
Real-time executives for
microprocessors
Frits van der Linden and lan Wilson review the concepts of real-time
executives and compare three commercially available executives
for 8080 /5 and Z80 systems

Principles o f real-time executives for microcomputer
systems are discussed, together with some secondary
functions. Salient features and limitations o f three
commercially available executives for 8080/5 and Z80
systems are described. An example is given illustrating
the use o f an executive in a multitasking application
involving a simple data logger with a high priority data
acquisition task, a low priority data converting task
and storage task.

Real-time systems can often be analysed into a set of
loosely coupled processes (tasks), each responsible for a
single function or a group of related functions. In order
to service and control more than one external device,
the control system must be capable of running parallel
tasks concurrently. With a single processor, true con-
currency is evidently impossible as the processor can
only execute one instruction at a time. Some mechanism
for allocating processor time to tasks, and controlling the
execution and synchronization of the tasks is required.
In addition, most real-time systems are required to
handle asynchronous I/O and respond to time-related
events.

In very small systems the controlling logic will be
distributed throughout the program, but in a system
comprising more than three or four tasks, the system
control functions are best integrated in an executive.
Tasks communicate with each other and with the
outside world by means of requests to the executive:
the overall effect is to provide each task with a similar
protected environment: the virtual machine. In accordance
with this concept, resources such as CPU time can be
shared by several tasks, and each task appears to have
control of the shared resource. The executive allocates
CPU time on the basis of the relative importance,
the priority, of the task. Tasks' requests for nonshareable
resources such as a peripheral are serviced by the
executive on the basis of first in, first out (FIFO).
Hardware interrupts are treated as messages to or from
peripheral devices for which a task can wait, as if the
interrupt were a message from another task. Management
of these activities is the primary function of the executive.

PRIMARY FUNCTIONS OF THE EXECUTIVE
An environment capable of supporting multiple real-time
tasks must provide the following nucleus of functions
(see Figure 1):

BSO/AT Utrecht, Wilhelrninalaan 5, Postbus 3059, 3502GB
Utrecht, Holland

Task
requests

Messages Timer Hardware
interrupt interrupt

manager manager manager

(scheduler)

Figure I. Nucleus of a real-time executive

Ready Ist

Delay list
IT

J Waiting task(s)

T
Figure 2. Task states

~-~Sus!ended task (s) J

1
1 I Termlo.d, 's, 1

• task initiation and (re)scheduling (context control)
• intertask communication and synchronization
• timing
• interrupt handling
• dynamic task control

Context control

Each real-time task has an associated prioity and, at any
instant, a state known to the executive. In the discussion
below, we refer to the following task states (see Figure 2):

• ready
• waiting
• suspended

A ready task is one with no outstanding executive
requests. It will be given control of the CPU when no
higher priority tasks are ready. A waiting task requires
the occurence of an event before it is readied. The event
may be external (e.g. an interrupt) or internal (e.g. a
message from another task). The running task is the
highest priority ready task. The suspended task is a task
that is not waiting or ready or competing for any system
resource. It is the responsibility of the executive to
maintain the state of the tasks, and to reschedule task
activity whenever something significant happens.

vo/4 no 6/uly/august 1980 O141/9331/80/060211-08 $02.00 © 1980 IPC Business Press 211

Rescheduling (a context switch from the current running
task) occurs when one of the following takes place:

• running task waits for a message or time delay
• a higher priority task is readied by an interrupt

or a timeout
• running task sends a message to a higher priority

task which is thereby readied

The rescheduling process is transparent to the task: the
state of its 'virtual machine' is restored when the task
resumes execution.

The executives discussed in this paper maintain a
ready list, containing references to ready tasks in order
of priority: the running task is taken from the top of
the ready list. A system-provided idle task is usually
placed at the end of the ready list. This task runs
whenever all the user tasks aie waiting for something
(which should be a frequent occurenc(~ in a well
designed system).

Communication and synchronization
Tasks communicate by means of messages, transmission
and control mechanisms for these messages being
supplied by the executive. The messages themselves are
not transmitted when a task requests the executive
send-message primitive: instead, the executive deals with
pointers. This method minimizes overhead, but requires
a certain amount of discipline: once a message has been
sent, its contents should not be modified until acknow-
ledgement of receipt has been obtained. Rather than
require the sending task to direct its message to a specific
receiving task, the executives considered here maintain
system nodes ('exchanges' or 'channels') where messages
are queued on a FIFO basis. It is also possible that a
number of tasks wait at an exchange for a message to
arrive. A message arriving at this exchange will be
accepted by the first task in the task queue. It is never
possible for tasks and messages to be queued at an
exchange at the same time. This communication method,
with its built-in buffering, is an extremely powerful tool
for real-time systems, as the example in the second part
of this article illustrates.

