
Towards an environment for the verification
of annotated object-oriented programs

Frank S. de Boer

Cees Pierik

institute of information and computing sciences, utrecht university

technical report UU-CS-2003-002

www.cs.uu.nl

Towards an environment for the verification of annotated

object-oriented programs

Frank S. de Boer and Cees Pierik
Institute of Information and Computing Sciences

Utrecht University, The Netherlands
{frankb, cees}@cs.uu.nl

version: 1.0b

29 January 2003

Abstract

The main contribution of this paper consists of a description and formal justification of a tool
which supports the specification and verification of a class of flowcharts that captures the basic
dynamics of object-oriented programs. The computer-aided specification and verification involves
the annotation of a flowchart with assertions and the automatic generation of the corresponding
verification conditions. As such it forms a front-end tool of a theorem prover which is used to
check the verification conditions interactively. To use the front-end tool for a specific theorem
prover, one only needs to translate the semantics of the assertion languages. In this paper such a
translation is given for the HOL theorem prover. The semantics of the flowcharts is axiomatized
by the verification conditions which are formulated in terms of a weakest precondition calculus.

Contents

1 Introduction 2

2 The verification tool 4

3 Flowcharts 6

4 The assertion language 9
4.1 Aliasing . 11
4.2 Object creation . 13
4.3 The verification conditions . 17

5 Translation of the assertion language into HOL 19

6 An example: inserting into a sorted linked list 23

7 Related work and future research 25

1

Chapter 1

Introduction

In recent years object-oriented languages have been widely used for many purposes including
distributed and network programming. Object-oriented technology facilitates the development of
complex systems and is already extensively supported by advanced tools that developers use to
write, compile, run and debug programs.

Formal methods, that is, mathematically founded techniques for precise specification and rigor-
ous verification, are necessary to obtain reliable software. The actual application of formal methods
however is seriously hampered because of the many tedious calculations it involves. Therefore, to
apply formal methods we need tools which support the computer-aided specification and verifica-
tion of software. More specifically, this means using a computer, for increased speed and reliability,
to carry out the tedious steps of formal verification.

The main contribution of this paper consists of a description and formal justification of a tool
which supports the computer-aided specification and verification of a certain class of flowcharts
that captures the basic dynamics of object-oriented programs. Characteristic of the execution of
an object-oriented program is that it gives rise to complicated and dynamically evolving structures
of references between objects because (1) objects can be created at arbitrary points during the
execution of a program, and (2) references to objects (pointers), can be stored in variables and
passed around.

Our tool is based on an implementation of a weakest precondition calculus for reasoning about
the semantics of basic assignments in object-oriented programs. The calculus itself is formulated in
terms of an assertion language which allows the description of properties of dynamic configurations
of objects at an abstraction level that coincides with that of the programming language. This
means that the only operations on pointers are testing for equality and dereferencing (looking at
the value of an instance variable of the referenced object). Furthermore, it is only possible to
mention the objects that exist in that configuration. Objects that do not (yet) exist never play
a role. The abstraction level of the assertion language requires an explicit account of aliasing in
structures of references between objects. Furthermore, in the case of the creation of a new object
we have to solve the problem that in the state before its creation we cannot refer to the new object
because it does not exist yet. We show that this problem can be solved by a contextual analysis
of occurrences of references to the new object in the postcondition. The creation of objects also
requires an explicit account of the changing scope of quantifiers: since the range of a quantifier is
limited to the existing objects it is affected by the creation of a new object.

The input of the tool is a flowchart together with a mapping which associates an assertion to
every location (an annotated flowchart). An assertion associated with a location is intended to
describe certain invariant properties of the set of object-configurations which are reachable at that
location by a computation of the flowchart ([17]). To prove that the assertions of an annotated
flowchart are indeed satisfied in the sense described above, it suffices to check the logical validity
of a (finite) set of assertions which are automatically generated by an application of the weakest
precondition calculus to the annotated flowchart. The validity of these assertions then can be
interactively verified by the theorem prover HOL ([11]) in terms of an internal representation of

2

the assertion language.
This paper is organized as follows. In the following chapter we describe the architecture of

the tool and the way it is used. In Chapter 3 we describe the formalism and formal semantics
of flowcharts. In Chapter 4 we introduce the assertion language and its semantics. It is shown
how to describe and reason about aliasing and object-creation in terms of a weakest precondition
calculus. Chapter 5 describes the representation of the assertion language in the logic of the HOL
system. Chapter 6 discusses a correctness proof of the insert operation in a (sorted) linked list.
The last chapter contains some concluding remarks.

3

Chapter 2

The verification tool

In this chapter, we describe the architecture of the tool and the way it is used. Figure 2.1 displays
a graphic description of this architecture. This description shows the flow of data through the
system. The input of the tool consists of a flowchart, its specification, a class library, and a library
of macro definitions. These components are described below.

Figure 2.1: The architecture of the tool

The verification tool is implemented in Java. The tool contains lexical analyzers and parsers
for annotated flowcharts, macros and class descriptions, which are obtained by means of the lexical
analyzer generator JLex [12] and the parser generator CUP [6].

The tool uses a library of class descriptions. A class description consists of the name of the
class, a list of instance variables and their types. The class descriptions are used to infer the types
of instance variables that occur in the flowchart. Moreover, they provide the information needed
to define the types that enable the representation of objects in the HOL logic. Chapter 5 gives a
description of these type definitions.

Flowcharts themselves are drawn in the user interface of the tool and are shown graphically.
They can be modified by mouse movements. Conditions and assignments can be entered for every
transition in the flowchart. A simple form of type-inferencing is used to infer the type of every
variable that is not explicitly typed. The user is expected to include type information for every
temporary variable that occurs in a condition or assignment, if necessary. It suffices to state the
type of every variable once.

Assertions can be assigned to every location of the flowchart. The use of (parameterized)
macros from a library in these assertions is supported. In Chapter 6 we give an example of the
use of (parameterized) macros.

4

The verification tool is then used to automatically generate the verification conditions and
export them to a file. This requires the tool to compute the substitution operations that are
defined in Chapter 4 and translate the resulting verification conditions to the HOL syntax. These
two phases are completely automated. The resulting file can be loaded into HOL. The final proof
of correctness consists of proving the correctness of the verification conditions one-by-one and is
constructed during an interactive proof-session with the HOL system. The user is also enabled to
view the simulation of a flowchart at a separate panel.

5

Chapter 3

Flowcharts

In this chapter, we describe the formalism and semantics of the class of strongly typed flowcharts
which is currently supported by the verification tool. We assume a set C of class names. The set
of basic types B is obtained by extending this set of class names with the types Int and Bool. For
each basic type B ∈ B we denote by B∗ the type of all finite sequences of elements of type B. The
set of all types T , with typical element t, is defined as B ∪ {B∗ | B ∈ B}.

For each of the types in T we assume a set of instance variables x, y, . . . and a set of temporary
variables u, v, . . ., i.e. the contents of such a variable will be a value of that type. For notational
convenience only, we will often leave the typing information implicit. Every object belongs to a
(unique) class, which contains data and procedures (methods) acting on these data. The data of
an object is stored in instance variables, whose lifetime is the same as that of the object, and in
temporary variables, which are local to a method and last as long as the method is active.

A flowchart describes the control flow of the methods of an object. In this paper, we consider
flowcharts which consist of basic guarded assignments. These guarded assignments are constructed
from the following set of expressions without side-effects, with typical element e:

e ::= u | e.x | op(e1, . . . , en).

