
Physica 102A (1980) 489-495 @ North-Holland Publishing Co. 

PROCESSES WITH 

DELTA-CORRELATED CUMULANTS 

N.G. van KAMPEN 

Institute for Theoretical Physics of the University, Utrecht, The Netherlands 

Received 14 May 1980 

In a recent paper’) a differential equation was studied which involves a stochastic process having 
the property that all its cumulants are delta-correlated. It is here shown that such processes consist of 
a random sequence of delta functions with random coefficients. As a consequence the solutions of 
the differential equation are Markov processes, whose master equation can be constructed. From it 
closed equations for the successive moments may be obtained, and the auto-correlation is 
determined, in agreement with the results of reference 1. Some generalizations are given in 
Appendices B and C. 

In a recent paper West, Lindenberg, and Seshadri’) studied the following 
randomly perturbed damped harmonic oscillator 

i + 2hi + (0’ + y(t)}x = f(t). (I) 

Here f is a Gaussian Langevin term with 

MO) = 0, U(MM) = 2DSOI - M. (2) 

The frequency perturbation y(t) is also random with zero average, and is 
assumed to have delta-correlated cumulants (m 2 2) 

((?44Mff) - * * y(b))) = 2D,S(t, - fZ)S(f, - t3.. . cyt, - t,). (3) 

By explicit calculation they found the first and second moments of x and 
p = 1 and showed that these do not depend on 4, D4,. . . . 

A process y(t) with the property (3)‘has a characteristic functional with test 
function k(r) 

G,[kl = (e iJL(‘)y(‘)d’) = exp[ $, 5 20, / {k(t)}” dt ]. (4) 

When k(t) consists of two parts with non-overlapping supports this functional 
factorizes. It follows that the values of y at different time points are 
statistically independent. Hence y is a completely random function2) and the 
integrated process 

I 

y(t) = / y(t’)dt’ 
0 

(5) 
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has independent increments. According to a theorem of Felle?) it is therefore 
equivalent with a compound Poisson process. That means that it can be 
represented by a random sequence of instantaneous jumps, whose size 5 has 
a certain probability density rp(&or at least as a limiting form thereof. Such a 
process, however, is governed by a master equation for its transition prob- 
ability P(y, t 1 yo, to) = P(y, t) 

amy 0 A = P at I P(Y - & t) q(5) d5 - pP(y, t), 

where p is the average number of events per time unit. 
The derivative process y itself has a delta peak at each jump of y and is 

otherwise zero. Of course that is not a properly defined stochastic process, 
but it can be used as an approximate description of a sequence of short 
pulses, as shown in Appendix A. To study its effect on the oscillator write (1) 
in the form 

i = p, (7a) 

0 = -2hp - 0*x - y( t)x + f(t). (7b) 

Each delta peak in y, corresponding to a jump 5 of y, creates in p a jump 
- .$x. Per unit time there is a probability pqo(& to undergo such a jump. Hence 
the probability density P(x, p, t) obeys 

am, P, t) = 
at 

am, P, t) + a 
-p ax ap WP + R2xvYx, P, t) 

+ D a*pk P, t) 

ap* 
+ P 

I 
W, P + 5x9 t) 49 de - pP(x, p, th (8) 

The first three terms on the right are the familiar ones and the last two are 
analogous to (6). We shall now derive from it the results of West et al. 

Multiply with x and p respectively and integrate: 

a,(x) = (P>. 

a,(p) = -2h(p) - @(x> 

@a) 

+ P IV(~) d5 j dx 1 P#Yx, P + 5x, t) - Pk P, 01 dp 

= -2A(p) - n*(x) - p&x). (9b) 

The bar denotes the average over cp. Since y(t) was supposed to have zero 
average one has t= 0. The remaining terms in (9) are the same as for the 
unperturbed oscillator. The average motion is therefore neither affected by y 
nor by f, as found by West et al. The solution is simply that of the damped 
harmonic oscillator, which we write in abbreviated form in terms of an 
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evolution matrix U 

In the same way one obtains for the second moments 

&(x2) = 2(w), Ula) 

4(XP) = (P’) - 2A(xp) - f12(x2), (1 lb) 

a,($) = -4A(p2) - 2@(xp) + 28 + p&x’). (1 lc) 

In order to find the correlation functions in equilibrium only the stationary 
solution of these equations is required 

(XP)” = 0, cp2>” = n2tx2)” = 2fif12 

4A02 - &’ 

The correlation matrix C, is then found from 

c = 

[ 
MM~P cmP(~))s = coqT) 

’ (P(W(TP (P(o)P(e I ’ 

(12) 

(13) 

where Ut is the transpose of the evolution matrix (10) and C’, is the matrix of 
the quantities (12). 

Our result (13) is readily seen to coincide with the result (4.24) of West et 
al., provided that our ;pF is identical with their 0, which is the 4 in our 
equation (3). To show that, derive from (6) for the change in y in a short time 
At 

((AY)~) = PA@. 