Intertask messages may be grouped into two classes
(the 'virtual' analogues of I/O data and flags):

• messages whose content is most important
• messages whose occurence is most important

The first class of message is used when tasks produce and
consume data: for example, a terminal handler may build
a string of characters entered from the keyboard and then
transmit a line as a message to a command interpreter task.

The second class of message finds application where
two tasks require synchronization, and most importantly,
where a mutual exclusion mechanism is required. Mutual
exclusion is necessary whenever two or more tasks may
compete for a nonshareable resource. An important
example is a system with floating-point maths hardware:
while it may be possible to make reentrant drivers,
this may sacrifice most of the performance offered by
the hardware. Instead, any task requiring use of the
resource waits until i t is granted exclusive access to that
resource: it then performs a burst of activity before
relinquishing the resource. Also, when two or more tasks
of different priority have access to some global data,
a 'lock out' mechanism is required to avoid a low priority
task updating the data being 'preempted' by a high

priority task also requiring access to the data. l-his
exclusive access scheme is implemented as follows. Eacll
such resource is associated with a single exchange. Duriug
system initialization, a single (token) message is queued
at this exchange. A task requiring use of the resource
then waits at this exchange for the token. ~[his is held
while the task uses the resource, thus locking out othe=
tasks competing for the resource, and is sent back ~o
the exchange when the task has completed its curr~nt
burst activity. Note that through this arrangc'ment~
a higher priority task taking over control o[: the CPU is
still excluded from using the ~esource. However, when
two or more tasks require access to a number o[non
shareable resources they may become locked in 'deadly
embrace '8'9 : the first task holds some of the resources
and is waiting for the others which are held b~/a second
task waiting for the resources held by the first task.
Avoiding this potentially disastlous problem rnav require
rigorous design discipline.

Timing
Some form of hardware timer is required to provide delay
functions in real-time systems, for two main reasons:

• software timing loops are defeated by interrupts
• a high priority task in busy-wait, locks out all lower

priority tasks, which could otherwise be usefully
employed

The executives discussed in this paper require a repetitive
interrupt for timing purposes. The choice of the period
between timing interrupts (the 'tick' time) has to be made
carefully. The application tasks require as short a tick as
possible, in order to specify elapsed times accurately.
On the other hand, the executive has to use some CPU
time each tick: if this time is Te, and the tick period is i",
then the fraction of CPU capability available to the user
tasks is

]-e
T

As the clock frequency increases, the available processing
power decreases. Figures for Te are rarely found in the
executive specifications. The tick period is normally in
the range 10- 100 ms. The main timing function provided
is timed-wait, given in units of ticks. The executive
maintains a delay list, similar to the ready list, with tasks
linked in order of relative delay (in this way, the stored
time intervals remain constant as tasks whose delay
periods have been satisfied are removed from the list).
A frequent, and very useful enhancement is the 'wait
for time period or message' function which provides a
timeout mechanism.

Interrupt handling
Normally, interrupts are intercepted by the executive,
which translates the interrupt into a virtual I/O message
queued at an interrupt exchange to be handled by a task
as for any other message (the task may have special
'interrupt task' attributes). The task fielding the interrupt
message will normally invoke a lower priority task and
then return to its wait state (to maximize throughput).
The disadvantage of allowing the executive to service
interrupts is in the response time achieved: the executive
has to save the context of the interrupted task and
schedule the interrupt task. The response time may be

212 microprocessors and microsystems

many hundreds of microseconds rather than the few
tens of microseconds typical of a 'naked' interrupt service
routine. To overcome this, it is usually possible to over-
ride the executive interrupt-handling mechanism and
provide an interrupt routine which operates outside the
executive framework. After servicing the interrupt,
the routine is required to give the executive an
~cknowledgement before exiting. The normal executive
interrupt handling mechanisms are arranged in such a
way that the interrupt control hardware of the target
system fits nicely into the priority scheme already
established. Thus, the asynchronous interface to real
events has been integrated to form a coherent structure,
rather than being an adhoc addition to the system.