Here, u is a temporary variable, and x is an instance variable, and op is an operation (e.g. equality,
multiplication, append, ...). If n = 0, op is a constant. In particular, we assume the presence of
the constants self and nil, which denote the active object and the value ⊥ respectively. The latter
value stands for ‘undefined’ or ‘uninitialised’.

Expressions of the form e.x are used to refer to the value of the instance variable x of the
object denoted by e. In the expression e.x the type of the expression e is assumed to be C, for
some class C ∈ C. However, the evaluation of such an expression might also result in the value ⊥.
This occurs, for example, when we are dealing with a pointer which does not refer to an object,
i.e., which has the value ⊥. It is worthwhile to observe that indeed we have to consider this case
because the instance variables of a newly created object that are used as pointers are initialised
to the value of nil. Dereferencing such a nil-pointer will also result in the value ⊥. The only other
operation on objects is testing for equality.

A guarded assignment consists of a boolean expression e followed by an assignment. We have
the following assignments e.x := e′ to an instance variable x and assignments u := e to a temporary
variable u. The execution of an assignment e.x := e′ consists of assigning the value of e′ to the
instance variable x of the object denoted by e. On the other hand, the execution of an assignment
u := e consists of assigning the value of e′ to the temporary variable u.

It is worthwhile to observe that an assignment of the form e.x[i] := e′, with x being an array
variable, can be modelled by an assignment e.x := op(e.x, i, e′), where op is an operation which
produces an array obtained from the array e.x by assigning to the ith element the value of e′ (see
also [8]). We do not enforce such operators to preserve the length of an array (as one would expect
of an assignment e.x[i] := e′). A single array variable thus can denote arrays of different length.

6

Object creation is realised by assignments of the form u := new. The execution of an assignment
u := new consists of the creation of a new object and assigning a reference to this object to the
temporary variable u (of the object executing the assignment). Note that an assignment e.x := new
can be simulated by the sequence of assignments u := new; e.x := u, where u is a ‘fresh’ temporary
variable.

To define the semantics of guarded assignments formally, we first introduce for each class C ∈ C
an arbitrary infinite set OC of object identities, with typical element o. We assume that the sets
OC are mutually disjoint. A (global) configuration σ associates with each class C a partial function
σ(C) on Oc with a finite domain such that σ(C)(o), if defined, denotes the internal state of object
o. The internal state of an object is a function that assigns a value (of a corresponding type) to
each of its instance variables. For notational convenience we will also simply write σ(o) to denote
the internal state of the object o in σ. Similarly, the value of an instance variable x of an object
o in the configuration σ we denote by σ(o)(x).

A local context τ specifies the active object and the values of the temporary variables. Formally,
τ is a pair 〈o, f〉, with o the identity of the object and f a function which assigns to every temporary
variable u its value f(u). In the sequel, however, we will denote the first component o of a local
context τ = 〈o, f〉 by τ(self) and f(u) by τ(u), for every temporary variable.

Expressions are evaluated in a configuration σ and a local context τ . The result of the evalu-
ation of an expression e is denoted by E(e)(σ, τ). It is defined by induction on the structure of e.
Table 3.1 displays the formal definition of the evaluation. Note that all operators except equality
are strict (with respect to the value ⊥) in all their arguments.

E(u)(σ, τ) = τ(u)

E(e.x)(σ, τ) =
{ ⊥ if E(e)(σ, τ) = ⊥

σ(E(e)(σ, τ))(x) otherwise

E(op(e1, . . . , en)) =
{ ⊥ if E(ei)(σ, τ) = ⊥ for some i ∈ [1..n]

op(E(e1)(σ, τ), . . . , E(en)(σ, τ)) otherwise

E(e1 = e2)(σ, τ) =
{

true if E(e1)(σ, τ) = E(e2)(σ, τ)
false otherwise

E(self)(σ, τ) = τ(self)

E(nil)(σ, τ) = ⊥

Table 3.1: Semantics of the programming expressions

Given a configuration σ and a local context τ , the resulting configuration σ′ of the execution
of an assignment e.x := e′ by the object τ(self) is defined by: σ′(o)(x) = E(e′)(σ, τ), for o =
E(e)(σ, τ), and in all other cases σ equals σ′. Note that the execution of an assignment e.x := e′

does not affect the values of the temporary variables. On the other hand, the local context τ ′

resulting from the execution of an assignment u := e is obtained from τ by assigning E(e)(σ, τ) to
u. Note that the execution of an assignment u := e does not affect the (global) configuration of
objects.

Given a configuration σ and a local context τ , the resulting configuration σ′ of the execution
of an assignment u := new by the object τ(self) is obtained from σ by extending the domain of σ
with a new object o and initializing its instance variables to nil. Furthermore, the resulting local
context τ ′ is obtained from τ by assigning o to the variable u.

Figure 3.1 shows an example flowchart that models the insertion method of a sorted linked list.
We assume a class Node that contains an instance variable next that is used to point to the next
node in the list and an instance variable key that contains the integer value stored in the node.

7

The temporary variables n (of type Int), cur and tmp (both of type Node) are local to the insert
operation, with n being its formal parameter. The instance variable hd which refers to an object
of class Node points to the head of the list. It is important to observe that the first node, i.e.,
its head, in the list is a dummy node (a sentinel) that is stored in the list to simplify boundary
conditions.

Figure 3.1: The flowchart of the insert operation

8

Chapter 4

The assertion language

The tool supports an assertion language that is designed to describe object structures. This
language and its semantics are described in this chapter. One element of the assertion language
will be the introduction of logical variables. These variables never occur in the expressions of the
given programming language. Therefore, we are always sure that the value of a logical variable
is not changed by a statement. Logical variables are used to express the constancy of certain
expressions (for example in a proof rule for message passing, see [4]). They also serve as bound
variables for quantifiers and have fixed types from the same set of programming language types
T (see the previous chapter.

The set of expressions in the assertion language is larger than the set of programming language
expressions, not only because it contains logical variables, but also because we include conditional
expressions in the assertion language. These conditional expressions will be used for the analysis
of the aliasing phenomenon, which arises due to the presence of the dereferencing operator.

In two respects the assertion language differs from the usual first-order predicate logic: Firstly,
the range of quantifiers is limited to the existing objects in the configuration under consideration.
For the classes different from the predefined ones, like that of the integers and booleans, this
restriction means that we cannot talk about objects that have not yet been created, even if they
could be created in the future. This is done to satisfy the requirements stated in the introduc-
tion. This implies that the range of the quantifiers can be different for different states. More
in particular, a programming statement can change the truth of an assertion even if none of the
program variables accessed by the statement occurs in the assertion, simply by creating an object
and thereby changing the range of a quantifier.

Secondly, in order to strengthen the expressiveness of the logic, it is augmented with quan-
tification over finite sequences of objects. It is quite clear that this is necessary, because simple
first-order logic is not able to express certain interesting properties. The set of expressions of the
language is obtained by the following grammar:

l ::= z | u | l.x | if l0 then l1 else l2 fi | op(l1, . . . , ln).

Here z denotes an logical variable. For conditional expressions if l0 then l1 else l2 fi, we assume
that l0 has type Bool and that l1 and l2 have the same type. Note that the evaluation of the
expressions has no side effects, but might cause the throwing of an exception because of the
included dereference operator. We have to take this into account when defining the semantics of
the expressions.

