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By employing fundamental results from “geometric” functional analysis and the 
theory of multifunctions we formulate a general model for (nonsequential) 
statistical decision theory, which extends Wald’s classical model. From central 
results that hold for the model we derive a general theorem on the existence of 
admissible nonrandomized Bayes rules. The generality of our model makes it also 
possible to apply these results to some stochastic optimization problems. In an 
appendix we deal with the question of sufficiency reduction. 

1. INTRODUCTION 

In this paper we shall formulate a general model for (nonsequential) 
statistical decision theory, which extends the classical model introduced by 
Wald [ 191 and developed by LeCam [ 14, 15 ] and Brown [7]. To this end we 
employ fundamental results from “geometric” functional analysis and the 
theory of multifunctions that are now available. It is interesting to note that 
the geometrical aspects of the model, so visible in the extreme-point-role of 
the nonrandomized decision rules, do not figure in the standard descriptions 
of the theory [7, 11, 14, 15, 191, although they were used in [ 131. Also, we 
should mention that in some respects we have not aimed for the level of 
generality attained in [ 14, 151, so as to remain in closer touch with the 
measure theoretical setting of the model and its statistical background. 
Finally, we remark that quite a number of the aspects of the model 
emphasized here can be extended to a sequential setup. 

The organization of this paper is as follows. After the formulation of the 
model in Section 2 we give some applications in Sections 3 and 4. Our main 
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result for statistical decision theory concerns the existence of nonrandomized 
admissible Bayes rules, whereas in Section 4 some applications to other 
stochastic optimization problems are given (cf. (5, 181). Finally, we deal 
with the question of reduction by sufficiency in an appendix to this paper. 

2. A MODEL FOR STATISTICAL DECISION THEORY 

Let (X, %) be a measurable space, the sample (or observation) space, and 
let 9 be a collection of probability measures on X, dominated by a u-finite 
measure p. The Radon-Nikodym derivativef, of P with respect to y can be 
considered as an element of L*(X), the usual Lr-space of functionals on 
(X, X,,U). Let C denote a separable Banach lattice and M its dual space, 
equipped with the weak a(M, C)-topology and the canonical (product) 
partial order. The norm and partial ordering relation on C will be denoted by 
II lIc and G respectively, and the duality between C and it4 is represented 
by the symbol (., .) (cf. [9, Chap. VI). Let r be a measurable multifunction 
on X with nonempty closed convex extremal values in the positive part MC 
of the unit ball M, of M.’ We refer to the text by Castaing and Valadier [8] 
for details on multifunctions; the reader not familiar with this notion may 
substitute for I’ the multifunction identically equal to M: without missing 
the essentials of this paper. Let us remember that a subset B, of a convex set 
B in a linear space is said to be extremal in 3 if for every b, b’ E B we have 
that fb + {b’ E B, implies that 6, b’ E B, [ 12, Chap. I]. In such a case we 
have trivially that aB,, the extremal boundary (or collection of extreme 
points) of B,, is contained in aB. An M-valued function s on X is said to be 
a measurable selector of r if s is X-measurable and s(x) E T(x) (unless 
mentioned otherwise, a topological space is understood to be equipped with 
its Bore1 o-algebra). The collection of all measurable selectors of r is 
denoted by Yr, and its quotient in L”(X, M) by S,. (cf. [S]; here L”O(X, M) 
denotes the usual La-space of M-valued functions on (X, X, ,u)). The set S, 
will be called the class of (randomized) decision rules, and its elements will 
be referred to as (randomized) decision rules. We shall motivate this nomen- 
clature below, but wish here to draw attention to the fact that the 
introduction of the multifunction r will allow the collection of available 
decisions (or actions) to depend upon the observation. Consider the subset 
pr of Yr composed of those measurable selectors s of r for which 
s(x) E aM: for every x E X. Its quotient in LW(X, M) is denoted by Sr and 
will be called the class of nonrandomized decision rules. 

Let (I,} denote an increasing sequence of C-valued functions on 9 x X, 
where for every n E N I,, is such that the function f, l,(P, .) belongs to 

’ Note that M: is compact and me&able [ 12, 111.12]. 
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L’(X, C) for every P E .Y (here L’(X; C) denotes the usual L’-space of C- 
valued functions on (X, 5, ,u); in our notation we shall not strictly adhere to 
the distinction between equivalence classes and their representants). The 
sequence {Z,} will be referred to as the loss sequence. We shall suppose also 
that there exists k, E C for which I, ac k, on 9 x X, although it is possible 
to relax this assumption. The risk R(P, 6) of a decision rule 6 E S,. when 
sampling takes place under the probability measure P E 9, is defined by 

R(P, 6) = l@ T /(4x), W, 4) Wx), 

(where we use the duality symbol introduced above). Obviously, (2.1) is well 
defined since the assumptions cause the limit in the right-hand side to be 
monotone (possibly equal to +co). The (- co, +co ]-valued functional R(., 6) 
on 9 is called the risk function of the decision rule 6. 

If we agree to measure the “effectiveness” of a statistical decision rule 
only through its risk function, the measure space (X, S, ,K) can be supposed 
to be complete without loosing generality (see the Appendix; note that the 
original o-algebra S is sufficient for .Y within its own p-completion). This 
will be done from now on. Important specializations of the model described 
above are obtained by taking C to be a lattice of functionals on a topological 
space A. This space A is then called the action space, and the elements of the 
loss sequence {l,} can consequently be regarded as functionals on 
3’ x Xx A. Before furnishing some examples, let us agree to call a 
functional on XX A a normal integrand if $ is X @ d-measurable and 
4(x, .) is lower semicontinuous on A for every x E X (here &denotes the 
Bore1 u-algebra on A; cf. [8, Chap. VII] for details on normal integrands). 

EXAMPLE 1. Let A be a compact metric space (its metric will be 
indicated by p) and let C G Q(A), the separable Banach lattice of continuous 
functionals on A, equipped with the supremum norm. Then M represents the 
collection M(A) of all (signed) Radon measures on A, equipped with the 
vague topology. Take r to be the multifunction on X which is identically 
equal to the closed convex set M:(A) of all Radon probability measures on 
A. Note that W:(A) consists of all Dirac probability measures on A and 
actually this set is homeomorphic to A by [9, Proposition 12.9, 
Problem 25.11. In this case the set Yr consists of all transition probabilities 
with respect to X and A (cf. [ 17, Chap. III]) and the set p’r is homeomorphic 
to the collection of all measurable functions from X into A. 

Concerning the loss sequence, we shall demonstrate that, in the present 
case, there exists a functional 1 on 9 x X x A such that for every P E 9 
l(P, ., .) is a normal integrand and such that for every P E 9, 6 E S,, 

R(P, 6) = 1 P(h) I 6(x; da) I(P, x, a). 
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Conversely, corresponding to every functional 1 on .Y x X X A, bounded 
below by some k, E V(A) and such that I(P, ., .) is a normal integrand for 
every PE .Y”, there exists a loss sequence (I,} for which (2.2)--and 
(2.1 )--hold. 

Let us begin by proving the first claim. For fixed PE .Y”. n E N the 
function I,(P, .) into F(A) can also be regarded as a functional 
(x, a) -+ t,,(P, x)(a) on X x A that is measurable in its first and continuous in 
its second argument, whence .x‘@ J-measurable. Thus, 1s lim, T I, 
satisfies the claims made about 1, and (2.2) follows from (2.1) by virtue of 
the monotone convergence theorem. The second claim is proved as follows. 
Rather than subtracting k, from 1 we may suppose that 1 is nonnegative on 
.P x X x A. We define now, in analogy to the proof of a theorem by Baire, 
for n E IN, P E Y”, x E X, a’ E A, the nonnegative functional L by 

QP, x, a’) = k; [np(a, a’) + l(P, x, a)] (2.3) 

Fix n E N, P E ,Y. Trivially, c(P, x, .) is a continuous functional for every 
x E X. Also, for every a’ E A we have that {x E XjL(P, x, a’) < /3} = 
proj,{ (x, a)] np(a, a’) + 1(P, x, a) < /3), for every p E IR, so by a well-known 
projection theorem L(P, ., a’) is X-measurable [8, Theorem 111.231. Also, as 
in the proof of Baire’s theorem, one shows easily that lower semicontinuity 
of I implies that Z(P, x, a) = lim, T I,(P, x, a) for every P E 9, x E X, u E A 
(cf. [4, Theorem 1 ] for an abstract setting of this result). Finally, we set 
I, = inf(&, n), n E N, and conclude that {I,,} can indeed be considered as a 
loss sequence for which (2.1) and (2.2) hold. Let us note that in establishing 
this correspondence the compactness of the space A has not really been used. 
Finally, it should be mentioned that Brown has shown, by a slightly more 
careful argument, that the completeness condition on (X, -5, ,u) used in the 
argument here can be dispensed with [7, Theorem 3.101. 

In the following example we show that the introduction of a multifunction 
can mean more than a mathematical embellishment of the theory. 

EXAMPLE 2. Let A be a locally compact metric space which is countable 
at infinity. Let A be a measurable multifunction from X into A with 
nonempty compact values and define, for x E X, the subset T(x) of M:(A) 
by T(x) = {v]@(x)) = 1 }. Then the multifunction is measurable by 18, 
Theorems 111.30, IV.121 with nonempty closed convex extremal values. By 
means of an Alexandroff compactification (addition of a point co) A can be 
regarded as an open set in the compact metrizable space 2 = A u (00 } 16, 
Chap. 9, Sect. 21. Of course, compact subsets of A are compact in A. Since 
the inclusion I of subsets of A into A is continuous, the multifunction I o A is 
measurable from X into a with nonempty compact values 18, 
Definition III. 1 ] (instead of I o A we shall continue to write A without risking 
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much confusion). Consequently, r can also be regarded as a measurable 
multifunction from X into the set M:(a) of Radon probability measures on 
A. Clearly, as far as the class of decision rules is concerned, we have now 
regained the structure of Example 1. Note that the class $ is homeomorphic 
to the class of all measurable selectors of the multifunction A. Given a 
nonnegative loss functional 1 on 9 x XX A which is such that 1(P, ., .) is a 
normal integrand for every P E 9, we can extend I to 3 x X x a as follows. 
Define for PEY”, xEX f(P,x,a)=l(P,x,a) if aEA(x) and -+co 
elsewhere; since the graph gphd of the multifunction A is %@ J?‘- 
measurable by [8, Theorem 111.30], f(P, -, .) is X@ J-measurable (of 
course, J?’ indicates the Bore1 u-algebra on a). Also, the extension preserves 
the lower semicontinuity in the last argument, so the structure of Example 1 
has been regained completely. In conclusion, we observe that it would have 
been possible to set out with 1 defined only on 5” x gphd. 

EXAMPLE 3. (cf. [7, 14, 191). As Example 2, only suppose now that A is 
identically equal to A on X and that the loss functional 1 is such that for 
every P E .Y”, x E X z<P, x, .) tends to +co (i.e., given any /l E F? there exists 
a compact K c A such that l(P, x, a) > p for a 6Z K). This time, define for 
P E .-Y’, x E X, I(P, x, a) = Z(P, x, a) if a E A and z +a~ if a = co. This 
extension T of 2 is such that T(P, ‘, .) is a normal integrand on Xx a for 
every P E 9’. In addition, define r to be identically equal to M:(a). A slight 
disadvantage of this extension is, naturally, that -iv, now also contains 
“extraordinary” decision rules 6 for which for some x E X the support of 
6(x) may contain co. Such rules would be statistically meaningless. This 
hardly matters since corresponding to every “extraordinary” decision rule 6 
there always exists an “ordinary” decision rule 6’ such that R(P, 6’) < 
R(P, 6) for every P E 9”. 

EXAMPLE 4. Consider the following estimation problem (cf. 
[ 19, Chap. I]). Let 9 be indexed by a set 0 of real parameters, 
9 = {PO 119 E O}, where P, stands for the normal distribution with mean 6 
and variance 1 on the real line X. In case we use the loss functional 
Z(t9, x, a) = (0 - a)*, where the action variable u is an element of the real line 
A, we are in the setting of Example 3. On the other hand, if we adopt the loss 
function I’((% x, a) = min( 103, (f? - a)‘) (’ m a situation where errors beyond a 
certain magnitude do not matter anymore) and if we also define the 
multifunction A by A(x) = [x - 106, x + 106], x E X, to restrict our possible 
estimates after the observation, we are in the setting of Example 2. 

Remark 1. Proceeding in a slightly different way, the embedding 
procedure of Example 2 can also be performed in case the space A is only 
metric and separable. In this approach one compactifies within the Hilbert 
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cube. Details are left to the reader (cf. ]lO, Theoremes 111.58, 591). For an 
even more general approach-although formulated for optimal control 
problems-we refer to [ 20,2 11. 

Remark 2. Although, as we have argued, completeness of (X, .K’, ,u) can 
always be presupposed w.l.o.g., it should be pointed out that all results of 
this paper can also be proven without using the completeness assumption, cf. 
17, 13,211. 

3. DECISION THEORETICAL RESULTS 

In the following we shall demonstrate how some of the main results of 
statistical decision theory follow from known results in geometric functional 
analysis and the theory of multifunctions. To begin with, let us equip the 
space L”(X, M) with the weak a(L”O(X, M), L’(X, C))-topology (we note 
that this makes L”O(X, M) into a Hausdorff locally convex space). All 
topological statements regarding subsets of L”O(X; M) will be made with 
respect to this topology. As an immediate consequence of the topologization 
we have the following (cf. [ 14, Theorem 21, [ 19, Theorem 3.1 I). 

THEOREM 1. (i) The class S, of randomized decision rules is a 
nonempty compact convex set in Lm(X, 44). (ii) For every P E 9 the 
functional R(P, .) is lower semicontinuous and afine on S,. (iii) If the a- 
algebra X is countably generated, S, is metrizable. 

Proof. (i) Follows immediately from [8, Theorem V.11. (ii) Follows 
directly from (2.1) and the definition of the weak topology on L”O(X, M). 
(iii) Follows from the definition of the topology on Lm(X, M) and the 
separability of the space L’(X, C), which is a consequence of the additional 
assumption [ 12, III.l2F]. 

Let us agree to say that a subset F of S, has property D if 6 E F, 6’ E S,. 
and R(., 6’) < R( ., 6) imply 6’ E F (here < denotes the canonical product 
ordering for functionals on 3). In statistical decision theory this property is 
not unfamiliar; a decision rule SE S, is said to be admissible if the set 
{ 6 E S,] R(,, S) = R(., s)} has property D. The following consequence of 
Theorem 1 is, in essence, Wald’s minimal complete class result. We include 
its proof, because it establishes a certain line of argument that will be 
continued below. 

COROLLARY 2. Corresponding to every decision rule 6 E S, there exists 
an admissible decision rule 6 such that R( ., 8) < R( ., 6). 

Proof: Consider the collection X0 of all nonempty closed subsets of S,. 
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that have property D. Equip X0 with the partial order by inclusion. From 
Theorem 1 it follows immediately, by the finite intersection property, that Sg 
is inductive. Let be S, ; evidently, the set P consisting of those 6 E Sr for 
which R( ., S) < R( ., 8) has property D. Also, by Theorem 1 (ii), P is closed. 
By Zorn’s lemma P contains a minimal element F,, of X0. Consider two 
arbitrary elements a’, 6” of F,, and suppose that for some P, E 9 
R(P,,, sl) < R(P,, s”). Define a = inf(R(P,, S)]S E P,,) and F, 3 (6 E F,] 
R(P,, 6) = a}. By Theorem 1 F, is nonempty and closed; also, it has 
property D and is strictly contained in FO. Hence we have a contradiction 
and conclude that for all 6’, 6” E F,, R( ,, 6’) = R(., 6”). This means that 
every SE F,, is admissible and the proof is finished. 

Other classical results of statistical decision theory, such as the 
completeness of the class of Bayes rules in the wide sense and the existence 
of Bayes rules, follow equally directly from Theorem 1. In constrast, the 
following important result is not represented in the standard literature on the 
subject. 

THEOREM 3. The class f?, of nonrandomized decision rules is the 
extremal boundary 27, of the class S, of randomized decision rules. 

Proof: By definition of P the set T(x) is extremal in M: for every x E X. 
Thus X(X) is contained in aM: for every x E X, and this implies trivially 
that %(x) = P(x) n aM: for every x E X. Denote by 5$,. the collection of 
those 6 E Y; for which 6(x) E %(x) for every x E X and denote its quotient 
in Lm(X;M) by S,,. By the above pr = 5$,. and by [8, Theorem IV. 151 
as, = Sarr so the proof is finished. 

Let us now consider an application of Theorem 3. To this end we shall 
introduce a few more assumptions that set the stage for some Bayesian 
considerations. Suppose that the u-algebra X is countably generated and 
that the set 9 of probability measures has been equipped with a u-algebra ,Y 
such that P -+ P(X,) is .?Y-measurable for every X,, E 27. Also, suppose that 
the elements of the loss sequence {I,} are z @ %-measurable. By 
[ 16, VIII.lO] there exists a C @ X-measurable version of the functional 
(P, x) wfp(x). A positive measure on 9 will be called a prior (measure). 
For every prior r the Buyes risk (r, 6) of the decision rule S E S,. is defined 
by 

1 (t, 6) = 1 R(P, 4 W’), 

and in view of our assumptions this definition makes sense. A decision rule 
6 E S, is said to be a Bayes rule with respect to the prior 5 if 4,(r, S) < 
h (G 8’) for every 6’ E S,. The following result generalizes 
[ 19, Theorem 3.51. 
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THEOREM 4. Corresponding to every prior T there exists a nonran- 
domized admissible Bayes rule. 

Proof. Let r be an arbitrary prior. Consider the collection >-“I of all 
nonempty closed extremal subsets F of S, that have property D, equipped 
with the partial order by inclusion. It is easy to check that 5 is inductive 
(cf. the proof of Theorem 2). Since the collection of all Bayes rules with 
respect to t belongs to t< (note that, in view of Theorem 1 (iii) and Fatou’s 
lemma, the functional ?(r, .) is lower semicontinuous on S,), it must contain 
a minimal element F, of %;T1. Completely analogous to the proof of 
Theorem 2 we show that F,, is such that for some 6’ E S, F, = 
(6 E S,]R(., S) = R(., S’)}. By [ 12, Lemma II.131 F, contains an extreme 
point, which, by extremality of F,,, is also an extreme point of S,. Since all 
elements of F, are clearly admissible, the proof is finished by Theorem 3. 

Other applications of Theorem 3 to the classical decision theoretical 
framework will follow elsewhere. The remainder of this paper is devoted to 
the application of the above results to some stochastic optimization 
problems. 

4. SOME APPLICATIONS TO STOCHASTIC OPTIMIZATION PROBLEMS 

A special case of the following optimization problem was studied in [5]. 
We consider a measurable space (Q,K) and a measurable stochastic 
process (y,), 0 < t < 1 defined on it. We shall equip the time interval with its 
Bore1 u-algebra [B[O, 1] and the Lebesgue measure 1. Let (&), be an 
increasing family of sub-u-algebras of X such that the process (y,), is 
adapted to it (cf. [lo]). Let _I be a collection of probability measures on 
(Q, jT), dominated by a o-finite measure V. Let us suppose that the process 
(yJl is governed by an unknown element of 9. Let A be a compact metric 
space of control points, equipped with its Bore1 u-algebra &‘, and let c be a 
nonnegative instantaneous cost functional defined on 9 x [0, 1 ] x R x A 
which is such that ((t, o), a) ++ c(Q, t, w, a) is a normal integrand on 
([0, l]xn)xA for every QE8. 

A nonanticipative strategy is defined to be a measurable function from 
(0, I] X G into A, where [0, l] X D is equipped with the adapted sub-a- 
algebra .9 of I3[0, 1 ] X F, consisting of those B whose section B, belongs to 
LF for every t E [0, 11. The collection of all nonanticipative strategies is 
denoted by ZZ. The expected cost E(Q, X) of operating with the nonan- 
ticipative strategy x E n under the probability measure Q E 9 is defined by 

E(Q, x) = 1 Q(dw) j- Wt) c(Q, t, w $t, 0)). 
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A strategy % E l7 is said to be admissible if for every n E lI E(., n) < E(., 71) 
implies E(., rr) = E(., E). Of course, in case the set B is a singleton, the 
notion of admissibility contracts to that of optimality used in [5]. The 
following result generalizes the main result of [5] in several ways (and 
makes the argument in [5] regarding conditional expectation more precise). 

THEOREM 5. There exists an admissible nonanticipative strategy. 

Proof. As was demonstrated in Example 1, there exists an increasing 
sequence {c,}, converging pointwise to c and such that c,(Q, . ) is (a 
representant of) an element in L’(X, C(A)) for every n E R\l, Q E 9. Here we 
set X= [O, 1] x R. For every n E N, Q E S the conditional expectation 
FJQ, .) of c,(Q, .) with respect to 9 and A x Q is well defined as an element 
of the Li-space of G?(A)-valued functions on (X,9,1 X v) (e.g., 
[8, Proposition VIII.321). From the definition of conditional expectation it 
follows trivially that for every Q E 9’ and every transition probability 6 with 
respect to (X, 9) and (A, &‘) 

E(Q, 4 = lim T  j Q(dw) j W) (FJQ, t, w), W, o)), 
n 

where the left-hand side represents the trivial extension of (4.1) to transition 
probabilities (“randomized nonanticipative strategies”), and (., .) the duality 
between +?(A) and M:(A) (cf. Example 1). It will be clear that the result 
follows now from an application of Theorem 4 with 9 = ,l x 9, L’ 
identically equal to M:(A) and r equal to the zero measure on 9 (i.e., 
1, (5, .) identically equal to zero). Note that here, as in Section 1, the u- 
algebra 9 can be supposed complete with respect to I X v without loss of 
generality. 

To obtain another application we turn to a standard problem studied in 
the area of stochastic programming with recourse. We shall give a slight 
extension of the main result in [ 181 and derive this in a different and more 
direct fashion. We work within a setting which is a particular case of 
Example 2. Namely, let (X, 97, P) be a complete probability space, A a 
compact set in a metrizable locally convex vector space and d a measurable 
multifunction from X into A with nonempty closed convex values. In terms 
of Example 2, a can be set equal to A and the definition of the multifunction 
r is obvious. Thus, the collection Y; consists of those transition probabilities 
6 from (X, 97) into (A, -pP) for which 6(x; d(x)) = 1 for every x E X. (To 
connect our set-up with that of [ 181, note that one can take % to be a 
suitable nonanticipative a-algebra in the two-stage setting of [ 181.) For 
i = O,..., n, let li be a normal integral on the graph of d (cf. Example 2), 
which is convex in its second argument. Also, we shall assume that I, is 
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bounded below and that 1 , ,.,., 1, are bounded on gph A. The primal 
optimization problem (0 1) is defined by 

(01): inf (1 P(dx) 16(x; da) 1,(x, a)1 6 E G) , 

where the set G is defined to be the quotient of those nonrandomized 6 E .F, 
that satisfy 

i 
6(x; da) li(X, a) < 0 P-a.e. for i = l,..., n. (4.2) 

For notational convenience we define, for r] in L’(X), 6 E S, 

9i(rl9 4 = j  P(dX) V(X) j  W; da) li(X9 a). 

Define Y = (L’+(X))” and let 1, denote the characteristic function of the set 
X. We define for y = (y, ,..., y,) E Y and 6 E S, 

4(Yv6)=40(1X,6)+ i: 4i(Yi96)* 
i=l 

The dual objective functional g is defined by g(y) = inf(q(y, a)] 6 E Sr), 
y E Y and the dual optimization problem (02) by 

(02): sup(g(y)ly E Y) 

THEOREM 6. The primal optimization problem (01) has an optimal 
solution and the following duality relation holds: 

min(01) = sup(O2). 

ProoJ Denote by t? the quotient of those 6 E yr that satisfy (4.2) and 
define the optimization problem (01) by replacing G with G in the definition 
of (01). For 6 E S, we have that sup(C~=t qi(y,, S)]y E Y) = 0 if 6 E 6, 
= +co otherwise. By Theorem 1 and Examplesl, 2 the functional figuring in 
the above statement is lower semicontinuous on S,, so we conclude that G is 
a compact subset of S,. Therefore inf(al) is attained. By the same results, 
for every y E Y the functional q(y, .) is lower semicontinuous and afline on 
the compact convex set S,. . Also, the functional q( ., 6) is easily checked to 
be L’-continuous and afIine an Y for every 6 E S,. By a well-known 
minimax theorem [2, Theorime 1.41 it follows that min(o1) = sup(O2). Since 
6 contains G, the proof will clearly be finished it for every SE G there exists 
6 E G such that q,,(l,, 6) < qO(l,, 8). This will now be shown to follow from 
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the convexity assumptions on 1, and d(cf. [ 11,2.8]). Let 8E Yr be a 
representant of an element in G. By [ 1, Sect. 21 there exists for every x E X 
an element r(x) E d(x) which is the barycenter of the probability measure 
s(x), and by [ 1, Proposition 1.2.21 we have for every x E X, i = 0, l,..., it that 
( a(~; da) li(X, a) 2 1,(x, r(x))* M oreover the selection x ++ I(X) of d is 
measurable since it is the composition of x I+ &x)-measurable from X into 
M:(A) by definition-and 6(x) + r(x), which is continuous from M:(A) 
into A by [9, Proposition 26.31. It is now trivial to finish the proof. 

APPENDIX: SUFFICIENCY REDUCTION 

For the model of Section 2 we shall now formulate a general result on the 
reduction by means of sufficiency; cf. [3, 111. Let jY denote a sub-a-algebra 
of % which is sutIicient for 9, i.e., for every B E Z there exists an j?Y- 
measurable function $B such that for every P E 9 h is a version of the 
conditional expectation of the characteristic function 1, with respect to $Y 
and P [3]. Denote by S&Y) the quotient of the collection of all p- 
measurable selectors of r. We have the following result. 

THEOREM. Suppose that the multifunction r is ~-measurable and that 
every element l,, n E N, of the loss sequence is such that l,(P, ‘) is $Y- 
measurable for every P E 9. Then there corresponds to every decision rule 
6 E S, a decision rule SE S&V/) such that R(., 8) = R(., 6). 

ProoJ Observe that the sufftciency notion can easily be implemented in 
the proof of [8, Proposition VIII.321 to yield that, corresponding to the given 
&which is, a fortiori, an element of L’(X, M), the L’-space of M-valued 
functions on (X, X, p)), there exists bE L’(X, 44) which has a JY- 
measurable representant and is such that 

for every P E 9, BEj2’~ 8dP=( 6dP. (Al) 
B B 

Let us show that bE S,. By [8, Theorem III. 151 we have that for every 
k E C the functional x + z*(kIT(x)) - sup((k, m)l m E T(x)) is $Y- 
measurable. Let {k,} denote a dense sequence in C and let fl denote a finite 
measure, equivalent to ,u, which is an “infinite convex combination” of 
elements in 9 [ 17, Problem IV.1.31. By (Al) we have that for every n E N, 
BEY’, 

j 
B 

(k, t W) iW) = j (k, 9 &4> &W 
B 

< 
5 

.c*(k,, I WI PW). 
B 
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So we may conclude that for p-almost every x E X it is true that 

(k Kq) < J:*(kIe)) for every k E C. 642) 

Let x be an element of X for which (A2) holds. If 8(x) & T(x) it would be 
possible to separate (8(x)} and T(x) strictly, according to the Hahn-Banach 
theorem. This is immediately seen to contradict (A2). We conclude that 
8E S,(jP). The equality of the risk functions follows from using (Al) in a 
simple approximation argument. 

Note added in proof: The Theorem in the Appendix seems only to be valid under the 
additional hypothesis that M: be separable for the dual norm topology. Otherwise, one 
cannot conclude that the weakly measurable elements of S,. are also strongly 
measurabl+i.e., belong to L’(X, M)--as is required in [S, Proposition VIII.32]. The 
additional hypothesis places the Theorem outside the reach of most applications in statistical 
decision theory. Nevertheless, this has no consequences for the remainder of the paper, as 
appears from Remark 2. 
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