Dynamic task control
In complex systems it is useful for tasks to be able to
control other tasks. Tasks may be

• created (made known to the executive and placed on
the ready list)

• suspended (rendered inactive temporarily)
• resumed (activation of a suspended task)
• killed (rendered permanently inactive)

Suspension and resumption of tasks are the mechanisms
used by the debug task for interactive control. These
functions are also useful in systems which may be
decomposed into well defined states with known
transition paths.

Running tasks can also modify the system configura-
tion by creating or deleting exchanges. Dynamic system
configuration alterations are most often used when a
library function is added to the application tasks.
A library function usually consists of more than one task
and a number of exchanges but these are dynamically
created and the user specifies only the master task when
configuring his system.

SECONDARY FUNCTIONS OF THE EXECUTIVE
Commercial executives usually provide facilities over and
above the minimal set described above, to support the
development environment, the application, or both. These
secondary functions are implemented as tasks, activated by
requests from user tasks. Important secondary functions
are (see Figure 3):

• debugger
• free space management
• peripheral support
• real-time clock
• bootstrap loader

Debugger
Because of the complex and concurrent nature of real-time
programs, the traditional static methods used to debug
microcomputer programs (execution breakpoints and
trace, register and memory examination and modification)
are of very limited usefulness. Instead, dynamic methods
are required, providing a window into the running system,
and allowing interactive manipulation of the real-time
environment. Real-time executives usually provide some
form of debugger which may be configured into the
prototype system, and omitted from the final production
system. In the development environment, the debugger
is useful not only in the true debugging phase (getting the

1
Real - time /

clock Debugger /

Bootstrap I Per il:~e ral
loader support

Free - space
User tasks management

Figure 3. Secondary functions of the executive

system to run) but also for tuning the system (assigning
priorities, stack allocation, etc.) The two most important
functions of the debugger are:

• activating and suspending tasks
• visualizing the system data structures

The first of these functions can, with careful planning,
allow the real-time system to be built up incrementally.
If the system is arranged so that only trusted tasks are
activated during the initialization process, then the
debugger can be used to incorporate the remaining tasks,
one at a time, while system function is monitored. The
second main debugger function allows the state of the
system to be conveyed to the user in a readable form.
Thus, on request, a snapshot of the queue at an exchange,
or the state of a particular task, or the contents of a
message, may be conveniently formatted and displayed.

The debugger will usually share the system console,
being activated by a control character from the console
input. There is normally a mechanism for locking out
task console output. Other common debug functions
include dynamic execution and access breakpointing,
and stack monitoring.

One point must be noted. The debugger is implemented
as a task, and thus perturbs the real-time environment.
Care must be taken to ensure that the application system
performs in the same way as the development model
under worst-case conditions.

Free-space management
Real-time systems characteristically contain tasks whose
main function is to fill up a buffer and then pass it on
to a processing task, or to consume a buffer and then
wait for more. Due to the nondeterministic nature of the
system, it is nearly impossible to determine the memory
requirements at any moment. Particularly, when a produc-
ing task during short bursts of activity fills up a buffer
much faster than the consuming task can process them,
multiple-buffering is required. If the worst-case require-
ments of all tasks can be met, then a static allocation
can be made. In the majority of microcomputer
applications, however, this is impractical, and the system
RAM becomes a shareable resource.

The free-space manager provides a mechanism for
allocation of this resource to tasks. Now, instead of a
producer task owning a buffer space, it requests memory
space from the free-space manager for buffers when it
needs them. (The physical memory space is static,
of course: in common with other executive functions,
the free-space manager only supplies a pointer to a

vo/ 4 no 6july/august 1980 213

buffer.) Once the contents of the buffer have been
processed by the appropriate consumer task, the buffer
space is returned to the free-space manager which con-
catenates all returned blocks into contiguous memory to
reduce fragmentation.

It should be noted that use of the free-space manager
does not alter the statistics of the application environ-
ment. Careful consideration must be given to peak
loading and required throughput, and the system should
be designed with wide margins of safety.

Peripheral support
Most microcomputer systems support some form of
console I /0 for operator communication. The executive
may provide (configurable) tasks to handle terminal
functions such as line editing, type-ahead, etc. Even if
not required in the target system, these utilities are
valuable during the development phase (particularly to
allow a debugger to be used). Some executives provide
management functions for disc support, at the level of
logical files. Basic functions such as create, delete, open,
close, are provided, together with mechanisms for
properly controlled access in the real-time environment
and facilities for overlaying programs. Facilities for
analogue I /0 and for management of hardware floating
point are also common.