The value of an expression is evaluated in a global configuration of objects σ, a local context
τ , and a logical environment ω which assigns values to the logical variables. The result of the
evaluation of an expression l is denoted by L(l)(ω, σ, τ). It is defined by induction on the structure
of l. In Table 4.1 we list the formal definition of the evaluation of constructs that are not included
in the programming language. The other definitions are similar to the ones given in Table 3.1 for
the evaluation of programming language expressions and are therefore omitted.

9

L(z)(ω, σ, τ) ≡ ω(z)

L(if l0 then l1 else l2 fi)(ω, σ, τ) =





⊥ if L(l0)(ω, σ, τ) = ⊥
L(l1)(ω, σ, τ) if L(l0)(ω, σ, τ) = true
L(l2)(ω, σ, τ) if L(l0)(ω, σ, τ) = false

Table 4.1: Semantics of the logical expressions

To reason about sequences we assume the presence of notations to express the length of a
sequence (denoted by |l|) and the selection of an element of a sequence (denoted by l[n], where n
is an integer expression). More precisely, we assume in this paper that the elements of a sequence
are indexed by 1, . . . , n, for some integer value n ≥ 0 (the sequence is of zero length, i.e., empty,
if n = 0). Accessing a sequence with an index which is out of its bounds will result in the value
of nil.

The set of assertions, with typical element P , is defined by:

P ::= l1 = l2 | P ∧Q | ¬P | ∃zP

Note that only equations are allowed as basic assertions. General boolean expressions are not
allowed because they may be undefined and we want to remain within the realm of standard
two-valued logics. For example, the evaluation of an inequality l1 ≤ l2 will be undefined, e.g.,
result in the value ⊥, if the evaluation of l1 or l2 results in ⊥. However, we do allow the assertion
(l1 ≤ l2) = true which evaluates to the boolean value true if the inequality holds for the integer
values of l1 and l2. In all the other cases this assertion simply evaluates to the boolean value false.
On the other hand, the assertion (l1 ≤ l2) = nil states that the evaluation of l1 ≤ l2 is undefined,
e.g., the evaluation of l1 or l2 gives rise to a null-pointer exception. In practice, we allow the user
to simply write assertions like l1 ≤ l2, which are interpreted as a shorthand for (l1 ≤ l2) = true.

As already explained above, a formula ∃zP , with z a logical variable ranging over objects,
states that P holds for an existing object. A formula ∃zP , with z of a sequence type, states the
existence of a sequence of existing objects.

Formally, an assertion P is also evaluated in a configuration σ, a local context τ , and a logical
environment ω. The result of the evaluation of an assertion P always yields a boolean value which is
denoted by A(P)(ω, σ, τ). It is defined by an induction on the structure of P . The main interesting
cases can be found in Table 4.2 where t denotes the type of the bound variable z. In general, the
domain of quantification of a logical variable z depends on its type and the configuration σ. It
is fixed for variables that range over integers and booleans: dom(Int, σ) = Z and dom(Bool, σ) =
{true, false} in every configuration σ. On the other hand, we define dom(C, σ) = dom(σ(C)), for
any class C. Finally, dom(B∗, σ), for any basic type B, denotes the set of all (possibly empty)
finite sequences of objects in dom(B, σ). Observe that ⊥ is not included in any domain.

A(l1 = l2)(σ, τ, ω) =
{

true if L(l1)(σ, τ, ω) = L(l2)(σ, τ, ω)
false otherwise

A(∃zP)(ω, σ, τ) =





true if there exists an α ∈ dom(t, σ) such
that A(P)(ω{α/z}, σ, τ) = true.

false otherwise

Table 4.2: Semantics of assertions

The notation ω, σ, τ |= P is also used to designate that P is true in the logical environment
ω, the configuration σ, and the local context τ . Moreover, we define |= P , i.e., the assertion P is
valid, by ω, σ, τ |= P , for every logical environment ω, configuration σ, and local context τ such
that ω, σ, and τ only involve objects existing in σ. Note that given this restriction an assertion

10

like ∀z(z 6= u) ∧ u 6= nil does not make sense, i.e., is inconsistent (here u is assumed to denote
an object). Indeed, semantically we want to rule out such an assertion because it states that the
object referred to by u does not exist.

It is worthwhile to note that the assertion ∃ztrue, where z ranges over objects (of an arbitrary
class) is true if and only if there exists an object of that class (in the current configuration). In
general, however, quantification is characterized by the usual validities like ∃zP ↔ ¬∀z¬P .

The following example assertion is part of the specification of the flowchart in Figure 3.1. It
states that the sequence of nodes denoted by the logical variable z are linked by the instance
variable next :

∀n (1 ≤ n ∧ n ≤ |z| → z[n].next = z[n + 1]).

Here n is a logical integer variable. Note that by convention z[|z|+ 1] = nil.

4.1 Aliasing

In this section we show how we can model assignments involving aliasing in the assertion language
by means of substitutions. The next section discusses object-creation. The basic underlying idea
as originally introduced in [10] and [7] and further developed in [2] is that the assertion resulting
from the application of a substitution has the same meaning in the state before the assignment
as the unsubstituted assertion has after the assignment. In other words, the substituted assertion
describes the weakest precondition.
First we observe that given an assignment u := e, with u a temporary variable, and a postcondition
P , the assertion P [e/u] obtained from P by replacing every occurrence of u by e has the same
meaning as the unsubstituted assertion P has after the assignment. This is formalized by the
following substitution theorem.

Theorem 1 We have
ω, σ, τ |= P [e/u] if and only if ω, σ, τ ′ |= P ,

where τ ′ results from τ by assigning E(e)(σ, τ) to u.

Proof
Standard induction on the complexity of P . 2

On the other hand, the usual notion of substitution does not suffice for an assignment e.x := e′

because of possible aliases of the expression e.x, namely, expressions of the form l.x: it is possible
that, after substitution, l refers to the object denoted by e, so that l.x denotes the same ‘memory
cell’ as e.x and should be substituted by e′. It is also possible that, after substitution, l does
not refer to the object e, and in this case no substitution should take place. Since we cannot
decide between these possibilities by the form of the expression only, a conditional expression is
constructed which decides “dynamically”.

We have the following definition of the substitution operation [e′/e.x] (syntactic identity is
denoted by ≡):

l[e′/e.x] ≡ l, for l ≡ z, u
(l.x)[e′/e.x] ≡ if l[e′/e.x] = e then e′ else (l[e′/e.x]).x fi
(l.y)[e′/e.x] ≡ (l[e′/e.x]).y
(op(e1, . . . , en))[e′/e.x] ≡ op(e1[e′/e.x]), . . . , en[e′/e.x])
(if l1 then l2 else l3 fi)[e′/e.x] ≡ if l1[e′/e.x] then l2[e′/e.x] else l3[e′/e.x] fi

The first clause deals with the base cases of a logical variable z and a temporary variable u. In the
second clause the expressions l and e are assumed to be of the same type. In the third clause either
the types of the expressions l and e are distinct or the instance variables x and y are distinct. In
the fourth clause we have that op[e′/e.x] ≡ op, in case n = 0 (i.e., in case of a constant). The
definition is extended to assertions other than logical expressions in the standard way.

11

As a simple example, we consider the assignment self.x := 0 and the postcondition u.y.x = 1,
where x and y are instance variables and u is a temporary variable. Applying the corresponding
substitution [0/self.x] to the assertion u.y.x = 1 results in the assertion

if u.y = self then 0 else u.y.x fi = 1.

