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ABSTRACT

Active Shape Models (ASM) have proven to be an effective approach for image segmentation. In some applica-
tions, however, the linear model of gray level appearance around a contour that is used in ASM is not sufficient
for accurate boundary localization. This report concerns one of those applications: segmenting the thrombus in
CTA images of abdominal aortic aneurysms (AAA).

A non-parametric appearance modeling scheme that effectively deals with a highly varying background is
presented. In contrast with the conventional ASM approach, the new appearance model is trained on both true
and false examples of boundary profiles. The probability that a given image profile belongs to the boundary
is obtained using k nearest neighbor (kNN) probability density estimation. The performance of this scheme is
compared to that of original ASMs, which minimize the Mahalanobis distance to the average true profile in the
training set.

A set of leave-one-out experiments is performed on 23 AAA datasets. Segmentation using the kNN appearance
model significantly outperforms the original ASM scheme; average volume errors are 5.1% and 45% respectively.

1. INTRODUCTION

Segmentation methods that are trained on examples are becoming increasingly popular in medical image analysis.
Of particular interest are the deformable template techniques1 that model both the shape and the gray level
appearance of an object, such as Active Shape Models (ASM),2 Active Appearance models (AAM),3 or Active
Blobs.4 These techniques can produce correct results even in the case of missing or confusing boundary evidence.
In this work we shall concentrate on the frequently used ASMs, which consist of a landmark-based shape model,
gray value appearance models around the landmarks, and an iterative optimization scheme. ASMs have been
applied to a variety of segmentation tasks in medical imaging.5–16

Conventional ASMs use a linear model of boundary appearance to fit the shape model to the image. Separate
models are constructed for each landmark. This works well in applications where gray level appearance is fairly
consistent along the object boundary, or if appearance variation is strictly correlated with landmark position.
However, in many medical image segmentation tasks the object to segment lies within variable anatomy. A given
landmark can then be next to different tissue types, causing boundary appearance to vary largely. This is the
case for most vascular images. In such circumstances, a linear model of gray value appearance may produce
unreliable results.

In this paper we develop a non-parametric appearance model that can deal with highly varying gray values.
In contrast with the conventional ASM approach, the new appearance model is trained on both true and false
examples of boundary profiles, thus more effectively employing prior information on gray level structure around
the object contour. The probability that a given image profile belongs to the boundary is obtained using k
nearest neighbor (kNN) probability density estimation.

This work was motivated by the problem of segmenting the aneurysm outer boundary in CTA scans of
abdominal aortic aneurysms (AAA). This so-called thrombus segmentation is needed for volume measurements,
a key component of risk analysis for AAA patients.17–19 Most publications on computerized AAA segmentation
have concentrated on segmenting the contrast-filled lumen.20–31 Thrombus segmentation is a more difficult
problem, complicated by regions of low boundary contrast and by many neighboring structures in close proximity
to the aneurysm wall. Previous approaches to thrombus segmentation have used deformable models with local
smoothness constraints.32–34 None of these methods produced results that are sufficiently accurate for clinical
use.



If boundary evidence is incomplete, which is often the case in AAA images, local smoothness constraints are
not sufficient to prevent the model from ”leaking” into neighboring tissue. More specific, global, shape constraints
are required. Strong, but realistic, constraints can be derived from a training set of segmented examples, as is done
in ASM. We previously showed that the linear boundary appearance model that is originally used in ASM does
not perform well in AAA boundary localization.35 We adopted a slice-by-slice segmentation approach in which
the similarity between adjacent image slices can be exploited to steer shape model deformation. Performance of
this scheme deteriorates with distance from the reference contour, and extensive re-initialization was needed.

In this paper we present a three-dimensional ASM based approach. A model of cylindrical shape variations is
used, restricting the deformation to in-slice landmark displacements. The shape model contains both statistical
and synthetic deformation modes. The original ASM appearance model is replaced by the new multi-class kNN
model. The original ASM segmentation scheme is briefly described in Section 2. The new appearance model is
presented in Section 3. Several adaptations to the ASM scheme for AAA segmentation, including the previously
described tubular shape model, robust optimization methods, and a constrained fit based on manual model
initialization, are discussed in Section 4. Section 5 presents the results of a series of leave-one-out experiments
on 23 datasets. Discussion and conclusions are given in Sections 6 and 7.