Real-time clock
Most of the executives provide a very low level real-time
clock facility. Normally, time of day is updated from the
hardware clock interrupt routine. The time of day may be
set and read, but tasks cannot be scheduled for activation
or suspension at a specified time.

Bootstrap loader
In some applications it may be desirable to store the
program on disc rather than in ROM. A modification to
the application program then involves changing a disc
file rather than reprogramming the PROM. It is also
feasible to use the same hardware for different
applications and to store all programs on disc. The boot-
strap loader is used to bring the required program into
RAM. The nucleus of the real-time executive with the
bootstrap loader and part of the disc manager must,
however, reside in ROM.

EXECUTIVE-RELATED DATA STRUCTURES
Executives use several control structures for task and
system management. In addition, tasks themselves have
access to the system nodes used for communication and
synchronization by means of task-generated messages.

Heod

TCB

/ *
TCB

° / *

Figure 4. Ready list with three tasks

TCB

Toil

The significance and general content of these various
structures are given briefly below.

Task control block (TCB)
This is the RAM area where the executive maintains the
information giving the task's current state. This informa-
tion will include the task program counter, private stack
pointer, priority, status (ready, waiting, etc.), link fields
for threading tasks into ready, wait or delay lists (see
below), and some form of task identifier for debug
purposes.

Static task descriptor
This is the user-provided template from which a task's
TCB is constructed during system initialisation. It will
contain the initial program counter, stack pointer,
and priority for the task, and may have other information
such as stack length and task name in ASCII for debugging
purposes.

Ready list (see Figure 4)
This is a list of ready tasks, ordered by priority. The
executive keeps track only of the head and tail tasks of
the list, the link field of the TCB being used to thread
tasks together. (The information in the link field is the
address of the next task's TCB.)

Delay list
This list contains waiting tasks, threaded in the same way
as described for the ready list. Tasks are ordered by
relative delay. The executive keeps only a pointer to the
head of the list, and the number of ticks until the head
task is to be awakened.

Exchange control block
Exchanges are the nodes where tasks and messages ate
associated by the executive. Whenever there is a surplus
of tasks, or messages, they are linked into a list using
their link fields. This time, the list ordering is in order ot
arrival, giving the required FIFO mechanism. Even though
only tasks or messages can be queued at any one exchange,
it is normally simpler to maintain pointers to both queues
at an exchange.

Message control block
These are the structures most relevant to the tasks. One or
more fields in the message are reserved for executive use
only, for threading messages in an exchange queue. The
remainder of the message is relevant to the generating and
receiving task. 'As messages are usually the sole means of
intertask communication in a well structured system,
it is important to define protocols for their structure.
Often there is a defacto standard employed by utility tasks
supplied with the executive (e.g. terminal handler). In this
case, it is advisable to adopt this standard for use with the
application tasks. Most practical protocols treat the first
part of the message as a header giving message length and
type, followed by either the data or a pointer to the data.
A good example is the protocol where for short messages
(length one to four bytes) the data is contained in the
four bytes following the message header: for longer
messages, these four bytes contain a buffer pointer and
buffer length.

214 microprocessors and micro_~yslems

COMMERCIALLY AVAILABLE REAL-TIME
EXECUTIVES

There are three real-time executives commercially available
for 8080-family microcomputers: RMX/80, RTM8 and
REX-80. Minimum system requirements for the executive
nuclei are similar (typically 2 -3k ROM, 0.5k RAM and a
hardware timer/counter), but there are many differences
in implementation, configurability and the extensions
available. Major features and limitations are discussed
below.

RMX/80
Intel's RMX/802 was one of the first real-time executives
for 8080-based microcomputers. It is designed for the
Intel SBC range, and is closely bound to the specific
system architecture (there are different RMX/80 versions
for the various environments). RMX/80, apart from the
architectural dependency noted above, is highly configur-
able: for example, several primitives typically required
only during development (e.g. suspend and resume) may
be omitted. All RMX/80 primitives observe the
parameter-passing conventions of the high level language
PL/M 6. Furthermore, PL/M provides for operations on
data structures for which only a pointer is given ('based'
variables). Thus it is natural to write noncritical tasks
in PL/M and to use assembler only for time-critical
items such as interrupt routines outside the RMX/80
framework.

One of the idiosyncracies of RMS/80 is the WAIT
primitive which returns either after a timeout or when
a message is available at the exchange concerned. This
means that a pure wait-for-message has to specify
infinite delay (by specifying a zero delay under
RMS/80) and a simple delay can be achieved only by
waiting at an exchange where no message is ever sent.