This assertion clearly is logically equivalent to u.y 6= self ∧ u.y.x = 1.
The following theorem states that P [e′/e.x] is indeed the weakest precondition of the assertion

P (with respect to the assignment e.x := e′).

Theorem 2 We have that

ω, σ, τ |= P [e′/e.x] if and only if ω, σ′, τ |= P ,

where σ′(o)(x) = E(e′)(σ, τ), for o = E(e)(σ, τ), and in all other cases σ agrees with σ′.

Proof
It suffices to prove by induction on the complexity of l that

L(l[e′/e.x])(ω, σ, τ) = L(l)(ω, σ′, τ).

We shall only deal with the most interesting case: l ≡ l′.x. We have to show that

L(if l′[e′/e.x] = e then e′ else (l′[e′/e.x]).x fi)(ω, σ, τ) =
if L(l′[e′/e.x])(ω, σ, τ) = L(e)(σ, τ) then L(e′)(σ, τ) else L(l′[e′/e.x]).x)(ω, σ, τ) =
L(l′.x)(ω, σ′, τ),

where σ′(o)(x) = L(e′)(σ, τ), for o = L(e)(σ, τ), and in all other cases σ agrees with σ′.
By the induction hypothesis we have that

L(l′[e′/e.x])(ω, σ, τ) = L(l′)(ω, σ′, τ),

We distinguish the following two cases. First let

L(l′[e′/e.x])(ω, σ, τ) = L(e)(σ, τ).

We then calculate as follows:

L(if l′[e′/e.x] = e then e′ else (l′[e′/e.x]).x fi)(ω, σ, τ) =
L(e′)(σ, τ) =
σ′(o)(x) =
σ′(L(e)(σ, τ))(x) =
σ′(L(l′[e′/e.x])(ω, σ, τ))(x) =
σ′(L(l′)(ω, σ′, τ))(x) =
L(l′.x)(ω, σ′, τ).

Next, let
L(l′[e′/e.x])(ω, σ, τ) 6= L(e)(σ, τ).

By construction of σ′ it follows that σ(L(l′[e′/e.x])(ω, σ, τ))(x) = σ′(L(l′[e′/e.x])(ω, σ, τ))(x). We
then calculate as follows:

L(if l′[e′/e.x] = e then e′ else (l′[e′/e.x]).x fi)(ω, σ, τ) =
L((l′[e′/e.x]).x)(ω, σ, τ) =
σ(L(l′[e′/e.x])(ω, σ, τ))(x) =
σ′(L(l′[e′/e.x])(ω, σ, τ))(x) =
σ′(L(l′)(ω, σ′, τ))(x) =
L(l′.x)(ω, σ′, τ).

2

12

4.2 Object creation

Next we consider the creation of objects. We want to define the substitution [new/u] which models
the creation of a new object referred to by the temporary variable u. This substitution should
model logically the assignment u := new. Execution of an assignment u := new consists of the
creation of a new object and assigning a reference to this object to u. Note that an assignment
e.x := new can be simulated by the sequence of assignments u := new; e.x := u, where u is a
‘fresh’ temporary variable. For an assignment e.x := new we therefore can compute the weakest
precondition of a postcondition P by P [u/e.x][new/u], where u is a fresh temporary variable which
does not occur in P and e.

As with the usual notions of substitution we want the expression after substitution to have the
same meaning before the assignment as the unsubstituted expression has after the assignment.
However, in the case of the creation of a new object, there are expressions for which this is not
possible, because they refer to the new object and there is no expression that could refer to that
object before its creation, because it does not exist yet. Therefore the result of the substitution
must be left undefined in some cases.

However we are able to carry out the substitution in case of assertions because a temporary
variable u referring to the new object can essentially occur only in a context where either one of
its instance variables is referenced, or it is compared for equality with another expression. In both
of these cases we can predict the outcome without having to refer to the new object.

Here are the main cases of the formal definition of the substitution [new/u], with u a temporary
variable, for logical expressions. As already explained above the result of the substitution [new/u]
is undefined for the expression u. We have

l[new/u] ≡ l, for l ≡ self, nil, z, x, v,

where z is a logical variable, x is an instance variable, and v is a temporary variable distinct from
u.

Since the (instance) variables of a newly created object are initialized to nil we have

(u.x)[new/u] ≡ nil.

The other possible context u may occur is that of an equality. If neither l nor l′ is u or a
conditional expression they cannot refer to the newly created object and we have

(
l = l′

)
[new/u] ≡

(
l[new/u]

)
=

(
l′[new/u]

)
.

If either l is u and l′ is neither u nor a conditional expression (or vice versa) we have that after
the substitution operation l and l′ cannot denote the same object (because one of them refers to
the newly created object while the other one refers to an already existing object):

(
l = l′

)
[new/u] ≡ false.

On the other hand if both the expressions l and l′ equal u we obviously have
(
l = l′

)
[new/u] ≡ true.

For l a conditional expression of the form if l0 then l1 else l2 fi we define
(
l = l′

)
[new/u] ≡ if l0[new/u] then (l1 = l′)[new/u] else (l2 = l′)[new/u] fi.

Finally, if li[new/u], for i = 1, . . . , n, is defined, then

(op(l1, . . . , ln))[new/u] ≡ op(l1[new/u], . . . , ln[new/u]),

for any other operator op of the language.

13

Since we assume that the only operations on ‘pointers’ are testing for equality and dereferenc-
ing, it is easy to see that l[new/u] is defined for boolean expressions l. The following lemma states
that the value of l[new/u] before the creation of the new object, if defined, equals that of l after
its creation.

Lemma 1 Let l be such that l[new/u] is defined. We have

L(l[new/u])(ω, σ, τ) = L(l)(ω, σ′, τ ′),

where σ′ is obtained from σ by extending the domain of σ with a new object o and initializing its
instance variables to nil. Furthermore the resulting local context τ ′ is obtained from τ by assigning
o to the variable u.

Proof
This lemma is proved by a straightforward induction on the complexity of l. Let us deal with one
representative case: l ≡ z.x (note that x is thus an instance variable and therefore distinct from
the temporary variable u). Then (z.x)[new/u] ≡ z.x. So we have to show that

L(z.x)(ω, σ, τ) = L(z.x)(ω, σ′, τ ′),

where σ′ is obtained from σ by extending the domain of σ with a new object o and initializing
its instance variables to nil. The resulting local context τ ′ is obtained from τ by assigning o to
the variable u. Since ω(z) denotes an object existing in σ, we have that ω(z) 6= o. It follows that
σ′(ω(z))(x) = σ(ω(z))(x). 2

Next we consider lifting this substitution operation [new/u] to assertions. We define

(P ∧Q)[new/u] ≡ P [new/u] ∧Q[new/u] and (¬P)[new/u] ≡ ¬(P [new/u]).

The changing scope of a bound occurrence of a variable z ranging over objects which is induced
by the creation of a new object is captured as follows.

(∃z P)[new/u] = (∃z(P [new/u])) ∨ (P [u/z][new/u]).

The idea of the application of [new/u] to (∃z P) is that the first disjunct ∃z(P [new/u]) represents
the case that P holds for an ‘old’ object (i.e. which exists already before the creation of the new
object) whereas the second disjunct P [u/z][new/u] represents the case that the new object itself
satisfies P . Since a logical variable does not have aliases, the substitution [u/z] consists of simply
replacing every occurrence of z by u. It is worthwhile to observe that we can derive the following
clause for universal quantification.

