassette i[ ~ui~ */ 

CALL ADD_MESBAGETO_BUFFER(PTR); 
/* acknowledge receipt */ 

CALL SIGNL(PTR); 
END; 

END DATA_STORAGETASK; 

Figure 6. Two-task data logger without buffering 
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Figure 7. Task interleaving 
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• RECVW (CHANNEL) - wait at channel for message 
• WAITE (EVENT1 OR EVENT2 O R . . .  ) - wait for 

event(s) and returns highest priority event number 
• GTIMD (POINTER) - fill buffer starting at 

POINTE R with current ti me-of-day 
• SIGNL (POINTER TO MESSAGE) - acknowledge 

through message, receipt of message 

The data logger tasks are declared in the (incomplete) 
code segment in Figure 6. 

The flow of control in this two-task system is as follows 
(see Figure 7). After power-up, REX-80 initializes various 
data structures and devices, using a user-provided cold-start 
routine with descriptors of tasks and channels and 
initialization code for the devices. The control of the 
processor is then transferred to the highest priority task, 
in this case the acquisition task. This task is delayed for 
10 system time units by the MRKTW primitive and 
control is passed on to the storage task. This task checks 
if there is a message at channel 1 and is made waiting as 
there is no message available. The idle task gets control 
until the acquisition task is readied by a time-out The 
acquisition task prepares and sends (if necessary) a message 

Inputs Cassette 

Figure 8. Three-taskdata logger 

DATA ACQUISITION TASK: PROCEDURE PUBLIC; 
DECLARE RTR ADDRESS; 
DECLARE MESSAGE RASED PTR STRUCTURE( 

RESERVED FOR REX80(3) ADDRESS; 
BUFFER POINTER ADDRESS, 
TRANSFER COUNT ADDRESS, 
REMAINDER(16) BYTE); 

DECLARE EVENT BYTE; 

/* get space and create message */ 
PTR=ALLOC(1); 
MESSAGE.BUFFERPOINTER=.MESSAGE.REMAINDER; 
MESSAGE.TRANSFER_COUNT=f6; 

DO FOREVER; 
CALL MRKT(I,10); 
IF READ INPUTS(.MESSAGE.REMAINDER+3) THEN DO; 

CALL GTIMD(.MESSAGE.REMAINDER); 
/* send message but do not associate event */ 

CALL SEND(I,.MESBAGE,0); 
/* create new message */ 

PTR=ALLOC(1); 
MESSAGE.BUFFERPOINTER=.MESSAGE.REMAINDER; 
MESSAGE.TRANSFER COUNT=I6; 
/* wait for event I */ 

EVENT=WAITE(1); 
END; 

END; 
END DATAACQUISITION_TASK; 

STORAGE TASK: PROCEDURE PUBLIC; 
DECLARE PTR ADDRESS; 
DECLARE BUFPTR ADDRESS; 
DECLARE BUFFER BASED BUFPTR STRUCTURE ( 

RESERVED FOR REX80(3} ADDRESS, 
POINTER ADDRESS, 
TRANSFER COUNT ADDRESS, 
REMAINDER(1024) BYTE}; 

/* create buffer in message format */ 
BUFPTR=ALLOC(16); 
BUFFER.TRANSFER COUNT=0; 
BUFFER.POINTER=TBUFFER.REMAINDER; 

DO FOREVER; 
RTR=RECVW(1); 
CALL CONVERT DATA(PTR); 
CALL ADD MESSAGE TO BUFFER(PTR,,BUFFER); 
/* retu?n message to free space manager */ 

CALL DALCT(PTR); 
IF BUFFER.TRANSFER_COUNT=f024 THEN DO; 

/* send message but do not associate event */ 
CALL SEND(2,.BUFFER,0); 
/* create a new buffer */ 

BUFPTRfALLOC(16); 
BUFFER.TRANSFER_COUNT=0; 
BUFFER.POINTER=.BUFFER.REMAINDER; 

END; 
END; 

END STORAGE_TASK; 

Figure 9. Data logger with multiple buffering 

Ois~oy 

Figure 10. Data logger with console and histogram 
computation 

Cassette 
recorder 

to channel 1. It then waits until the storage task receives 
the message. As the acquisition task is the highest priority 
task, it gets control over the processor. 

This simple example illustrates that all scheduling is 
entirely transparent to the user and, in fact, the two 
tasks appear to run concurrently. 

There are several problems, however, in this imple- 
mentation. The scan interval is 10 system time units, 
plus the time it takes to sample the inputs and send a 
message. The acquisition task must wait for the storage 
task to receive and process the message as there is only 
one message available. If the storage task processing takes 
more than 10 system time units because of dumping the 
buffer on to cassette, the sample interval could be 
considerably longer than intended. If the sample interval 
is c~itical, queuing of messages to avoid the acquisition 
task having to wait for the storage task, becomes 
desirable. In the case of bursts of activity on the inputs 
and consequently many messages queued at channel 1, 
and the storage task not able to accept any message 
because it is waiting for the cassette recorder, data buffer 
queuing for the cassette recbrder may be desirable as 
well. The diagram in Figure 8 shows a three task, two 
channel system with multiple buffering at both channels. 

To implement this, we need some more REX-80 
primitives: 

• ALLOC(N) - request to free space manager for N '64  
bytes 

• DALCT (POINTER) - return 64 bytes to free space 
manager starting at POINTER 

• MRKT (EVENT, N) - mark N system time units 
interval and associate this with EVENT 

The acquisitionand storage task with multiple buffering 
are shown in Figure 9. The cassette controlling task has 
a similar structure to the storage task and is not shown. 
Note that the sample interval in the acquisition task is 
now constant. 

It may be desirable to enter the offsets and calibration 
data, and time-of-day from the console. In parallel to 
the three tasks in Figure 8 a low priority console interrupt 
task could interact with the operator. Mutual exclusion 
techniques must be incorporated to access global data. 
If more processing time is still available, a low priority 
task computing histograms can be included (see Figure 10). 

This example shows the ease with which new functions 
can be added to the application and how multiple buffering 
and pipelining can be achieved using facilities provided by 
the executive. 
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CONCLUSION 

Many real-time microprocessor applications have broadly 
similar requirements. The past few years have seen the 
appearance of several general purpose real-time executives 
for microcomputer systems. The significance of this can 
be compared with the appearance of high level language 
support for microprocessors. There are broadly similar 
advantages (e.g. speed of program development), 
disadvantages (e.g. overhead in time and memory space), 
and tradeoffs to be considered. 

The abstractions provided by an executive allows 
system designers to structure and to implement software 
for their application without concerning themselves about 
details of task scheduling, resource allocation, and in effect 
'reinventing the real-time wheel'. The software framework 
of real-time executives could be viewed as a 'software bus' 
which allows software modules to be 'plugged' into the 
system. Similar to the hardware bus, it establishes 
protoco[s and interconnect paths, and, if properly 
designed, ensures expansibility. 

Modular programming is encouraged as an application is 
broken down into tasks which can be written by different 
programmers as independent modules with clearly defined 
interfaces. 

One of the disadvantages of real-time executives is the 
overhead caused by context-switching. New 16-bit micro- 
processor architectures have been designed with real-time 
executive requirements in mind. Context switching by 
means of segmentation and semaphore operations are 
facilitated in hardware. It is expected that more functions 
now provided in software will move to firmware, either 

microprogrammed or mask-programmed, in {,~der to 
reduce the ever-increasing software costs 
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