RMS/80 is supplied together with a terminal handler
and debugger. The latter, when configured in its active
form (which allows interaction rather than just
observation) is a very powerful tool for system develop-
ment and timing. There is also a configurable free-space
manager.

One of the strengths of RMX/80 lies in the range of
secondary functions available. To some extent this reflects
the time RMX/80 has been available and the level of
investment involved, but it'also emphasis the ready
portability of tasks given a well defined message protocol.
In addition to the terminal handler tasks already
mentioned (configurable for a wide range of options),
there is an analogue handler, floating point hardware
manager, a disc file handler, and a bootstrap loader.

Also available are a BASIC run-time package based
on RMX/80 which provides the user with a resident
programming language, with a FORTRAN run-time
package for number crunching applications.

In conclusion, RMX/80 offers a flexible, well
supported nucleus, with configurable extensions, for
real-time systems. Use is restricted (by licence) to
Intel SBCs with 8080 and 8095 microprocessors.

RTM8
RTM84 is a straightforward executive with no frills
designed for the AMC 95/4000 series Monoboard
computers. It provides most primary functions, but
secondary functions only include a real-time clock,

a file manager, a (static) debugger, and a terminal
handler.

RTM8 intercepts all interrupts and may perform on
behalf of a task the inbound or outboard transfer.
Byte I/O in fixed or variable format, ASCII input with
echo are supported.

System configuration is performed by the highest
priority task which gets control after system initialization
by RTM8. This task creates all other tasks and channels.
In accordance with this, tasks can set the priority of
other tasks.

Particularly cumbersome in RTM8 is passing parameters
to and returning results from system primitives. Before a
system call can be made the task must set up a block
containing the function code, and parameters required by
the system primitive. The result of a primitive invocation
is written again into this parameter block. (In other
executives parameters and results are passed through the
internal registers and stack.)

In conclusion, RTM8 is an easy-to-use executive,
which offers sufficient functions for simple real-time
applications. The absence of a free-space manager,
the parameter block convention for system primitive
calls, and the purely static debugger are serious dis-
advantages. An advantage is that the user does not have
to provide interrupt service routines or interrupt tasks.

REX-80
REX-803,s has recently appeared on the market and has
been developed by an independent software house. This
executive has several features not found in other
executives.

The system nodes where messages are queued are
called channels. Two types of channel exist: interrupt
and software channels. Any task may send an interrupt
message to an interrupt channel, requesting an inbound
or outbound transfer. Associated with each interrupt
channel are four user-written routines for initializing
the transfer, handling each interrupt, terminating the
transfer, and error handling. In addition to a channel
control block, REX-80 requires a static channel
descriptor providing pointers to these routines. The
initialization routine enables the interrupt and initializes
the device. The interrupt handler receives from REX-80
a pointer to the interrupt channel and the interrupt
message containing information on type of transfer,
buffer to be used, etc. This routine does the actual
transfer and signals completion to REX-80. The terminat-
ing routine invoked by REX-80 disables the particular
interrupt. After transfer termination, the requesting task
is informed by means of its own interrupt message
whether the transfer was successful. The main advantage
of REX-80 interrupt handling is that it does not require
a full context switch at every interrupt.

Unsolicited interrupts, i.e. interrupts for which no
task is waiting at an interrupt exchange, should normally
be avoided, but can be handled within the framework
of REX-80.

Task synchronization with other tasks or I/O may occur
at 'message hand-off' or some time after this. In the former
case the sending task will wait until the receiving task
accepts the message. The highest priority task then gets
control of the processor. In the case that synchronization
occurs some time after 'message hand-off', the sending task
associates one of its 16 event flags, the 'virtual interrupts',

vol 4 no 6ju/y/august 1980 215

vdth the 'message hand-o•. After sending the message the
task continues processing if it is the highest priority task.
At some time the task may wait to synchronize with the
receiving task, and will wait for the event flag to change
state. The message receiving task, when it is running, signals
the sending task by means of the event flag at some stage
during processing that the message has been accepted.
The highest priority task then continues processing.

The event facility in REX-80 is potentially very
powerful and avoids introducing acknowledge channels
(as in RMX/80). Unfortunately, REX-80 cannot distinguish
between events that never have been requested or have
already occured.