2. ACTIVE SHAPE MODELS

In ASMs,2 shape variations in a training set are described using a Point Distribution Model (PDM). The shape
model is fitted to new images using a model of boundary appearance and an iterative optimization scheme. This
section briefly reviews the three parts of ASM: the shape model, the appearance model, and the optimization
scheme.

2.1. Point distribution models
A statistical model of object shape and shape variation is derived from a set of s training examples. Each training
example is described by a shape vector x containing the coordinates of n landmark points that correspond between
shapes. Variations in the coordinates of these landmark points describe the variation in shape and pose across
the training set. The shape vectors are aligned using Procrustes Analysis and transformed into the tangent space
to the mean shape.2

Principal Component Analysis (PCA) is applied to the aligned shape vectors. To this end, the mean shape
x, the covariance matrix S, and the eigensystem of S are computed. The eigenvectors φi of S provide the modes
of shape variation present in the data. The eigenvectors corresponding to the largest eigenvalues λi account for
the largest variation; a small number of modes usually explains most of the variation. Each shape x in the set
can then be approximated by

x ≈ x + Φb (1)

where Φ consists of the eigenvectors corresponding to the t largest eigenvalues, Φ = (φ1|φ2| . . . |φt), and b is the
model parameter vector that weighs the contribution of each of the modes.

2.2. Appearance model
Fitting the shape model to a new image requires a measure of probability that an image point belongs to the
boundary. The object’s boundary appearance can be learned from the training set.

In the original ASM formulation, a linear model is built from gray value profiles of length k that are sampled
around the landmarks from the training set, perpendicular to the object contour. The effect of global intensity
changes is reduced by sampling the first derivative and normalizing the profile. The normalized samples are
assumed to be distributed as a multivariate Gaussian, and the mean g and covariance matrix Sg are computed.
The measure of dissimilarity of a new profile gs to the profiles in the distribution is given by the squared
Mahalanobis distance f(gs) from the sample to the model mean:

f(gs) = (gs − g)T S−1
g (gs − g). (2)

Minimizing f(gs) is equivalent to maximizing the probability that gs originates from the training profile distri-
bution.



The profiles are sampled at multiple resolutions, to enable coarse-to-fine fitting. The finest resolution uses
the original image and a sample spacing of one voxel, the next resolution is the image convolved with a Gaussian
kernel of width one voxel and sampled with a spacing of two voxels, and subsequent resolutions are obtained
by doubling both the kernel width and the sample spacing. Because of the large anisotropy, the convolution
with a Gaussian is performed in the x and y directions only. In Section 3 we will propose an alternative to this
appearance model.

2.3. Optimization

In ASMs, the shape model is fitted to new images using a fast deterministic optimization scheme. The process
initializes with a plausible shape, usually the mean. The initial position can be pointed out by a user, it can be
the mean position in the training images, or it can be estimated using e.g a Hough transform approach.36, 37

For all landmarks, ns possible new positions are evaluated along the line perpendicular to the contour, on
both sides. The distance between the 2ns +1 positions to evaluate depends on the level of resolution and is equal
to the sample spacing of the corresponding gray level model: at the finest resolution the distance is 1 voxel, at
each subsequent resolution it is doubled.

The optimal position is determined by the gray value models that was discussed in Section 2.2. Iteratively,
the current shape is translated, rotated, scaled, and deformed such that the sum of squared distances between
the landmarks and the optimal positions is minimized. The optimal shape parameters b are computed using

b = ΦT (x − x). (3)

Hard limits are applied to constrain the elements of b to plausible values:

|bi| ≤ fc

√
λi. (4)

This process of adjusting landmark positions and shape parameters is repeated a fixed number of N times,
whereupon it is repeated at the next level of resolution.