On the other hand using (5) one has 

((AY)~) = (( 7 y(f) dt’)2) = 2D2At, 
0 

q.e.d. The general connection between the coefficients 0. in (3) and the moments 
of 5 is derived in Appendix A. 

Appendix A 

Following Campbell’) we construct a stationary random process x(t) by 
starting from a Poisson distribution of time points r (density p) and attaching 
to each T a pulse t,b(t - 7). More generally we allow the pulse shape to be 
selected at random from a set of functions $j and will ultimately average over 
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j. A sample function x(t) is then specified in 0 < t < T choosing an s = 
0,1,2 )..., and subsequently s time points TV, TV,. . . , 7s and s values of the 
index j: 

The characteristic functional, with test function k, is 

(eil~kWxWdt) = ZOg C-pT f dT1 *ii d7s exp i 2 
[ ~=,jk(t)~j~(r-i,)df], 

0 0 

where the bar averages over the jU. As the T and j are independent the sum 
over s can be carried out to give 

T 

exp {eiJ%Wo-r)~j _ 1) dT 1 . 

0 

One may now extend the interval from - cQ to + m, so that the logarithm of 
the characteristic functional becomes 

m m 

P j- dT(exP[i 1 k(t)+(t - 7) dT ] ). - 1 
--P -Jo 

Expansion in powers of k gives 

cc m 

k(t,) . . . k(t,) dt, . . . dt, 
I 

$(t, - 7) . . . $(t, - 7) dT. (14) 

The final integral, together with the factor p, is the m-th cumulant of x(t). 
Now take for J, a narrow rectangular peak, 

$ji(t) = 
0 for ItI >te 

Aj for ItI <ie’ 

In the limit E +O, Aj + m with EAj constant, (14) reduces to 

m i” 
P ms, m! k(Tjrn dn”F. 

This is identical with (4) if one sets p”A m = 20,. It is also clear that l A is 

identical with the size 5 of the jump in (6), so that pF = 20, (of which the 
case n = 2 was used in the text). Finally one obtains Gaussian white noise in 
the limit e+O, p +w with constant 2 = 24. 
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Appendix B 

The result can be expanded to more variables. Consider the set of equations 

k = c A,, u,i + y(t) 2 Bu, up + fu, (15) 
P r 

wherev,p=l,2 ,..., n and the fV are independent white noise processes with 

U”(t,)f,(tz)) = &SW, - t2). 

Each delta peak of y causes the vector u, to jump by an amount proportional 
to 2 B,, u,. Therefore, in order that the equation has a well-defined meaning it 
is necessary that this jump does not affect the quantities 2 B,, u, themselves. 
That requirement states 

c &u,&[~B~tcu~]=O 
UP 

for all A and all u, ; or 

2 B, B,, = 0 for all A,,u. 
” 

Thus B2 = 0, i.e. B is nilpotent. By a suitable linear transformation of 

variables it can be cast in the form 

‘0, 0 
. . 

(t> 

(16) 
. . 

E ‘0.. * 

This is the form it has in (7) if one sets uI = x, u2 = p. 
If this condition is satisfied u,(t) is a multivariate Markov process and the 

same method as used in the text leads to the master equation 

JP(u t) 
A = -c A, &,P(u, t) + 2 4, ‘;‘a”; ” 

at USP ” “W u P 

+ P 
I 

d5) WW - ~Bu, t) - pP(u, t>. 

In analogy with (9) one obtains for the first moments 

In analogy with (11) one obtains for the second moments 
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For higher moments closed equations are obtained as well. 
It is easily seen that nothing changes if A and B are allowed to depend on 

time. Finally it is possible to write an analog of (15) with several independent 
processes y, but that makes not much difference either. 

Appendix C 

Nonlinear equations involving one or more stochastic functions with the 
property (3) have been considered by Deker in a somewhat opaque article5). 
We consider 

4 = ECU,) + ~(0 G(uJ + M). (17) 

In order that this equation has a meaning it is necessary that the G,(u) are 
insensitive to the jumps in u,, that is, 

G,(ur + &$(u,)) = G,(u,) (18) 

for all u and all possible magnitudes 6 of the jumps in the process (5). For 
instance, this condition is satisfied if for each IJ it is true that either G, = 0 or 
u, does not occur as an argument in any of the functions G-which is the 
analog of (16). In the limit of Gaussian white noise (18) reduces to 

2 G,$$=O for all u. 
.4 

If the condition (18) is satisfied u,(t) is a multivariate Markov process 
governed by the master equation 

+ P I (~(5) &VW, - 5G(qJ, t) - d-Vu*, t). 

In contrast with the linear case it is now impossible to extract closed 
equations for the successive moments. 

Again it is easy to include an explicit time dependence in F, G and fi, and 
to replace the single term y(t)G,(u*) in (17) by a sum of such terms with 
different processes y, as in reference 5. 
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