REX-80 maintains a real-time clock and a time-of-day.
Tasks can be delayed for certain time periods and also the
future occurence of an event can be timed out. This is not
achieved by waiting at dummy channels but by the
MARK TIME AND WAIT primitive. Furthermore, REX-80
provides an elegant primitive for waiting for the first of a
number ot events to occur.

Dynamic task control in REX-80 is very limited:
it allows tasks and channels to be created dynamically,
but only channels to be deleted. A task can only suspend
itself. A useful feature of REX-80 is that a running task
may alter its priority in case it does not want to be
preempted by other tasks during critical operations.

REX-80 is available for Z80 and 8080/8085-based
systems. As the source is distributed as well, the nucleus
of the executive can be tailored to the application. The user
decides which I/O addresses to allocate to the interrupt
controller, timers, etc. and selects the system clock
frequency satisfying his requirements. The free-space
manager is integrated in the nucleus. It does not provide
a facility for a task to wait for space to become available
(as the RMX/80 free-space manager does). An interrupt
handler for the Am9511 arithmetic processor capable of
accepting entire expressions (in reverse polish notation)
is a useful addition to REX-80 secondary functions. Other
peripheral support include a terminal handler and an
analogue I/O handler. REX-80 is not directly PL/M
compatible but an interface has been developed by the
authors.

In conclusion, the rich REX-80 nucleus offers more
flexibility than RMX/80 or RTM8 (at the expense of its
complexity). Novice users will find it difficult to select
the functions they require for their particular problem.
This may be partially due to the rather academic users
guide. The absence of a debugger and more peripheral
support functions is a cerious shortcomina.

E X A M P L E

One of the most common applications of microprocessors
is in data logging. A number of I/O ports are connected to
sensors and changes in the input values are stored in a data
buffer with the time of the day. When the data buffer has
been filled, it is dumped on to, for example, a cassette.
The data logging function can be broken down into two
tasks, a data acquisition and data storage task. This is
shown graphically in figure 5 where circles represent
channels, rectangles are tasks, and the arrows connecting
circles and rectangles, the sending or receiving of messages.
The number in the rectangle indicates the task priority
(1--7, 7 being highest priority).

The data acquisition task reads the input ports at
regular intervals (e.g. 10 system time units) and if the
inputs have changed, a message is sent to channel 1 with

the new input values and the time of the day. l h e storage
task waits at this channel and when a message arrives the
data in the message is converted (e.g. add cffsets etc.) and
stored in a buffer. If this would cause buffer ove~ flow,
the current buffer is emptied on to cassette and the datd
written into the empty buffer.

Essentially, each task in this example has the following
structure (using PL/M):

TASK:
/* declarations */
DO FOREVER;

/* body of task */
END;

END TASK;

To implement the acquisition task under REX-80, the
following primitives are required:

• MRKTW (DELAY) -- marks a time delay in system
time units

• SEND (CHANNEL, MESSAGE, EVENT) send a
message to a channel and wait till message has been
received

Inputs

~[Data J
acquisition I

Cassette
recorder

Figure 5. Two-task data logger

DECLARE MESSAGE STRUCTURE(
RESERVED_FOR_REX80(3) ADDRESS,

/* initialise BUFFER POINTER with address of MESSAGE.REMAINDER *,
BUFFER POINTER ADDRESS INITIAL (.MESSAGE.REMAINDER),

/* TRANSFER COUNT is initialised to 16 bytes */
TRANSFER COUNT ADDRESS INITIAL (16),
REMAINDER(16) BYTE);

DECLARE EVENT BYTE;

DATA_ACQUISTIONTASK: PROCEDURE PUBLIC;
DO FOREVER;

/* wait for 1O system time unlts */
CALL MRRTW(10);
/* read new input values into message; if they have changed, ret~Jr

TRUE, else return FALSE */
IF READ_INPUTS(.MESSAGE.REMAINDER+3) THEN DO;

/* get time of day into message */
CALL GTIMD(.MESSAGE.REMAINDEE);
/* send the message to channel 1 and associate evet~t] */

CALL SEND(I,.MESSAGE,I);
/* wait on event l indicating that message ~as beer~ accepted *

EVENT=WAITE([);
END;

END;
END DATA ACQUISITIONTASK;

DATA_STORAGETASK: PROCEDURE PUBLIC;
DECLARE PTR ADDRESS;

DO FOREVER:
/* wait for message at channel i and return with p~inter * ,

PTR= RECVW{I);
/* add offsets, etc. */

CALL CONVERT_DATA(PTR);
/* add message to buffer and empty buffer c>nt~ cassette i[~ui~ */