(∀z P)[new/u] = (∀z(P [new/u])) ∧ (P [u/z][new/u]).

As a simple example, we consider applying [new/u] to the assertion ∀z(u = z ∨ self = z) which
states that the set of existing objects consist only of the object denoted by the temporary variable
u and the object itself.

(
∀z(u = z ∨ self = z)

)
[new/u] ≡

∀z
(
(u = z ∨ self = z)[new/u]

)
∧ (u = u ∨ self = u)[new/u] ≡

∀z(false ∨ self = z) ∧ (true ∨ false)

where the last assertion obviously reduces to ∀z(self = z). This assertion states that self is the only
object which exists, which indeed is the weakest precondition of the assertion ∀z(u = z ∨ self = z)
with respect to u := new.

Next we consider the case of an occurrence of a bound variable z which ranges over sequences of
objects. First we observe that, without loss of expressiveness, we may assume that in the assertion

14

language the operations on sequences are limited to |l|, i.e. the length of the sequence l, and l[n],
i.e. the operation which yields the nth element of l. So we do not have, for example, equality on
sequences as a primitive operation in the assertion language. Given this assumption, let z′ be a
(fresh) logical variable ranging over sequences of boolean values. The variables z and z′ together
will code a sequence of objects possibly including the newly created object: at the places where
z′ yields true the value of the coded sequence is the newly created object. Where z′ yields false
the value of the coded sequence is the same as the value of z. This encoding is described by the
substitution operation [z′, u/z], the main characteristic cases of which are:

z[z′, u/z] is undefined(
|z|

)
[z′, u/z] ≡ |z|(

z[l]
)
[z′, u/z] ≡ if z′(l′) then u else z(l′) fi, where l′ = l[z′, u/z].

This substitution operation [z′, u/z] is defined for the remaining expressions and extended to
assertions in the standard way (its application to a compound expression is defined only if its
application to its constituents is defined). Given the above restriction on the kind of operations on
sequences, it is easy to see that this substitution is defined for boolean expressions and assertions.

The following lemma states the correctness of this substitution operation.

Lemma 2 Given a configuration σ, let ω be a logical environment with ω(z) a sequence of objects
(in σ) and ω(z′) a sequence of boolean values. Let α be a sequence of objects in σ such that the
sequences ω(z) and α have equal length. Furthermore, for some object o in σ, we have, for all i,
if ω(z′)[i] = true then α[i] = o else α[i] = ω(z)[i]. We have

ω, σ, τ{o/u} |= P [z′, u/z] if and only if ω{α/z}, σ, τ{o/u} |= P

(τ{o/u} results from τ by assigning o to u).

Proof
Straightforward induction on the complexity of l and P . We treat the only (slightly) non-trivial
case of an expression of the form z[l]. Let ω′ = ω{α/z}, where α is a sequence of objects such
that for all i, if ω(z′)[i] = true then α[i] = o else α[i] = ω(z)[i]. Moreover, let τ ′ = τ{o/u}.

By the induction hypothesis we have

L(l[z′, u/z])(ω, σ, τ ′) = L(l)(ω′, σ, τ ′).

Let l′ ≡ l[z′, u/z]. We then calculate as follows.

L((z[l])[z′, u/z])(ω, σ, τ ′) =
L(if z′(l′) then u else z(l′) fi)(ω, σ, τ) =
if ω(z′)[L(l′)(ω, σ, τ ′)] = true then o else ω(z)[L(l′)(ω, σ, τ ′)] =
if ω(z′)[L(l)(ω′, σ, τ ′)] = true then o else ω(z)[L(l)(ω′, σ, τ ′)] =
ω′(z)[L(l)(ω′, σ, τ ′)] =
L(z[l])(ω′, σ, τ ′).

2

Given this encoding we can now define

(∃z P)[new/u] ≡ ∃z ∃z′ (|z| = |z′| ∧ (P [z′, u/z][new/u]))

where z ranges over sequences of objects.
As an example, consider the following assertion

∃z1

(
|z1| = n ∧ ∀z2∃i (z1[i] = z2)

)
,

15

where the logical variable z1 ranges over sequences of objects and the logical variable z2 ranges
over objects themselves. This assertion states that there exist at most n objects. An application
of the substitution [z′, u/z] to the assertion |z1| = n ∧ ∀z2∃i (z1[i] = z2) results in the assertion

|z1| = n ∧ ∀z2∃i
(
if z′[i] then u else z1[i] fi = z2

)
.

For technical convenience only, in order to apply the substitution [new/u] to this assertion, we
first eliminate the conditional expression. We obtain

|z1| = n ∧ ∀z2∃i
(
z′[i] → u = z2 ∧ ¬z′[i] → z1[i] = z2

)

(assuming that ¬,→,∧ lists these operators in decreasing binding priority). An application of
[new/u] to this latter assertion results in the following:

|z1| = n ∧ ∀z2∃i
(
z′[i] → false ∧ ¬z′[i] → z1[i] = z2

)
∧ ∃i

(
z′[i] → true ∧ ¬z′[i] → false

)

This assertion is clearly logically equivalent to the assertion

|z1| = n ∧ ∀z2∃i
(
¬z′[i] ∧ z1[i] = z2

)
∧ ∃i z′[i]

Summarizing the above we obtain as final result the assertion

∃z1∃z′
(
|z1| = |z′| ∧ |z1| = n ∧ ∀z2∃i (¬z′[i] ∧ z1[i] = z2) ∧ ∃i z′[i]

)

This latter assertion clearly is logically equivalent to the assertion

∃z1

(
|z1| = n− 1 ∧ ∀z2∃i (z1[i] = z2)

)

which indeed corresponds with our intuition of the weakest precondition of the assertion which
states that there exists at most n objects after the creation of a new object.

The following theorem states that P [new/u] indeed calculates the weakest precondition of P
(with respect to the assignment u := new).

Theorem 3 We have

ω, σ, τ |= P [new/u] if and only if ω, σ′, τ ′ |= P ,

where σ′ is obtained from σ by extending the domain of σ with a new object o and initializing its
instance variables to nil. Furthermore the resulting local context τ ′ is obtained from τ by assigning
o to the variable u.

Proof
The proof proceeds by induction on the complexity of P . Again, we treat only the most interesting
case of an assertion ∃zP , where z is a logical variable ranging over sequences of objects. We
calculate as follows. By definition of the substitution operation [new/u] we have

ω, σ, τ |= (∃zP)[new/u] iff ω, σ, τ |= ∃z∃z′(|z| = |z′| ∧ P [z′, u/z][new/u]).

So, assuming that ω, σ, τ |= (∃zP)[new/u], there exists a sequence α of objects in σ and a sequence
β of boolean values, with α and β of equal length, such that for ω′ = ω{α/z, β/z′} we have

ω′, σ, τ |= P [z′, u/z][new/u].

By the induction hypothesis (measuring the complexity in terms of the number of quantifiers and
propositional connectives) we next derive that

ω′, σ, τ |= P [z′, u/z][new/u] iff ω′, σ′, τ ′ |= P [z′, u/z],

16

where σ′ is obtained from σ by extending the domain of σ with a new object o and initializing its
instance variables to nil. Furthermore the local context τ ′ is obtained from τ by assigning o to the
variable u.

Let α′ be a sequence of objects existing in σ′ of the same length as α such that for all i, if
β[i] = true then α′(z)[i] = τ ′(u) = o else α′(z)[i] = α[i]. Let ω′′ = ω′{α′/z}. It follows from
lemma 2 that

ω′, σ′, τ ′ |= P [z′, u/z] iff ω′′, σ′, τ ′ |= P.

Finally, we observe that ω′′, σ′, τ ′ |= P implies ω, σ′, τ ′ |= ∃zP (the logical variable z′ is assumed
not to occur in P).

Conversely, let ω, σ and τ be such that ω and τ only involve objects existing in σ and

ω, σ′, τ ′ |= ∃zP,

where σ′ and τ ′ are defined as above. So there exists a sequence α of objects existing in σ′ such
that

ω{α/z}, σ′, τ ′ |= P.

Let β be a a sequence of boolean values, with α and β of equal length, and for all i, if β[i] = true
then α[i] = τ ′(u) else α[i] exists in σ. It follows that

ω′′, σ′, τ ′ |= P,

where ω′′ = ω{α/z, β/z′} (the logical variable z′ is assumed not to occur in P). Now let α′ be a
sequence of objects existing in σ of the same length as α such that α′[i] = α[i], if β[i] = false. Let
ω′ = ω{α′/z}. By lemma 2 it then follows that

ω′′, σ′, τ ′ |= P iff ω′, σ′, τ ′ |= P [z′, u/z].

By the induction hypothesis we have that

ω′, σ′, τ ′ |= P [z′, u/z] iff ω′, σ, τ |= P [z′, u/z][new/u].

By construction of ω′ we have that

ω′, σ, τ |= (|z| = |z′| ∧ P [z′, u/z][new/u]).

We conclude that
ω, σ, τ |= (∃zP)[new/u].

2

4.3 The verification conditions

Given the substitution operations defined above, the definition of the verification conditions is
largely standard (see [17] for a detailed description of the general theory of Floyd’s inductive
assertion method). We sketch the general idea here and adapt it to our flowcharts.

Let L be a set of locations, and let T be a set of transitions between locations in L. Transitions
from a location l to a location l′ will be denoted by (l, b → a, l′), where b is a boolean guard of the
assignment a as defined in Chapter 3. A flowchart can be represented formally by a tuple (L, T, s, t),
where s ∈ L is the start location of the flowchart and t ∈ L is the exit location. We assume that
every computation of the flowchart starts in s. We say that a computation terminates successfully
if it arrives at exit location t (for simplicity we assume that t has no outgoing transitions).

We want to prove that a flowchart F = (L, T, s, t) satisfies a correctness specification {P}F{Q},
for some precondition P and postcondition Q. For partial correctness, this requires verifying that
every successfully terminated computation that started in a state that satisfies P , terminates in a
state that satisfies Q. By Floyd’s inductive assertion method this can be verified by assigning to

17

each location l an assertion Pl and checking that (1) the precondition P implies the assertion Ps, (2)
the assertion Pt implies the postcondition Q, and (3) checking for each transition (l, b → a, l′) ∈ T
the validity of the corresponding verification condition (Pl∧b) → P ′l′ , where the assertion P ′l′ results
from Pl′ by an application of the substitution operation corresponding with the assignment a, that
is,

• P ′l′ equals Pl′ [e/u], in case a is of the form u := e;

• P ′l′ equals Pl′ [e′/e.x], in case a is of the form e.x := e′;

• P ′l′ equals Pl′ [new/u], in case a is of the form u := new

The substitution operations [e′/e.x] and [new/u] are defined above, whereas [e/u] denotes the
standard notion of substitution. The tool computes a verification condition for every transition in
the flowchart according to the above definitions.

18

Chapter 5

Translation of the assertion
language into HOL

In this chapter we describe the translation of the semantics of the previously introduced assertion
language into the HOL logic (a typed higher order logic). Although the result of the translation
will be given in the syntax of the HOL system, in many cases it is straightforward to adapt the
translation to logics which are supported by other theorem provers.

The main issue of the translation is the representation of the types that play a role in the
assertion language. If these types have been clarified, the translation becomes straightforward
by following the definition of the assertion language semantics as given in Chapter 4. We will
therefore start by describing the necessary type declarations. It is important to bear in mind that
those declarations are automatically generated by the compiler from the class descriptions in the
editor.

Before we discuss the types of objects, we extend the basic types Int and Bool to deal with
exceptions. The types Int and Bool are present as basic types in the HOL logic, but we use the
built-in polymorphic unary type operator option to include nil in these types. The polymorphic
option data type has one (type) parameter and two constructors (SOME and NONE). Its definition
is stored in the predefined theory optionTheory, but for clarity we give its definition here also
(though in an informal notation):

α option = NONE
| SOME α

The types Bool⊥ and Int⊥ can be represented by the HOL types bool option and int option,
respectively. Notice that type operators are written with suffix notation in HOL. The NONE con-
stants in these types represent the value ⊥, whereas the SOME constructors encapsulate the original
values of these types. The operators in the assertion language need to be redefined in the logic
to handle these option types. Function definition in the current version of HOL is handled by the
Define function, which takes as input a number of equations separated by the conjunction sign
(/\). Consider, for example, the following adapted definition of the less than relation (LT):

(LT NONE NONE = NONE) /\ (LT (SOME a) NONE = NONE) /\
(LT NONE (SOME a) = NONE) /\ (LT (SOME a) (SOME b) = SOME (a<b))

In the above definition, the variables a and b have type Int. Observe that the evaluation order in
the example corresponds to that of the operator evaluation definition in Table 3.1.

We will now explain why we cannot tackle the representation of objects similarly. We first have
to decide on the type of objects identitities of a certain class. Recall that we introduced infinite
sets IdC of object identities in Chapter 3 because this ensures the existence of new C type object
identities in every configuration. Types in the HOL logic denote sets in the universe of the logic.
We therefore want to declare a type for the set of existing objects OC because this allows us to

19

quantify over the objects in the set. There is, however, one drawback of this natural approach -
types in the HOL logic always denote non-empty sets. But the set of class C objects is possibly
empty! Our solution to this problem is to include the constant nil in every set of objects of a
certain class. This requires nil to have a polymorphic type.

Here are the details of this solution. Every class name from the class library is used to declare
a new atomic type. A finite number of classes exist in a given verification context. Identifiers that
start with a capital letter like Node, for example, are used to denote class names. Type definitions
are handled by the function new_type, which takes as arguments the number of parameters of the
new type and the name of the type (a string). For instance, the basic type Node is declared as
follows:

new_type 0 "Node"

Throughout the remainder of this chapter, we will use the class Node, with instance variables
nextNode and keyInt, to illustrate the type declarations that are specific for a single class.

Subsequently, we introduce a polymorphic unary type operator Object and the constant
nil:’an Object by means of the HOL functions new_type and new_constant, respectively. The
expression ’an denotes a type variable. The following two HOL expressions do the job:

new_type 1 "Object"
new_constant ("nil", Type ‘:’an Object‘)

Its suffices to know that the latter expression adds a new constant nil of type ’an object to the
current theory. Since nil has this polymorphic type, it is, for example, an inhabitant of the set
corresponding to the type Node Object. This set is intended to represent the existing objects of
class Node extended with nil. An axiom is introduced that implies that this set is finite. The axiom
states that there is a finite set s of which all inhabitants of type Node Object are a member:

?s. !(n:Node Object). (n IN s) /\ (FINITE s)

The above definition assumes the presence of the predicates IN and FINITE, which are pre-defined
in the HOL logic. We will not discuss their definitions here. The question mark and the exclama-
tion mark denote existential and universal quantification, respectively.

Next, we discuss the representation of internal states. Such states assign values to the instance
variables of objects. We naturally represent these states by means of records: Each record field
corresponds to an instance variable of an object. Fortunately, the notation used for field selection
in HOL happens to coincide with the standard notation used for dereferencing. If o is a HOL
record that contains a field f, then selecting this field is denoted by o.f. This improves the
readability of the assertions in the logic. Below, we list the type definition that corresponds to
the internal states of Node objects.

NodeRec = <| next: Node Object; key: int option |>

Giving this equation to the function Hol_datatype of the bossLib library results in a record type
NodeRec with two fields: a field next of type Node Object and a field key of type int. Thus a
record type is declared for each class. In general, the type of internal states of a certain class is
the name of the class appended with "Rec".

Another issue is the translation of the global configuration of objects σ into the type theory.
Recall that σ is used to obtain the internal state of an existing object and is ‘queried’ in the
semantics of the assertion language only in the definitions of l.x and ∃zP . When evaluating
an assertion, we only deal with one particular configuration and therefore we simply declare a
constant that represents the partial configuration σC for each class C. For class Node we have, for
example, the constant NodeState : Node Object -> NodeRec. In general, we represent σC by
the function CState.

Our final examples illustrate the representation of arrays (sequences). We will first declare types
for actual sequences, and then extend these types to take exceptions into account. A sequence
consists of a list of values and its length. The declared type of a sequence therefore combines

20

these two components. It includes a function of integers (indices of the sequence) to values and
an integer that denotes the length of the sequence. We use a Cartesian product type to combine
these two. Below, we list some abbreviations of sequence types.

intArray = ((int->int option)#int)
boolArray = ((int->bool option)#int)
NodeArray = ((int->(Node Object))#int)

Observe that the tuple of two types a and b is written as (a#b). To refer to the components of
sequence types inhabitants, we use the projection functions fst and snd. The function LEN (for
length) is defined similar to snd, but it takes the possibility of exceptions into account. A pointer
to a sequence might have the value nil. Therefore, we give such a variable a type that is extended
similarly as Int and Bool. For example, a variable to a sequence of type Node receives the type
NodeArray option. The function LEN maps each value of this type to its corresponding length:

LEN NONE = NONE) /\ (LEN (SOME (a,b)) = (SOME b))

Recall that an array that is indexed out of bounds yields nil. We define functions for accessing
arrays that reflect this behavior. The first argument of these functions is a pointer to an array,
and the second argument is the index. Both arguments can yield exceptions, which complicates
their definitions. Due to the size of these definitions, we only give one example.

(int_at NONE b = NONE) /\ (int_at (SOME Z)) NONE = NONE) /\
(int_at (SOME Z) (SOME i) = if (i < 1) \/ (i > (length Z))

then NONE else (SOME (fst Z i)))

The above defined function int_at is used to access arrays. In the equations, b is a value of type
int option and Z is of type intArray. Similar functions bool_at and obj_at encode accessing
sequences of booleans and objects, respectively.

Table 5.1 lists all import cases of the translation Tr of assertion language expressions into the
HOL logic. We have not included the translation of temporary variables, but that case is similar
to the one given for logical variables. This translation in fact expresses in HOL the semantics of
the assertion language as defined in chapter 4.

In the given translation, Tr(op) is the translation of operator op. Above, we have given an
example of such a translation for the less than operator. The expression type(x) denotes the type
of variable x. The translation comes with two further remarks. Firstly, we point out that we do
not represent the local context τ and the logical environment ω explicitly to simplify the formulas.
This simplification, however, requires that one ensures that the set of temporary variables and
the set of logical variables are disjunct. The second remark concerns the translation of self. After
translation, self becomes a variable that ranges over a set of object identities that also includes
nil. The possibility that self equals nil is excluded by means of an axiom.

The definition of the translation for formulas is straightforward. Note that since nil is included
in every type C object, we have to exclude it from the domain of quantification.

21

Tr(z) =





(z:int option) if type(z) = Int
(z:bool option) if type(z) = Bool
(z:C Object) if type(z) = C ∈ C
(z:^BArray option) if type(z) = B∗ for some B ∈ B

Tr(l.x) =





if Tr(l) = nil then nil
else (CState (Tr(l))).x if type(x) ∈ C

if Tr(l) = nil then NONE
else (CState (Tr(l))).x otherwise

where C = type(l)

Tr(op(l1, . . . , ln)) = (Tr(op) Tr(l1) . . . Tr(ln))

Tr(l1 = l2) = Tr(l1)=Tr(l2)

Tr(self) = (self:C Object)
where C = type(self)

Tr(z[i]) =





(int_at (Tr(z)) (Tr(i))) if type(z) = Int∗

(bool_at (Tr(z)) (Tr(i))) if type(z) = Bool∗

(obj_at (Tr(z)) (Tr(i))) if type(z) = C∗ for some C ∈ C

Tr(|z|) = (LEN Tr(z))

Tr(∀z P) = !(z:int option).~(z=NONE) ==> Tr(P) if type(z) = Int

Tr(∀z P) = !(z:bool option).~(z=NONE) ==> Tr(P) if type(z) = Bool

Tr(∀z P) = !(z:C Object).~(z=nil) ==> Tr(P) if type(z) = C, for some C

Tr(∀z P) = !(z:BArray option). (z=NONE) ==> Tr(P) if type(z) = B∗, for some B

Table 5.1: The translation of assertion language

22

Chapter 6

An example: inserting into a
sorted linked list

In this chapter, we briefly discuss an application of the tool to the verification of the correctness of
the insert operation described in figure 3.1. We first describe the annotation of the flowchart with
assertions containing parameterized macros and end with some remarks on the level of automation
of the construction of the proof.

We want to specify in the postcondition of the insert operation the correct addition of the
inserted node. We did so by introducing a logical variable z which denotes the initial list of linked
nodes. The following assertion

Π|z|i=1(z[i].next = z[i + 1] ∧ z[i] 6= nil) ∧ hd = z[1] ∧ |z| ≥ 1

(here and in the sequel we use the notation Σe′
i=eP and Πe′

i=eP as an abbreviation of the bounded
quantification ∃i(e ≤ i ∧ i ≤ e′ ∧ P) and ∀i(e ≤ i ∧ i ≤ e′ → P)) states, among others, that two
consecutive elements of z are linked by the instance variable next (by convention z[|z|+ 1] = nil)
and that its first element is denoted by the variable hd . For this assertion we introduce the
(parameterized) macro linkedlist(z,next).

The following assertion describes the correct addition of a node tmp in the initial list z.

|z|∑
i=1

(
(z[i].next=tmp) ∧ (i > 1 → z[i].key < tmp.key)

∧ (i < |z| → z[i + 1].key ≥ tmp.key) ∧ (tmp.next = z[i + 1])
)

For this assertion we introduce the parameterized macro addtolist(z, tmp).
We want to prove that the flowchart F of figure 3.1 satisfies the pre- and postcondition speci-

fication
{linkedlist(z,next)}F{addtolist(z, tmp) ∧ tmp.key = n}

by annotating it with assertions and checking in HOL the corresponding verification conditions
which are generated automatically by our tool. We have the following annotations.

s: linkedlist(z,next).

l1: linkedlist(z,next) ∧ currentpos(cur , z),

where the (parameterized) macro currentpos(cur , z) stands for the assertion

Σ|z|i=1(cur = z[i] ∧ (i > 1 → cur .key < n))

23

l2: linkedlist(z,next) ∧ correctpos(z, cur),

where the macro correctpos(z, cur) stands for the assertion

Σ|z|i=1(cur = z[i] ∧ (i > 1 → cur .key < n) ∧ (i < |z| → cur .next .key ≥ n)

l3: linkedlist(z,next) ∧ correctpos(z, cur) ∧ tmp 6∈ z,

where tmp 6∈ z is a macro for the assertion ¬Σ|z|i=1(tmp = z[i]) (also used below).

l4: linkedlist(z,next) ∧ correctpos(z, cur) ∧ tmp 6∈ z ∧ tmp.key = n.

l5: linkedlist(z,next) ∧ correctpos(z, cur) ∧ tmp 6∈ z ∧ tmp.key = n ∧ tmp.next = cur .next .

t: addtolist(z, tmp) ∧ tmp.key = n.

The flowchart annotated with these assertions was compiled into a number of verification con-
ditions that were translated into the HOL logic by the tool and afterwards proven valid in the
theorem-proving system of HOL. Three out of seven verification conditions were proven almost
automatically by basic automatic-rewriting rules and two only required additionally the introduc-
tion of a witness to reduce an existentially quantified goal. The two verification conditions of
the transitions departing from location l1 required a bit more effort. This additional effort was
mainly due to the required reasoning about the underlying data type of the integers. The typical
reasoning about pointers consists only of some basic equational logic. The arithmetic involved
consists only of simple Presburger arithmetic of array indices. This arithmetic is implemented
in HOL in a separate proof tactic (COOPER_TAC from the intLib library). This tactic functions
well on the domain it is written for, however it requires some effort to use it in combination with
proof tactics for other domains. Our conclusion is that a fully automated correctness proof can
be obtained by an appropriate integration of the proof tactics involved.

24

Chapter 7

Related work and future research

The main contribution of this paper consists of a description and formal justification a tool which
supports the computer-aided specification and verification of a class of flowcharts that captures
the basic dynamics of object-oriented programs. It forms a front-end to the theorem prover HOL.

Currently very interesting and promising work is being carried out in the field of computer-
aided specification and verification of object-oriented programs at various places. Here the only
projects we mention are Loop of the University of Nijmegen ([13]), Bali of the Technical University
of Munich([3]), and Bandera of the Kansas State University ([5]).

The specific emphasis of our approach is, first of all, on the automated verification of programs
annotated with assertions that allow one to specify properties in terms of the source code instead
of some particular model of its semantics. In fact, the abstraction level of our assertion language
corresponds with the Object Constraint Language (OCL) [19]. One of the main differences is
that navigation in OCL is also an operation defined on sets of objects, whereas in our assertion
language it is just a dereference operator on objects (as it is in the programming language). This
difference stems from the intended use of OCL for describing class diagrams in the Unified Modeling
Language (UML) ([18]) while our assertion language is specifically tailored to object-structures as
they arise during the computation of an object-oriented program.

Another distinguishing feature of our approach is the automatic generation of the verification
conditions by an implementation of a calculus for computing the weakest preconditions of assign-
ments involving aliasing and object creation. This calculus has been extended in [16] for OCL,
whereas in [15] a different Hoare logic for object-oriented programs is given based on an explicit
representation of the global store model. A theorem prover can be used to check the validity
of the verification conditions by simply encoding the formally defined semantics of the assertion
language. Our front-end tool thus describes the program semantics axiomatically in terms of the
weakest precondition calculus. This calculus provides some preprocessing of information about
aliases and object creation which is made available to the theorem prover. The theorem prover
only ‘knows’ about the semantics of the assertion language and is used solely to check simple veri-
fication conditions. In contrast, most existing approaches are based on a direct logical description
of the program semantics in the theorem prover ([9]). One of the advantages of our appoach is
its flexibility and scalability: the use of another theorem prover only requires a translation of
the semantics of the assertion language and the incorporation of new programming constructs
only requires the definition of new verification conditions in terms of the substitution operators
introduced in this paper.

Currently, we are extending the system to the widely used programming language Java by, first
of all, implementing message passing ([4]) and and the basics of the multi-threaded control flow
of Java ([1]). We are also incorporating the Java mechanism of inheritance. As already remarked
above, the verification conditions corresponding to these Java programming constructs are defined
in terms of the substitution operators introduced in this paper.

A more long-term goal consists of a further development of the tool towards an interactive,
user-friendly specification and verification environment which will provide support for the syntax,

25

pretty printing, and type checking of the assertion languages. Moreover, it will provide graphical
user interfaces to a theorem prover and to the programming environment, and include the compiler
that generates the verification conditions automatically.

26

Bibliography

[1] E. Abraham-Mumm and F.S. de Boer. Proof-outlines for threads in Java. Proceedings of
CONCUR 2000, Lecture Notes in Computer Science, Vol. 1877, 2000.

[2] J.W. de Bakker. Mathematical theory of program correctness. Prentice-Hall.

[3] URL: http://www4.informatik.tu-muenchen.de/∼isabelle/bali/.

[4] F.S. de Boer. A WP-calculus for OO. Proceedings of Foundations of Software Science and
Computation Structures (FOSSACS), Lecture Notes in Computer Science, Vol. 1578, 1999.

[5] J. Hatcliff and M. Dwyer. Using the Bandera tool set to model-check properties of concurrent
Java software. Proceedings of CONCUR 2001, Lecture Notes in Computer Science, 2001.

[6] The CUP parser generator. URL: http://www.cs.princeton.edu/∼appel/modern/java/CUP/.

[7] E.W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.

[8] D. Gries. The Science of Programming. Springer-Verlag Berlin Heidelberg, 1981.

[9] M. Huisman. Reasoning about Java programs in higher order logic with PVS and Isabelle.
IPA Dissertation Series 2001-03. ISBN 90-9014440-4.

[10] C.A.R. Hoare. An axiomatic basis for computer programming. Communications ACM, Vol.
12, 1969.

[11] The HOL system. URL: http://www.cl.cam.ac.uk/Research/HVG/HOL/.

[12] JLex: A Lexical Analyzer Generator for Java.
URL: http://www.cs.princeton.edu/∼appel/modern/java/JLex/.

[13] The LOOP project. URL: http://www.cs.kun.nl/∼bart/LOOP/.

[14] S. Owre, J. Rushby and N. Shankar. PVS: A prototype verification system. Proceedings of
the 1th Conference on Automated Deduction, Lecture Notes in Artificial Intelligence, Vol.
617, 1992.

[15] A. Poetzsch-Heffter and P. Mueller. Logical foundations for typed object-oriented languages.
Proceedings of the IFIP Working Conference on Programming Concepts and Methods (PRO-
COMET98).

[16] B. Reus, M. Wirsing, R. Hennicker. A Hoare Calculus for Verifying Java Realizations of OCL-
Constrained Design Models. Proceedings of FASE 2001, Lecture Notes in Computer Science,
Vol. 2029, 2001.

[17] W.P. de Roever, F.S. de Boer, U. Hanneman, J. Hooman, Y. Lakhnech, M. Poel, and J.
Zwiers. Concurrency Verification. Cambridge University Press 2001.

[18] J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley Object Technology Series.

27

[19] J.B. Warmer and A.G. Kleppe. The object constraint language: precise modeling with UML.
Addison-Wesley Object Technology Series.

28