3. A NON-LINEAR APPEARANCE MODEL

We previously showed that the linear boundary appearance model that was originally used in ASM does not
perform well in AAA boundary localization for slice-by-slice segmentation.35 A shortcoming of this gray value
model is that only the appearance of the correct boundary is learned from the training set. If a profile is similar
to many profiles belonging to the background in the training set, that has no effect on the obtained quality of
fit. Furthermore, the underlying assumption of a normal profile distribution often does not hold.

To deal with a non-linear profile distribution, Bosch et al.38 performed a non-linear normalization to transform
the distribution into a Gaussian. This method was developed specifically for the asymmetric, but unimodal
distribution of profiles that is present in echocardiograms. Brejl and Sonka37 applied fuzzy c-means clustering to
feature vectors derived from intensity profiles, allowing for a (known) number of separate normal distributions.
Van Ginneken and co-authors13 did not use intensity profiles, but extracted local texture features on separate
grid points around the landmarks. The grid points are labeled as inside or outside the object, an optimal set
of features is selected, and a kNN classifier is trained on the labeled points. The optimal landmark position is
then the position that maximizes the probability that the points inside the contour indeed belong to the object
and those outside are part of the background. This method can deal with arbitrary distributions as long as the
texture of object and background are different. In medical image segmentation tasks, surrounding structures
are often similar to the object in gray value and texture, and the ordering of gray values along the profile can
become important. In addition, in small or irregularly shaped objects, the extreme ”inside” part of the profile
may in fact be outside the object on the other side, which makes the method proposed in13 less reliable.

We propose to treat the position evaluation step in the ASM optimization as a classification of boundary
profiles. Like in the original ASM formulation, gray value profiles are sampled from the training set, but now a
classifier is trained on both correct and incorrect boundary profiles. Raw intensity profiles are used instead of
the normalized derivative profiles of the linear model. For each landmark, one true example is sampled around



the landmark and perpendicular to the contour, and 2nshift false examples are sampled in the same direction,
nshift displaced outwards and nshift displaced inwards. The first false example in one direction is sampled at a
distance dshift from the landmark, and subsequent examples are obtained by each time shifting dshift with respect
to the previous sample.

In a new image, the probability that a given profile lies on the aneurysm boundary is given by the posterior
probability from the classifier for that profile. In this work, a kNN classifier is used and the posterior probability
is given by

P (boundary|gs) =
ntrue

knn
, (5)

where ntrue is the number of boundary samples among the knn nearest neighbors.

By analogy with the original ASM formulation, separate models are built for different resolutions. When the
profile sample spacing is doubled, the spacing dshift between the shifted examples is doubled as well.

In vascular images, there is no true anatomical correspondence between the landmarks of different shapes.
Therefore, we use one appearance model for all landmarks together, instead of building separate models as is
more commonly done in ASM. Pilot experiments on image slices have shown that this approach gives slightly
better results for both the linear and the kNN model, even if many training examples are available.

4. ADAPTATIONS OF ASM

Apart from the appearance model, several other aspects of the original ASM formulation are altered to enable
automated AAA segmentation. Section 4.1 briefly reviews the flexible PDM for tubular structures that was
presented in. Several robust optimization methods are discussed in Section 4.2, and a method to constrain the
model fit on basis of the manual initialization is presented in Section 4.3.

4.1. PDMs for tubular structures

The model is constructed from contours in slices through the object. The original CT-slices are used since they
are perpendicular to the body axis and give approximately perpendicular cross-sectional views of the aorta. A
fixed number of slices nz is interpolated between beginning and end of the aneurysm. The aneurysm outline is
drawn manually by an expert. An equal number of landmarks nxy is placed in each slice, equidistantly along the
contour. The starting point of a contour is the posterior point with the same y-coordinate as the center of mass.

We model 3D cylindrical shape variations, restricting the deformation to in-slice landmark displacements.
Before the model is fitted to a new image, the user indicates the beginning and end of the desired segmentation,
thus removing the need for scaling in the z direction. As a consequence, the shape vectors contain only x and y
coordinates.

A common problem in statistical shape modeling is that the model can be too specific to fit to new shapes
properly, owing to a limited amount of training data. We have applied two generalizations for PDMs of tubular
structures that were discussed in more detail in.

First, the cross-sectional and axis shape variations are modeled independently. This results in two shape
models Φcross and Φaxis, both consisting of the eigenvectors that correspond to the t largest eigenvalues. The
two models are combined into one model by computing the principal components of

(ΦcrossWcross|ΦaxisWaxis) (6)

where Wcross and Waxis are diagonal weight matrices of the corresponding
√

λi. This results in a model con-
taining twice the number of modes of a normal PDM, provided that 2(s − 1) < D, where D is the dimension of
the shape vectors.

Second, synthetic deformation modes, obtained from a smoothness prior on deformation in x, y and z-
directions, are added. The modes are given by the eigenvectors of a smoothness matrix with elements

e−(
di,j
2σ )2 , (7)



where i and j are the row and column indices, and di,j are given by

di,j = Min{|i − j|, |i − j + nc|, |i − j − nc|} (8)

for a cyclic sequence of nc coordinates (x and y deformation in our tubular object), and

di,j = |i − j|, (9)

for a non-cyclic sequence of nz coordinates (z deformation). Subsequently, the separate deformation modes are
combined into shape vectors describing full three-dimensional deformation, resulting in an orthonormal set of 2n
vectors describing smooth cylindrical deformations. In practice, a much smaller number of harmonics is chosen,
such that only low-frequency deformations remain. The synthetic model is combined with the statistical model
in the same way as the axis and cross-section models are combined (see Equation 6).

The original model is applied to obtain an initial estimate, up to the second highest resolution. The fit is
then refined using the extended model on the smallest scale.

4.2. Robust optimization

The objective function that is minimized during ASM optimization, the sum of squared distances, is sensitive to
outliers. This can cause problems in segmenting objects with noisy or highly variable edge evidence. Modifications
to the fitting algorithm have been proposed to make it more outlier resistant. Rogers and Graham15 have
compared various robust estimation techniques in the context of ASM search, including least median of squares,
random sample consensus, and weighted least squares fitting, where the weights can be determined either by
image information or by the shape residual distribution. Duta and Sonka9 suggested to detect outliers as points
that induce an exceptionally large part of the total amount of variation, and move them to the mean position.
Hamarneh and Gustavsson,11 Behiels et al.,14 and Mitchell et al.39 proposed to use dynamic programming to
favor landmark displacements that are smoothly varying between neighbors.

In our experiments we have applied dynamic programming regularization11, 14, 39 to reduce the effect of outliers
within a slice, but the landmark movements from slice to slice are unconstrained, as large shape differences can
occur between slices in the anisotropic CTA data. The effect of outliers is reduced further by applying a weighted
least squares fit15 on the basis of image information. Equation 3 then becomes

b = K(x − x), (10)

K =
(
ΦT WT WΦ

)−1
ΦT WT W

where W is a diagonal weight matrix. Weights wi describe the certainty that the ith landmark is on its correct
position, and are chosen as the probability that a given profile is on the boundary. For the linear model this
reads

P (boundary|gs) = ce
−f(gs)

2 , (11)

with c a normalization constant that can be ignored in this case. For the kNN model the weights are given by
the posterior probability as defined in Equation 5.

4.3. Initialization and constrained optimization

The complexity of the images and the local nature of ASM optimization require an accurate initialization. In
our segmentation system, the user draws the top and bottom contours of the aneurysm manually. To aid the
model in establishing the correct object axis an additional point is placed in the approximate aneurysm center
of the central slice. The shape model is iteratively fitted to these points using a constrained ASM scheme, in
which after each iteration the landmarks of the manually drawn slices are replaced to their original position and
the landmarks of the central slice are translated such that their average position coincides with the manually
identified center point. Alternatively, an automatic estimate of the luminal or aneurysmal axis24, 31 or a — more
easily automated — lumen segmentation28, 31, 33, 34 could be used for initialization.

During segmentation, the two manually drawn slices constrain the fit in the same way as in the initialization.



Table 1. Parameters of the segmentation scheme.

PDM (Section 2.1)
n 1500 Number of landmark points
fv 0.99 Part of shape variance to be explained by the model, controlling the number of modes t

fc 3 Bound on eigenvalues λi (Equation 4)
Synthetic deformation
α 0.1 Weight of synthetic model
σ 4 Smoothness scale of synthetic deformation (Equation 7)
txy 13 Number of xy smoothing modes
tz 12 Number of z smoothing modes
Appearance model (Sections 2.2 and 3)
k 7 Patch length
nshift 2 Number of shifted examples on both sides of the contour (kNN model)
dshift 2 Magnitude of shift (kNN model)
knn 80 Number of neighbors to evaluate in kNN search (kNN model)
Fitting algorithm (Section 2.3)
ns 5 Number of new landmark positions to evaluate on either side of the current position
L 4 Number of resolution levels
N 5 Number of iterations per resolution level

5. EXPERIMENTS AND RESULTS

A series of leave-one-out experiments is performed on 23 routinely acquired CTA images from 23 different
patients, including 3 pre-operative and 8 post-operative scans. The remaining 12 scans are taken at follow-up
ranging from 1 to 12 months. The scan resolution is 0.488× 0.488× 2.0 mm. Each image consists of circa 125
slices of 512× 512 voxels, of which 34 to 63 slices contain aneurysmal tissue.

Unless mentioned otherwise, all parameters are kept fixed at the values given in Table 1.

5.1. Appearance model

First, the performance of the two appearance models is compared independent of the rest of the segmentation
process. Hereto, the optimal landmark positions according to the two gray value models are determined, in a
search region symmetric around the correct landmark positions as provided by the manual tracings. The distances
between the ‘optimal’ and the correct positions are measured. The resulting root mean squared distances as a
function of the size of the search region are shown in Figure 1. For both gray value models, the low-resolution
model is more robust in large search regions, yet for accurate boundary localization if the true boundary is within
a few millimeters distance, the high resolution models are better suited. The difference in performance for low
and high resolution models is more pronounced for the kNN model. The kNN model performs significantly better
than the conventional ASM gray value model at all resolutions, but still the errors are quite large, which suggests
that an accurate initialization and a restrictive shape model may be needed.

5.2. Segmentation

Given the initialization described in 4.3, the segmentation method using the extended shape model and the kNN
gray value model converged successfully in 21 out of 23 cases. Examples of segmented slices, randomly chosen
from these 21 datasets, are shown in Figure 2.
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Figure 1. Root mean squared error of landmark positioning as a function of the length of the search region on either
side of the contour, for (a) the Mahalanobis distance, and (b) the kNN gray value model. The dotted lines denote the
expected error for random positioning.

Figure 3 shows the segmentation errors obtained using the two gray value models. The kNN model yields
significantly better results than the original ASM model (p < 0.00001 in a paired T-test). Average root mean
squared errors are 1.9 and 8.1 mm (3.9 and 17 voxels). The relative volumes of overlap are 95% and 64%, and
average volume errors are 5.1% and 45%. There are two datasets in which the error obtained using the kNN
model is larger than half a centimeter. An example slice of both images is given in Figure 4. If these two
problematic datasets are left out of consideration, the average error of the remaining 21 datasets is 1.4 mm.
The corresponding volume of overlap is 96% and the relative volume error 2.8%. Note that the latter is the
volume error as a percentage of the total volume enclosed by the aneurysm boundary, while thrombus volume
errors reported in the literature40 are expressed relative to the pure thrombus volume, excluding the passable
lumen. We estimate the relative thrombus volume errors of the obtained segmentations by subtracting the lumen
volume, obtained through thresholded 3D volume growing under expert supervision, and allowing for a 3.5%
volume error in this lumen segmentation.31 Under these assumptions, the thrombus volume error is 4.1% on
average for the 21 successful segmentations using the kNN model. In a reproducibility study on manual thrombus
segmentation, Wever et al.40 reported a mean signed inter-observer error of 1.89% with a standard deviation
of 4.22%, leading to a repeatability coefficient of 8.30%. Assuming a Gaussian distribution of errors, the mean
unsigned volume error in that study would be 3.92%, comparable to our 4.1%.

Performance of the different shape models is compared in Figures 5 and 6. In the two problematic datasets,
segmentation errors increase if a more flexible shape model is used. For the remaining 21 datasets, segmentation
is improved significantly by independent modeling of axis and cross-section (p = 0.002 in a paired T-test), and
by using the model extended with synthetic modes for refinement (p < 0.00001). If the extended model is used at
all resolution levels, however, segmentations are significantly worse. Although still accurate at many locations,
the extended model easily includes other edges into the segmentation. Examples of errors that can occur using
this model are given in Figure 7.

6. DISCUSSION

The results clearly demonstrate that the original ASM appearance model can not be used for AAA segmentation,
while the new kNN appearance model obtains accurate results in most cases. The improvement of the presented
gray value model over the original ASM gray value model is twofold. First, not only the appearance of the
boundary but also the appearance of points near the boundary is learned from the training set. Second, we do



Figure 2. Image slices taken randomly from the 21 successful segmentations, showing the manually drawn contour (dots),
the segmentation obtained using original ASM (pluses) and the segmentation obtained with the kNN gray value model
(continuous line). The kNN model obtained a segmentation near the manual contour in all four cases. The original ASM
gray value model tends to draw to the lumen boundary, and finds a satisfactory segmentation only in the third image.
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Figure 3. Root mean squared point-to-contour segmentation error for all 23 datasets, for the linear one-class model
(gray) and the kNN multi-class model (black).



Figure 4. The two datasets in which the kNN method was unable to find an adequate segmentation, showing the manually
drawn contour (dots), the segmentation obtained using original ASM (pluses) and the segmentation obtained with the
kNN gray value model (continuous line). The dataset on the left combines an extremely wide aneurysm with calcifications,
which are usually found only at the boundary, inside the aneurysm. The reconstruction error for this dataset was also
large (dataset number 14 in Figure ??). In the second dataset the aneurysm is embedded in other structures with similar
gray values for over 10 adjacent slices, while the total region comprised by the aneurysm and its surrounding structures
would be a plausible aneurysm shape. The first problem may be solved if more training shapes are available, the second
case is one that this method, using only shape constraints and the gray values near the contour, cannot handle. This
image requires very accurate initialization or user interaction, or the incorporation of information on the enclosed region
in the segmentation process.
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Figure 5. Segmentation errors obtained using the kNN appearance model and one of the shape models; normal three-
dimensional PDM (light gray), independent axis and cross-section TPDM (dark gray), and TPDM extended with synthetic
smooth deformation modes in the last stage of model fit (black).
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Figure 6. Performance of the TPDM extended with synthetic deformation, used at all levels of resolution (gray), or only
as a refinement step at the highest level (black).

Figure 7. Erroneous segmentations obtained when the extended PDM is used at all resolution levels (continuous line).
The manual segmentation is denoted with dots. The flexible model fits the correct boundary in large parts of the image,
but easily draws to wrong boundaries, such as the spine (left), the vena cava (middle), or the aortic lumen and metal
artifacts (right).



not assume a Gaussian intensity profile distribution but estimate the distribution non-parametrically, which can
be important if either the object or the background varies largely in gray value or texture.

This model may improve results of contour-based segmentation in many applications that suffer from large
appearance variations. Even if the appearance is similar for a given landmark in different images, but varies
between landmarks, in small training sets the use of one non-parametric model for all landmarks together may
improve upon separate linear models for each landmark. However, if the boundary appearance at one landmark is
similar to the neighborhood appearance of another landmark, mixing the model at different landmarks produces
unreliable results. In vascular images, where the model landmarks usually do not correspond to anatomical
landmarks, boundary appearance is not directly related to the landmark number and the construction of separate
models is of little use. One could think of a compromise between the two, where one model is constructed for all
landmarks, and an additional location parameter in the feature vector biases the collection of neighbors visited
towards profiles that were sampled at a similar location. This location parameter could denote, for instance, the
length along the vessel or the angle of the given landmark with respect to the starting point.

The inclusion of examples of shifted profiles raises the question how many and which false examples should
be taken into account. In our application, the first two shifted profiles (one on each side of the contour) made a
large difference, while adding more examples increased boundary localization accuracy only marginally.

A full segmentation took on average 25 seconds on a 2GHz Pentium PC when the original ASM gray value
model was used and 450 seconds using the kNN model. The main reason for the increase in computation time is
the time it takes to find the nearest neighbors in a large set of training profiles. We believe that a segmentation
time of 450 seconds is acceptable for automatic segmentation, but if computation time is an issue the method
could be sped up in various ways. Possible approaches include using an approximate kNN classification,41 using
less shifted examples, selecting a random subset of training profiles or pruning the kNN tree, or using other
classifiers. For instance, a quadratic discriminant classifier could be used, which is equivalent to extending the
original ASM gray value modeling scheme to more classes, such that the probability that a given profile is on
the boundary is determined by the Mahalanobis distances to the means of boundary and shifted profiles.

Two extensions to PDM, both relaxing the shape constraints in an over-specific model, were tested on
AAA segmentation. Segmentations were significantly improved by modeling the object axis and cross-sections
independently. Accuracy can still be increased by extending the model with smooth synthetic deformation
modes. However, the extended model lacks the specificity required for accurate object recognition. One of the
problems in this combination of a point based optimization method with Fourier modes is that landmarks are
allowed to slide along the contour, while the distance between landmarks is not preserved. A model that has
a dense sampling on well defined boundaries and sparse sampling in poor contrast region does provide a better
fit, but not necessarily a better contour. A segmentation scheme wherein points are redistributed equidistantly
after each iteration would probably improve the results for the extended model at large scales. In its current
form, the extended model should only be used to refine the fit at high resolution. An elegant solution would be
to increase the dimensionality of the shape model at increasing resolution levels in the segmentation process.

We have restricted the model deformation to in-slice landmark displacements and consider only in-slice gray
value profiles, while a full three-dimensional approach — allowing gray value modeling perpendicular to the
object’s surface — could be more appropriate in some applications. In the case of CTA images, which are in
general highly anisotropic (in our images the voxels are over 4 times larger in the z-direction), we do not expect
a significant improvement in boundary localization if the profiles would be sampled in three dimensions.

In this work we have discussed segmentation of the thrombus outer boundary, while for thrombus volume
measurements the passable lumen must be extracted as well. For the lumen segmentation one of several existing
automatic or semi-automatic methods can be used.20, 22–28, 30, 31, 33, 34 Another option is to apply the proposed
method to the lumen as well, thus building a combined shape model of both the inner and the outer boundary.
In that case, the more easily detected lumen-thrombus boundary could help the model in locating the thrombus-
background boundary. Obviously, this increases the problem of overconstraining the model using a small training
set and probably more than the 23 datasets used in this study will be needed to obtain satisfactory segmentation
results.



The presented method achieves good results in most cases, but sometimes fits (partly) to a different boundary
(see Figure 4). In those cases, an interactive scheme in which a user drags one or a few landmark points to the
correct boundary and the model is constrained to go through those points could be helpful. Van Ginneken et
al42 show that fixing one or two points can drastically improve segmentation accuracy in two-dimensional ASM
segmentation of AAA. Such a scheme could also be used for initialization,43 so that the user has to click only a
few points on the boundary of the first and last slice, instead of drawing an entire contour.

7. CONCLUSIONS

A new gray value model for use in contour-based image segmentation has been presented. The model significantly
outperforms the ASM gray value model in boundary localization in CTA images of abdominal aortic aneurysms
(p <0.00001). Obtained volume errors are comparable to inter-observer errors reported in the literature.
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