CALL ADD_MESBAGETO_BUFFER(PTR);
/* acknowledge receipt */

CALL SIGNL(PTR);
END;

END DATA_STORAGETASK;

Figure 6. Two-task data logger without buffering

REX - 80
Task priority 7

6
5
4

I
0

Idle tosk

m 1
[_ _

Initialize Delay Wait Tm~eout Send Delay Process Wait
for messoqe message for
message message

Figure 7. Task interleaving

216 microprocessors and microsystems

• RECVW (CHANNEL) - wait at channel for message
• WAITE (EVENT1 OR EVENT2 O R . . .) - wait for

event(s) and returns highest priority event number
• GTIMD (POINTER) - fill buffer starting at

POINTE R with current ti me-of-day
• SIGNL (POINTER TO MESSAGE) - acknowledge

through message, receipt of message

The data logger tasks are declared in the (incomplete)
code segment in Figure 6.

The flow of control in this two-task system is as follows
(see Figure 7). After power-up, REX-80 initializes various
data structures and devices, using a user-provided cold-start
routine with descriptors of tasks and channels and
initialization code for the devices. The control of the
processor is then transferred to the highest priority task,
in this case the acquisition task. This task is delayed for
10 system time units by the MRKTW primitive and
control is passed on to the storage task. This task checks
if there is a message at channel 1 and is made waiting as
there is no message available. The idle task gets control
until the acquisition task is readied by a time-out The
acquisition task prepares and sends (if necessary) a message

Inputs Cassette

Figure 8. Three-taskdata logger

DATA ACQUISITION TASK: PROCEDURE PUBLIC;
DECLARE RTR ADDRESS;
DECLARE MESSAGE RASED PTR STRUCTURE(

RESERVED FOR REX80(3) ADDRESS;
BUFFER POINTER ADDRESS,
TRANSFER COUNT ADDRESS,
REMAINDER(16) BYTE);

DECLARE EVENT BYTE;

/* get space and create message */
PTR=ALLOC(1);
MESSAGE.BUFFERPOINTER=.MESSAGE.REMAINDER;
MESSAGE.TRANSFER_COUNT=f6;

DO FOREVER;
CALL MRKT(I,10);
IF READ INPUTS(.MESSAGE.REMAINDER+3) THEN DO;

CALL GTIMD(.MESSAGE.REMAINDER);
/* send message but do not associate event */

CALL SEND(I,.MESBAGE,0);
/* create new message */

PTR=ALLOC(1);
MESSAGE.BUFFERPOINTER=.MESSAGE.REMAINDER;
MESSAGE.TRANSFER COUNT=I6;
/* wait for event I */

EVENT=WAITE(1);
END;

END;
END DATAACQUISITION_TASK;

STORAGE TASK: PROCEDURE PUBLIC;
DECLARE PTR ADDRESS;
DECLARE BUFPTR ADDRESS;
DECLARE BUFFER BASED BUFPTR STRUCTURE (

RESERVED FOR REX80(3} ADDRESS,
POINTER ADDRESS,
TRANSFER COUNT ADDRESS,
REMAINDER(1024) BYTE};

/* create buffer in message format */
BUFPTR=ALLOC(16);
BUFFER.TRANSFER COUNT=0;
BUFFER.POINTER=TBUFFER.REMAINDER;

DO FOREVER;
RTR=RECVW(1);
CALL CONVERT DATA(PTR);
CALL ADD MESSAGE TO BUFFER(PTR,,BUFFER);
/* retu?n message to free space manager */

CALL DALCT(PTR);
IF BUFFER.TRANSFER_COUNT=f024 THEN DO;

/* send message but do not associate event */
CALL SEND(2,.BUFFER,0);
/* create a new buffer */

BUFPTRfALLOC(16);
BUFFER.TRANSFER_COUNT=0;
BUFFER.POINTER=.BUFFER.REMAINDER;

END;
END;

END STORAGE_TASK;

Figure 9. Data logger with multiple buffering

Ois~oy

Figure 10. Data logger with console and histogram
computation

Cassette
recorder

to channel 1. It then waits until the storage task receives
the message. As the acquisition task is the highest priority
task, it gets control over the processor.

This simple example illustrates that all scheduling is
entirely transparent to the user and, in fact, the two
tasks appear to run concurrently.

There are several problems, however, in this imple-
mentation. The scan interval is 10 system time units,
plus the time it takes to sample the inputs and send a
message. The acquisition task must wait for the storage
task to receive and process the message as there is only
one message available. If the storage task processing takes
more than 10 system time units because of dumping the
buffer on to cassette, the sample interval could be
considerably longer than intended. If the sample interval
is c~itical, queuing of messages to avoid the acquisition
task having to wait for the storage task, becomes
desirable. In the case of bursts of activity on the inputs
and consequently many messages queued at channel 1,
and the storage task not able to accept any message
because it is waiting for the cassette recorder, data buffer
queuing for the cassette recbrder may be desirable as
well. The diagram in Figure 8 shows a three task, two
channel system with multiple buffering at both channels.

To implement this, we need some more REX-80
primitives:

• ALLOC(N) - request to free space manager for N '64
bytes

• DALCT (POINTER) - return 64 bytes to free space
manager starting at POINTER

• MRKT (EVENT, N) - mark N system time units
interval and associate this with EVENT

The acquisitionand storage task with multiple buffering
are shown in Figure 9. The cassette controlling task has
a similar structure to the storage task and is not shown.
Note that the sample interval in the acquisition task is
now constant.

It may be desirable to enter the offsets and calibration
data, and time-of-day from the console. In parallel to
the three tasks in Figure 8 a low priority console interrupt
task could interact with the operator. Mutual exclusion
techniques must be incorporated to access global data.
If more processing time is still available, a low priority
task computing histograms can be included (see Figure 10).

This example shows the ease with which new functions
can be added to the application and how multiple buffering
and pipelining can be achieved using facilities provided by
the executive.

vol 4 no 6july/august 1980 217

CONCLUSION

Many real-time microprocessor applications have broadly
similar requirements. The past few years have seen the
appearance of several general purpose real-time executives
for microcomputer systems. The significance of this can
be compared with the appearance of high level language
support for microprocessors. There are broadly similar
advantages (e.g. speed of program development),
disadvantages (e.g. overhead in time and memory space),
and tradeoffs to be considered.

The abstractions provided by an executive allows
system designers to structure and to implement software
for their application without concerning themselves about
details of task scheduling, resource allocation, and in effect
'reinventing the real-time wheel'. The software framework
of real-time executives could be viewed as a 'software bus'
which allows software modules to be 'plugged' into the
system. Similar to the hardware bus, it establishes
protoco[s and interconnect paths, and, if properly
designed, ensures expansibility.

Modular programming is encouraged as an application is
broken down into tasks which can be written by different
programmers as independent modules with clearly defined
interfaces.

One of the disadvantages of real-time executives is the
overhead caused by context-switching. New 16-bit micro-
processor architectures have been designed with real-time
executive requirements in mind. Context switching by
means of segmentation and semaphore operations are
facilitated in hardware. It is expected that more functions
now provided in software will move to firmware, either

microprogrammed or mask-programmed, in {,~der to
reduce the ever-increasing software costs

ACKNOWLEDGEMENTS

The authors are grateful to BSO/AT staff for ttleH
valuable comments and fruitful discussions during the
preparation of this paper.

REFERENCES

1 Hansen, P B 'A keynote address on concurrent
programming' Computer (May 1979) pp 50--56

2 RMX/80 user's guide No 9800522B Intet Corp. (1979)

3 REX-80 technic-a/manual Systems & Software Inc.,
Downers Grove, lllinois, USA

4 RTM8 real-time executive user's manual Advanced
Micro Computers (I 979)

5 Chien, Y P 'Multitasking executive simplifies real-time
microprocessor system design' Computer Des.
(January 1979) pp 109--117

6 PL/M-80 programming manual No 9800268 Intel Corp.
(1979)

7 RMX/80 real-time multitasking executive Intel Applica-
tion Note 33 (1979)

8 Coffman, E G et al. 'System deadlocks' Computing
5urv. Vol 3 (J une 1971)

9 Habermann 'Prevention of system deadlocks' CACM
Vol 2 (July 1969) pp 373-377

IEEE

New York, USA, October 1-3, 1980

From Hardware to Software in LSI and Large Scale Systems

• Software Design and Concepts
• LSl/VLSl Processing, Circuits and Computers
• Large Scale Systems - - Information
• Large Scale Systems - - Communication

For further detai ls write to:

ICCC 80
Dr Guy Rabbat
IBM - - 45A
Hopewell Junction NY 12533
USA

I I

L~lc~' , 771(I0 /)10 ((!~ .Olh [.,'.'t / [??!(tF>~.";~('/tT:~:

