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S y n o p s i s  

The  t h e r m o d y n a m i c s  of i r revers ib le  processes,  based  on t h e  O n s a g e r 
rec iproca l  re la t ions ,  is app l i ed  to  a s y s t e m  consis t ing  of a m i x t u r e  of t w o  
subs tances ,  of which  one can  go o v e r  in to  t he  other .  The  m i x t u r e  is enc losed  
in two  c o m m u n i c a t i n g  reservoi rs  a t  d i f fe ren t  t e m p e r a t u r e s  T a n d  T + AT.  
The  s i tua t ions ,  in which  sys tems  arr ive,  when  one, two  or more  dif ferences  
b e t w e e n  the  va lues  of s ta t~ p a r a m e t e r s  in t he  two  reservoi rs  are  k e p t  f ixed,  
are  cal led " s t a t i o n a r y  s ta tes  of first,  second etc. o rde r" .  F o r  t he  s t a t i o n a r y  
s t a t e  of t he  f irs t  o rder  w i t h  f ixed A T the  cor respond ing  pressure  d i f fe rence  
A P  is ca lcu la ted .  This  gives t he  t h e r m o m o l e c u l a r  pressure  ef fec t  

A P / A T  = - -  Q * / v  T = (h - - -  U * ) / v  T ,  

where  h and  v. a re  t he  m e a n  specif ic  e n t h a l p y  and  vo lume.  Th is  e q u a t i o n  
shows the  connec t ion  w i t h  t he  mechano-ca lo r i c  effect  Q*, since app l i ca t ion  
of t h e  0 n s a g e r re la t ions  shows t h a t  Q* is t he  " h e a t  of t r a n s f e r "  i.e. 
t he  h e a t  suppl ied  per  uni t  of t i m e  f rom the  su r round ings  to  t he  rese rvo i r  a t  
t e m p e r a t u r e  T, when  one un i t  of mass  is t r ans fe r red  f rom one rese rvo i r  t o  
t he  o the r  in t h e  s t a t i o n a r y  s t a t e  of t h e  second order  w i t h  f ixed  z ip  and  
A T  = 0 (uni form t empe ra tu r e ) .  S imi la r ly  U* is t he  " e n e r g y  of t r a n s f e r " .  
T h e  inf luence  of A T on t h e  r e l a t i ve  s epa ra t i on  ( the rmal  effusion) and  t h e  
" c h e m i c a l  a f f i n i t y "  of t he  t w o  c o m p o n e n t s  is also ca lcu la ted .  The  h e a t  
c o n d u c t i o n  can  be spl i t  in to  an  " a b n o r m a l "  pa r t  due  to  t he  coupl ing  of 
di f fus ion and  chemica l  r eac t ion  b e t w e e n  the  c o m p o n e n t s  and  a " n o r m a l "  
p a r t  also p resen t  w h e n  no  r e a c t i o n  t akes  place.  

The  resul ts  can  be app l i ed  to  l iqu id  he l i um I I ,  cons idered  in t h e  two- f lu id  
t h e o r y  as a m i x t u r e  of " n o r m a l "  (1) and  " s u p e r f l u i d "  (2) a toms ,  capab le  of 
t he  " c h e m i c a l  r e a c t i o n "  1 ~ -  2. W h e n  i t  is supposed  t h a t  chemica l  equi l i -  
b r i u m  is i m m e d i a t e l y  es tab l i shed  and  t h a t  only  super f lu id  a toms  can  pass  
t h r o u g h  a suf f ic ient ly  na r row capi l la ry ,  t he  above  m e n t i o n e d  e q u a t i o n  leads  
.to G o r t e r ' s  f o rmula  

v A P / A T  = x I ~ s / ~ x  1, 

where  x 1 is t he  f rac t ion  of n o r m a !  a t o m s  and  s t he  m e a n  specif ic  e n t r o p y  of 
t he  mix tu re .  U n d e r  t he  same  c i r cums tances  only  the  " n o r m a l "  pa r t  of t h e  
h e a t  conduc t ion  subsists .  

- -  6 9 1  - -  
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§ 1. Introduction. In the two fluid theory of liquid helium II this 
substance is supposed to consist of two components, which we may 
call the "normal" and the "condensed" or "superfluid" atoms. In 
G o r t e r's version of the theory 1) equations of motion for both 
components are written down and expressions derived, which des- 
cribe several peculiar properties of liquid helium II. For the deri- 
vation of the diffusion force formulae G o r t e r uses a pseudo- 
thermostatic method, but he mentions that  " they  could probably 
also be derived by the aid of O n s a g e r's relations" 1). 

One of the aims of this paper is to show that  the thermodynamics 
of irreversible processes, based on the O n s a g e r reciprocal rela- 
tions, actually can be applied to the two fluid model of liquid helium 
II. We have not assumed that  the "chemical equilibrium" between 
the two components is immediately reached, as was supposed in 
G o r t e r's first paper. We also did not consider from the beginning 
the special case of helium, but have taken a mixture of two arbitra- 
ry "isomers" 1 and 2 capable of the "chemical reaction" 

1 2, (1) 

which transforms one substance into the other. The mixtures are 
supposed to be contained in two vessels, communicating by a narrow 
capillary. The vessels are artificially kept at temperatures, differing 
by an amount AT, and we calculate for the stationary state the 
resulting pressure difference AP and concentration difference Ax~ 
between both reservoirs, where x x is the relative proportion of the 
isomer 1 in the mixture. This means that  we arrive at an expression 
for AP/A T, which is called the thermomolecular pressure difference, 
and for Ax 1/A T, called the thermal effusion effect (sometimes thermal 
diffusion, although this latter name could better be used only for 
systems without capillaries or membranes). We also considered 
the mechano-caloric effect i.e. the heat transfer at fixed AP and 
A T = O .  

We have specially focused attention to the two limiting cases of 
absence of chemical reaction and immediate chemical equilibrium. 
The first is the ordinary thermal effusion phenomenon for a mixture 
of two non-reacting components, considered already by P r i g o- 
g i n e 2). The second case was taken in G o r t e r's calculation. 
For arbitrary substances we do not immediately obtain G o r t e r's 
expression, but as it should be, only when we make the assumption, 
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usually accepted for liquid helium II, t ha t  no "normal"  atoms can 
pass through a narrow capillary s). 

The present paper can also be considered as a refinement of the 
calculation made by  one of us 4), where liquid helium II  was con- 
sidered as one single substance. 

§ 2. Entropy production and phenomenological equations. Let us 
suppose tha t  the mixture  of isomers 1 and 2 enclosed in two co.mmu- 
nicating reservoirs I and II, of volumes v z and V H, kept  at tempera-  
tures T I and T H = T t + AT.  The pressures in the vessels I and II  
are PI  and P t t =  Px + AP,  the fraction of component  1 is xl r in 
the first and x~ t = x~ + Ax I in the second reservoir. The fraction of 
component  2 is given by  x I + x 2 = I. We suppose tha t  the "chemical  
react ion" (1) is possible between the components.  For  s implici ty 's  
sake we consider the case tha t  the sub-systems have equal  masses 
M I = M it. 

The first step in the the rmodynamics  of irreversible processes is to 
calculate the en t ropy  production corresponding with transfer  of 
energy and mass from I to II ,  and with the advancement  of the 
chemical reaction in I and II .  

Let  us write first the G i b b s formula 
= I I I t TtdS z d U  I + P t d V I  - -  1 2 1 d M l  - -  #2dMz, (2) 

where S I is the entropy,  U t the energy, #~ and #~ the chemical poten- 
tials (partial specific G i b b s functions), M( and M~ the masses 
of isomers 1 and 2, p t  the pressure and V z the volume, all quanti t ies  
referring to reservoir I. I t  is convenient  to split the differential 
masses into a part  indicated by  d t which refers to the transfer  of 
mass from one reservoir to the other, and a part  marked by  d, which 
gives the change, resulting from chemical reaction, e.g. 

dM~ : d,M~ + d,M~. (3) 

We have ,  of course, for the chemical reaction (1) 

d~3/I~ + d,M~ = 0, (4) 

and similarly for II.  Wi th  the help of (3) and (4), formula  (2) gets the 
a l ternat ive  form 

T~dS t = d U z + pId V ~ __ #ldtM~Z ' - -  tt~dtM ~ - -  A td,MZ~, (5) 

where A I ---- # z  1 ~ [*~ ( 6 )  
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is called the D e D o n d e r chemically affinity of the reaction (1). 
For the conservation of mass we can write 

d , M ~ + d , M ~  I = 0  ( k =  1,2). (7) 

The change of energy dU ~ may be split into an external part  deU ~, 
the energy exchanged with the surroundings, and an internal part 
diU I, the energy exchanged with vessel II. A similar splitting holds 
for dU ~. The conservation of energy can then be expressed as 

diU + diU" = 0.  (8)  

By means of (7) and (8) we find from equation (5) and a similar one 
for reservoir II  for the change of entropy of the total system 

dS = (deU z + PZdVZ)/TZ + (deU lI + PHdVZ1)/T't + (A T/T2)d,U ~ + 

+ A (izt/T)d,M ~ + A (tzJT)d,m~--(AX/T~r)d,.M~ - (A~Z/TU)d,M~ ~, (9) 

where the symbol A is used for the difference of a quant i ty  in II  and 
the corresponding one in I. 

Expression (9) can be split into two parts: one, giving the entropy 
supply from the surroundings (cf. appendix) 

des = (d~U + P ' d V ' ) / T '  + (deU H + PUdV'Z)/T '1, (10) 

the other giving the internal production of entropy, resulting from 
the taking place of irreversible processes 

d,S=-(A T/T~)d,U' + A (~,1/T) d,M~ + A (~,~/T) dtM~ - -  (A Z /T')dr M'r - -  

- -  (AZZ/TH) d,.M~'. (11) 

We now define the "energy flow" J,,, the flows Jk of components 
k = 1 or 2, and the chemical reaction rates Jz in vessel I and J u  in 
vessel II, as follows 

j , ,  - _ d i UZ/dt = diUH/dt 

J~ = - -  d,M~/dt = d,M~I/dt (k - .  1,2) 
f , =_ - -  d,.M]/dt --- dM~/dg (12) 

J , 1 -  - -  a,Mf' /at= a,M l /at. 

J , ,and Jk are counted positive for flow from reservoir I to II, Jz and 
Jzt are positive when the reaction takes places in the direction 1 ~ 2. 
After insertion of (12) in (11) we find for the production of entropy 
per unit time 

a -- d,S/dt = - -  J,,A T / T  2 - -  y / !  (#,/T) - -  J #  (#JT)  + 

+ J~A~/T t + J z z A ~ / T  u. (13) 
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This gives the entropy production as a sum of products of "flows" 
J and corresponding "forces", which we can describe as arising from 
energy conduction, diffusion and chemistry. We will now write down 
the phenomenological equations i.e. the "flows" as linear functions of 
the "forces". Doing this we must take care not to put quantities of 
different tensorial character in relation to each other. The applica- 
tion of this rule, which is called C u r i e's theorem 5), forbids us to 
combine the vectorial flows J,,, J l  and J2 with the scalar forces A t 
and A It and also the scalar flows J i  and J i t  with the vectorial forces. 
This leads us therefore to the relations 

J~ --  - -  L~  A(fl]/T) - -  L]2 A(fl2/T ) - -  L~3 (AT /T  u) 
J2 = - -  L2~ A (fl~/T) - -  L22 A (fl2/T) - -  1_.23 (A T I T  u) 
J'u ~- - -  g31 A (f l l /T)  - -  L32 A (flu/T) - -  L33 (A T / T  2) (I 4) 
J i  = L,4 At~ TI 
J i i =  L ~  AZ/T It. 

In the last two equations we have inserted the samecoefficient L44 
since there is obviously no physical difference between the reactions 
in I and II (we use here the supposition M t = MII ) .  We also omitted 
chemical cross-terms as there is admittedly no interaction between 
the chemical reactions in the two vessels. Finally we still have the 
three O n s a g e r reciprocal relations 6) 

LI2 = L21, L13 = L31 and Lz~ = L32, (15) 

so that  we are left with seven independent phenomenological coeffi- 
cients in (1 5). 

Inserting (1 4) into (13) we have 

(r = L1~ {A(fll/T)} 2 + L22{A(f12/T)} 2 -~- L33(AT/T2) u -{- 

+ (L,2 + L2, ) A(f lJT)A(f l21T ) + (L3, + L,3 ) A(fl l /T ) A T I T  2 + 

q- (L32 + L23 ) A(fl2/T ) A T / T  2 + L4~ ((AIITI) 2 + (AItlTI')2}, (16) 

i.e. the productiol~ of entropy per unit time is given as a quadratic 
function of the set of the "forces" A(fll/T), A(fl2/T), A T / T  2, A ( / T  I 
and A I I / T  n. According to (6) only four of these parameters are 
independent variables. 

§ 3. The stationary states. Formula (16) is an example of a general 
property of the production of entropy per unit time for any process 
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under  considerat ion:  a can always be wr i t ten  as a quadra t ic  func- 
tion of a set of variables,  which we m a y  call in general y~ ..... y,,. In our  
case (16) we had  n = 4, viz. the four independent  paramete rs  men-  
t ioned at the end of the preceding section; or eventua l ly  four inde- 
pendent  functions thereof.  

Now, b y  means  of some externa l  influence, one can fix the values 
of some of them, e.g. y¿ ..... Yk, where k takes the values 0, l ..... n. The 
funct ion or, which is positive definite, will a lways t end  to a min imum 
value in course of t ime, which value is reached when the par t ia l  
der ivat ives  &r/Oy; with i = k + l . . . . .  n are zero. These s tates  of 
lowest en t ropy  product ion  are s ta t ionary ,  because, once these s ta tes  
are reached, the different  variables yi(i ---- 1 . . . . .  n) will be cons tant  
in time. 

We can distinguish between "stationary states o/various order k", 
when different numbers  k of the variables y; are kept  cons tant  during 
the evolut ion of the system to the s t a t ionary  state.  This concept  of 
the order  of the s t a t ionary  s ta te  is ve ry  convenient  for the character i -  
zation of physical  s i tuat ions 8). We note  tha t  the s t a t ionary  s ta te  of 
zeroth order,  where none of the variables Yi is kept  at cons tant  value  
during this evolution,  is s imply the s ta te  of the rmos ta t i c  equil ibrium. 

For  our  purpose the s ta t ionary  state  of the first order,  reached 
when A T is kept  constant ,  is of special interest .  In this case we have  
for t h e  der ivat ives  of (16) with respect  to the other  independent  
variables 

= o } 
aoled ( i f dT )  = o ] (17) 

= O. 

Making use of the relation which follows from the definit ion (6) of 
the affinities 

AII/T H = AI /T  I -~- A(ttJT ) --A(ff21T ), (18) 

these equat ions  become 

2L,tA (#,/T) + (L,2 + L2t)A (ffJT) + ( L,3 + L3t)A T/T2+ 2L44A I; /T II = 0  

2L22A (gJT) + (Li2+ L21)A (gilT) + (L23+ L32)A T /T2--2L44A ;' /TH= 0 (1 9) 
2L44 A s~ T; + 2L~A ss/TII ~_ O. 

F r om these equat ions we can derive two impor t an t  results re- 
garding this s ta t ionary  state  of the first order  : 
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A) 
(19) we have from (14), (12) and (3) 

J l  - J i i  = d M I ' / d t  = 0 

J2 + J u  = dM~' /d t  = 0 
J~I + J l I  = - - d f l l / I ~ / d t  = d,M2/dt  = O. 

(20) can be regrouped to give 

Applying the O n s a g e r reciprocal relations Lq  - -  Li~ in 

Equat ions  

J~ + J i  = - -  dM~/dt  ---- 0 

J2 - -  J i  = - -  dM~/dt  ---- O, 

and summarized as 

= - -  - -  - -  J ,  = Jii. 

( 2 0 )  

(21) 

(22) 

Clearly these formulae express physically tha t  equal amounts  of 1 
and 2 pass in opposite directions through the capillary and tha t  in 
both reservoirs the amounts  of in- or outflowing mass of each com- 
ponent  are just compensated by  the chemical reaction taking place. 

Also the net to ta l  chemical reaction rate of each component  in both  
reservoirs when taken together is zero. I t  was a l ready remarked by  
M e i x n e r 7) tha t  the fluxes in (22) are not separately zero at the 
s ta t ionary  state. 

B) The equations (19) are three linear, homogeneous equations in 
the four variables A ( / q / T ) ,  A (p2 /T  ), A ~ / T  I and A T .  We can get an 
al ternat ive and more convenient form when we write the diffusion 
"force"  explicitly as 

A(#h /T  ) : - -  h h A T / T  2 + v k A P / T  + (ap.JOXl)p.TAxl/T ( k :  1,2), (23) 

where h k and v k are the part ial  specific en tha lpy  and volume of 
component  k. We also need the G i b b s-D u h e m relation 

XI(O/AI/OXI)p, T "A I- X2(~#2/OXl)p, T : O. (24) 

Then, finally, the three equations (17) for the s ta t ionary  state of the 
first order with A T  constant  are linear and homogeneous in the four 
variables A P ,  A x  l, A I / T  r and A T .  As A T  has a fixed, given value, we 
can calculate the other three ment ioned variables in terms of AT. 
After a lengthy,  but  e lementary  calculation we find the following 
results 

A P / A T  = (h + x~L~ + x2L2)/vT,  (25) 

where the abbreviat ions 

½(LI2_[_L21) ½ (L23_~_ L32) 1 1 - -  L22 -~(L la+ Lat) - -  -2L44 {½ (L la+  L31) + ½(L23+ Ls2)} 

Ll =-- L~L22 - -  {½(L,2 + L2~)) 2 + L44 ½(LII + L22 -[- L12 + L21 ) (26) 
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L 2 -- 
½(L,2 + L21) ½(L,3 + La, ) - -L ,  , ½(Lz3 ~- Ls2)--  ½ L ~  {½ (L,3 + Ls,) + ½(L23 + L32) } 

(27) 
LItL22 - -  { ½ L 1 2  + L21)} 2 + L44 ½(L11 + L22 + Ll2 + L21) 

are used and where h and v are the mean specific en tha lpy  and volume 

h = xlh~ + x2h 2 = x~(h, - -h2 )  + h 2, (28) 

V = XI'U 1 Jr- X2V2 = XI(U 1 _ _  V2 ) -.[- 7)2. (29) 

Fur the r  for the separation per uni t  tempera ture  difference 

Axe~AT = x 2 {v2(L , + h 0 - -  v~(L 2 + h2)}/vT(O/~/axO~,,T. (30) 

The thi rd  result is the chemical "force"  divided by  A T  

A Z / T I A T  = - -  A U / T U A T  = - - ½  A ( A / T ) / A T  = (L 2 - -  L t ) / 2 r  2 = 

_ 1 [½(L,2+__L2, ) {½(L,3+L3,)-½(L23+L32)}-L1,~(L2a+La2)+Lz~½(L,3+Ls,)7 (31) 

2T  2 L L11L22 - -  {½(LI2 + L21)} 2 + L ~  ½(LI1 + L22 + L12 + L2I ) J '  

In  order to show the full s y m m e t r y  and occurance of the same com- 
binat ions L 1 and L 2 of phenomenological  coefficients in all three 
equations (25), (30) and (31), the O n s a g e r relations (15) have 
not  yet  been inserted. 

The O n s a g e r relations must  however be applied to give 
physical significance to combinat ions of the phenomenological  con- 
s tants  Li~ (see sections 5, 6 and 7). To make this in terpreta t ion 
possible, we shall first discuss the s ta t ionary  state of second order, 
wi th  fixed A P  and AT.  

§ 4. Stationary state o/second order and energies o/trans[er. Let us 
again suppose cr to be wri t ten as a function of the four parameters  
AP,  AT ,  Ax  I and A ~ and let us now consider the s ta t ionary  state of 
second order where A T  and A P  are kept  at constant  values, wi th  
A T  = 0. In this case we have only two free independent  variables 
Ax I and A ~. 

For  the state of lowest ent ropy product ion we have, from (16) 

&r/OAx I = - -  (2Ix 1T 2) (~tt2/~xt) {Lttx2A/~ 1 + ½ (L ,2 + L21) (x2A#2--xlA/~l) 

- -  L22xtAl~2+ L44A Iz} = 0. (32) 

Oa/OA' = (2L4JT 2) (A x + A n) = 0, (33) 
where terms of higher order in Ax I and A P  have been neglected. For  
the sake of simplicity use has been made in these equations of the 
parameters  A#t and A/~ 2. Between these exists the connection, 
which follows from (18), (32) and (33) 
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Al~l _ L22xt - -  ½(L12 + L21)x2 + ½L44 ] (34) 
Al~_ Lt lx  2 - -  ½(L12 + L2t)x t + [ L ~  J 

Making use of the phenomenological equations (14) and the O n- 
s a g e r relations (15), equations (32) and (33) can also be written as 

x2J, - -  x l l2  - -  lzx = o, (35) 

l z  + J,, = O. (36) 

With the use of (12) these equations can be given the alternative 
simple form (x~ ---- M~/(M~t + M~) etc.) 

axe~at = ax '/at = o. (37) 

Formulae (37) and (36) express physically that  in this state the com- 
position in both vessels is constant in time and that the net total 
chemical production rate is zero. 

We can introduce now the so-called "quantities of transfer" which 
play an important r61e in the thermodynamics of irreversible pro- 
cesses s). The "energies of transfer" U* and U*(k = 1,2) are defined 
as the energies transported with one unit of mass of the mixture and of 
the component k in the stationary state of second order with fixed A P  
and fixed AT = 0 (uniform temperature)• Stated explicity we have 

J,, =- U* (J, + J2) (38) 

J,, -- u*  J ,  + U* J2. (39) 

Writing the first three equations (14) for A T ----- 0 

J 1  = - -  L l l  A # I / T  - -  LI2  A # 2 / T  

J2 = - -  L21 A#~/T - -  L22 A/t2/T (40) 
f , ,  ~-~ - -  L31 A#1/T - -  L32 Alt2/T 

and substituting these equations into (38) we find, using (34), the 
energy of transfer 

U*--  xl{{(L12+L21) L32--L22 L31 - -  ½L44(L31+L32)} "+ 

L1 iL22+ ½L44(LI 1 + L22+ L 12+ L20 - -  

+ x2{½(L12+ L20 L31--LIIL32--~L44(L31+ L32)} 
(41) 

--½(L12-t-L21) (Lt2xt-k L21x2)-t-½-(Ltlx2--L22xl)(L12--L21) 

If we substitute (40) into (39), identifying the coefficients of the 
forces in both members, we find 

L3k = L,kU~+L2hU* (k = 1, 2) (42) 
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These relations give for the energies of transfer U* 

U* = (L31Ln - -  L32L21)/(L ~tL22 - -  L~2L21), (43) 

U* ~- (L32L11 - -  L31LI2)/(LllL22 - -  LI2L21), (44) 

expressed in terms of the phenomenological coefficients. 
In equations (41), (43) and (44) we have found the desired results 

viz. the energies of transfer expressed in terms of the phenomeno- 
logical coefficients L;k and the relative proportions x, and x 2 of the 
components. 

We want to stress one result which concerns the relation between 
the energies of transfer which follows from (38) and (39) 

U* = {J~/(J, + J2)} U* + {J2/(Jl + J2)} u*. (45) 

We remark that in general 

J~/(Jl + J2) ~ xl and J2/(Jl + J2) ~ x2, (45a) 

because we have from (35) and (36) 

x~ = (Jl + Jt)/(Ja + J2) and x 2 =  ( J 2 - - J 1 ) / ( J ,  + J2). (45b) 

So we see that  only if the chemical reaction rate J 1 ( = -  JH) 
vanishes, the fractions occurring in (45) correspond to the relative 
proportions x~ and x 2 of the two components in the vessels for this 
stationary state. 

Finally we want to point out that we have not yet made use of the 
On s a g e r relations (15) in order to apply them only at a moment, 
where their full physical significance can be shown. Incidentally we 
remark that (41) is already considerably simplified by  the one O n- 
s a g e r relation L~2 ---- L m. 

§ 5. The thermomolecular pressure e//ect. Equation (25) with (26) 
and (27) gives the pressure effect in the stationary state of the first 
order with fixed AT.  It contains a combination of the phenomeno- 
logical coefficients. It is at this stage of the derivation that we intro- 
duce the 0 n s a g e r relations (15). As always in the thermodyna- 
mics of irreversible processes they enable us to give a physical signi- 
ficance to the hitherto uninterpreted combinations of coefficients. 
Here we have from (15), (26), (27) and (41) the relation 

xlL 1 + x2L 2 = - -  U*, (46) 



N O N - E Q U I L I B R I U M  T H E R M O D Y N A M I C S  AND L I Q U I D  H E L I U M  II 701 

so tha t  the thermomolecular  pressure effect can now be expressed in 
terms of the energy of t ransfer  U* 

A P / A T  = ( h -  U*)/vT. (47) 

Wi th  the help of (45) and (45b), this equation can al ternat ively be 
wri t ten as 

A P / A T = [ h - - x I U ~ - - x 2 U * + { J z / ( J ~ + J 2 ) } ( U * - - U ~ ) I / v T .  (48) 

These equat ions are valid for a rb i t ra ry  values of the coefficient L~.  
Two special cases are interesting L44 ---- 0 and L44 ~ oo. The first 

gives the results for non-reacting components.  As J 1 ( = - -  J11) -- 0 
in this case, we find from (48) 

A P / A T  = (h - -  x, U* - -  x2U*)/vT, (49) 

equivalent  to an equation,  derived by P r i g o g i n e ~). 
The other l imiting case would lead to infinitely quick chemical 

reactiop for finite affinity.  As this is impossible, we expect tha t  A I 
will tend  to zero. This means tha t  the si tuation with L44 -+ oo is the 
case of immediate  chemical equilibrium. In fact we find for L ~  ~ oo 
from (31) A z = 0 i.e. zero chemical aff ini ty (#t =/~2). From this 
we have 

(~g/~Xl)p, T = h I - - - h  2 -  T(s I --s2) = h I - - h  2 -  T(as /aXt )v ,  r = 0  (50) 

where g and s have the meaning of mean specific G i b b s function 
xl/~ 1 + x2# 2 and mean specific ent ropy of the mixture  xls I + x2s 2 
respectively, and where the G i b b s-D u h e m relation has been 
used for the ent ropy (same relation as (24) but  s k instead of/~,). 
Equat ions  (28), (47) and (50) give 

v A P / A T  = Xt(aS/OXOp, T + (h 2 -  U*) /T  (51) 

a formula to be discussed in § 9 for liquid helium. It  should be kept in 
mind tha t  in the limit L44 -+ oo, and therefore A I ~ 0, we m a y  not 
conclude tha t  J ~  0, as can be easily verified from (14) (fourth 
equation) and (31). 

§ 6. The thermal e//usion e[[ect. Equat ion  (30) gives the difference 
between the fractions of component  1 in the two vessels, in the 
first order s ta t ionary  state with A T  kept at constant  value. We 
will consider again the two limiting values for L ~  = 0 and L ~  oo. 

For  non-reacting components  (L44----0) we have, applying the 
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0 n s a g e r relations (15) to (26) and (27), again an in terpre ta t ion  in 
terms of the energies of t ransfer  (43) and (44) 

L 1 = (L21L32 - -  L31L22)/(L11L22 - -  L12L21) = - -  U*.  (52) 

L 2 = (L3tL12 - -  L32Ll l ) / (L I IL22  - -  L12L21)  = - -  U * .  (53) 
Thus we get from (30) 

A x l / A T  ---- x 2 { v l (U*  - -  h2) - -  v2(U* - -  h l ) } / v T ( O t t l / O x l ) p ,  r (54) 
equivalent  to P r i g o g i n e's formula 2) for thermal  effusion in 
a non-reacting mixture.  

For  immediate  chemicalequi l ibr ium L ,  --+ oo we find from (26), 
(27) and (41) 

L 1 ----- L 2 = - -  (L13 + L2s ) / (L l l  + L I 2  Jr- L21 + L22 ) = - -  U* ,  (55) 

where the O n s a g e r relations (15) have again been used. F rom 
(30) we then  have 

A x l / A T  ---- x 2 {hlv 2 - -  h2v 1 + (v a - -  v2) U * } / v T ( O I t l / O x t ) p ,  T .  (56) 

§ 7. T h e  c h e m i c a l  e]lect. This is the deviation from the equil ibrium 
value zero of the aff ini ty A t ---- # ~ -  #2 z in the s ta t ionary  s tate  of 
first order wi th  a fixed tempera ture  difference A T .  I t  is given in 
general by  equation (31). 

For  non-reacting components  ( L ,  = 0) we have from (31), (52) 
and (53) 

A Z / T  ~ A T  = (U* - -  U * ) / 2 T  2. (57) 

For the case L44 -+ oo equat ion (31) reads, using (55) 

A Z / T  ~ A T  = 0, (58) 

as it should be at  chemical equilibrium. 

§ 8. T h e  mec h a n o -c a lo r i c  e / /ect  a n d  heats  o / t r a n s / e r .  In the statio- 
na ry  state of second order with fixed A P  and A T  (== 0), the t ransfer  
of energy from one system to the other m a y  give rise to a caloric 
effect i.e. an amoun t  of heat  m a y  be produced in the vessels. This 
effect is called the me c h a n o -c a lo r i c  effect. 

In our case of isothermal processes the product ion of heat  in a 
vessel will be compensated by  a "hea t  flow" from its surroundings.  
Applying the first law of the rmodynamics  for open systems 2) to 
sys tem I, we have 

d U  ~ = d Q * - - P ' d V  + + h ~ d M ' ;  ( d M  ~ = d , M  I + d,M~).  (59) 
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For the stationary state under consideration the composition of the 
vessels is constant in time (37) and the temperature and the pressure 
are kept at constant values. Thus we have also constant mean specific 
energy u I and mean specific volume v I in the mixture in vessel I and 
consequently 

d U  I = u l d M  l and d V  I -~ v l d M  I (60) 

Inserting (60) into (59) we find 

(u ~ + P ly1  - -  h I) d M  I = dQ I and thus dQ I = 0. (61) 

Splitting dQ I into an external part deQ I (supply from the surroun- 
dings) and an internal part diQ I we have from (61) 

~eQ' + d,Q' ( :  ~Q') = 0, (62) 

so that,  by means of the relation 

diQ l : d i U  I - -  h ~ d M  I, (63) 

(see appendix) we find, also using the notations (12) 

a~Q,/at = - - a S / a t  + h~aMI/at : ] , , -  h(J, + ]2), (64) 

where the superscript of h; has been dropped. 
We now introduce the "heat  of transfer" Q* as the heat supplied 

from the surroundings to vessel I per unit of time, when one unit of 
mass is transferred from one vessel to the other in this stationary 
state of second order with constant AP and AT (---- 0). Stated expli- 
citly, we have 

Q* : (d~Q'/dt) / (Jl  + J2) (65) 
o r  

Q* = U* - -  h, (66) 

where (64) and (38) have been used. Equations (65) and (66) describe 
the mechano-caloric effect i.e. the heat flow per unit of total mass 
transfer. 

Some formulae get a simpler form when the heats of transfer are 
used instead of the energies of transfer: e.g. equation (47) can be 
written with the help of (66) in the form 

• P / A  T = - -  Q * / v T ,  (67) 

thus establishing a very close connexion between the thermomolecu- 
lar pressure effect A P / A T  and the mechano-caloric effect Q*. 
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§ 9. L i q u i d  h e l i u m  H .  According to the two fluid model of liquid 
helium II this substance is just under the circumstances described in 
the preceding sections. Therefore, without additional assumptions, 
the full formalism should also be applied to helium II. 

In his first papers however G o r t e r assumed that the "chemi- 
cal" equilibrium between normal and superfluid atoms is immedia- 
tely established. In that case formulae (51), (56) and (58) are valid. 
When we make further the usual assumption that no normal atoms 
(taken as component 1) but  only superfiuid atoms (component 2) can 
pass through a sufficiently narrow capillary, the energy of transfer 
can immediately be given. As a matter  of fact we have in general for 
the transport of matter  in bulk that  the energy of transfer is equal to 
the specific energy of the transported mass added to the external work 
against the pressure in the vessel,which is then equal to the product 
of this pressure and the specific volume ; or in other words the energy 
of transfer is equal to the specific enthalpy of the transported mass. 
In our case we have therefore for the transport of component 2 
(superfiuid atoms) 

U* = u 2 + Pv2  = h2. (68) 

When this is inserted into equation (51) we get the remarkable 
result viz. 

v A P / A T  : x l (Os /OxOp,r ,  (69) 

G o r t e r's equation for the fountain effect, which is thus confirmed 
by  the thermodynamical theory of irreversible processes. Formulae 
(56) and (58) become with (68) 

A x l / A  T ---- x2v2(h I - -  h2)/vT(a/~l/~Xl)p,  T (70) 
and 

A i = A 11 = 0. (71) 

We recall that  the assumptions leading from the general formulae 
(25), (30) and (31) for the stationary state to (69), (70) and (71) were 
l st: immediate chemical equilibrium (L44-~ oo), 2nd: transfer of 
superfluid atoms only and 3rd : transfer in bulk. To which extent the 
first assumption is legitimate, it not yet completely known. Some 
physical considerations are given in reference 1). It is perhaps of 
some importance to dwell on the validity of the last two conditions. 
If for instance the tube is so wide that normal atoms can also pass, 
the more general formulae (51) and (56) must be used. The same 
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would be necessary if by  any means the third assumption is falsified ; 
in this connection it must be remarked that by  transfer in bulk we 
mean transport as one whole or, in atomic terms, in such a way that 
the mean free path of the atoms is small compared with the diameter 
of the tube. Then, and only then, equation (68) containing the exter- 
nal work term Pv 2 is correct. This is very probably true in the dense 
liquid state, but  in the contrary case, e.g. if the substance would pass 
under"Knudsen  gas circumstances" (mean free path large compared 
with tube diameter) the expression (68) for U* would not be correct 
(cf. 4)), but  of course equations (51), (56) and (58) will remain valid. 

§ 10. Energy and heat conduction in the/irst  order stationary state. 
In order to find the influence of the chemical reaction (l) on heat 
and energy conduction we will examine the stationary state of first 
order with fixed A T. 

The energy conduction is given by  the third equation (14). The 
quantities A (#l/T) and A (FJT) can be expressed in terms of A T and 
in the phenomenological coefficients Lik for the state considered. 

From (18) and (19) we find 

A(I~t/T) = L, A T / T  2 (72) 

zl (tzJT) = L 2 A T / T  2 (73) 

where the abreviations L l and L 2 are defined by  (26) and (27). In- 
serting these equations into the third equation (14), we get 

Ju = - -  (La,L1 + La2L2 + Laa) AT/r2" (74) 

We now define the heat flow as 

Jo = - -  diQI /dr, (75) 

where diQ I is the internal part  of dQ I defined by (59). This is, accor- 
ding to (63) and (12), also equal to 

lo  = J u -  h (11 + Jg, (76) 
omitting the superscript I of the specific enthalpy, just as has been 
done in (23). 

As we have in a stationary state of the first kind with A T = con- 
stant J l  + J2 = 0 (22), the heat flow is equal to the energy flow (74) 

f O = J c  = - -  (La1LI + L32L2 -~- L33) AT~ r2" (77) 

For L44 = 0 this equation reduces with the help of (52) and (53) to 

Jo = (L3tU* + L32U* - -  Laa) AT~T2" (78) 

Physica XVI 45 
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In view of this result we may rewrite (77) for arbitrary L4, in the 
form 

JQ = - -  {Ls~(L , + U*) + L32(L 2 + U*)} A T / T  2 + 

+ (La~ U* + La2U ~ - -  L33)z] T / T  2, (79) 

thus splitting the heat flow into two parts, the first of which ac- 
counts for an "abnormal" heat conduction due to the coupling of 
chemical reaction and diffusion, and the second giving a "normal"  
transport of heat also present when no reaction takes place. 

We will consider again the heat flow for the two limiting values 
L44-= 0 and L44-+ oo. 

It has already been seen that  the first case (non-reacting compo- 
nents) leads to (78) i.e. a so-called "normal" transport of heat. 

For immediate chemical equilibrium (L44 --+ oo) we have from (55) 
and (79) 

JQ ----- {L3, (U* - -  U*) + L32 (U* - -  U*)} A T / T  2 + 

+ (L3,U* + Ls2U* - -  L33 ) A T / T  2 -_~ 

= {(L31 + L32 ) U* - -  L33 } A T / T  2. (80) 

This equation may be applied to the case of liquid helium II in 
arbitrary slits where the normal component still has a finite speed. 
In very narrow slits, where we make the usual assumption J1 --- 0, 
we have Lik ~ 0  (k----- I, 2, 3). Making use of the O n s a g e r  
relations (15) we have therefore also L31 -- 0. Furthermore U* = U* 
according to (45), so that  equation (80) reduces to 

Jo --  (L32U* - -  L33) A T / T  2, (81) 

i.e. the heat conduction does not include a part due to the coupling 
of chemical reaction and diffusion, or in other words we have only 
a "normal" heat conduction in this case. 

We see that some features of heat conduction of liquid helium II, 
such as the different results obtained in slits of various width may be 
explained by the above treatment.  The fact that  no cube root 
dependence of A T  is found for the total heat flow does not impair 
this treatment as such a dependence will be the result of non-linear 
phenomenological relations which lie beyond the region of validity 
of the present treatment.  Formally however we may always consider 
a region of linear dependance for sufficiently small A T, although this 
region may be inaccessible to experiment in some cases. Indeed a 
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linear dependence of A T has been found experimentally for the heat 
flow in slits of width between 5 and 15 microns at small A T  and T 1). 
That such a dependance has not been found for the same values of 
A T and T in very large slits and capillaries can easily be understood 
with the usual assumption that the mean velocity of the normal 
component will be larger since larger slits, since a higher velocity may 
giverise to a non-linear phenomenological relation. 

§ 11. Appendix .  The first law of thermodynamics can be applied 
separately to the two vessels, which are then considered as open 
systems, or to the total system, taken as a materially closed one. We 
have therefore the three relations 

dQ z : -  dU I + P t d V l - -  hJdM z (82) 

dQ u : dU n +  PXZdVU - -  hI1dM Iz (83) 

dQ = dU + P t d V I  + pudV1 t .  (84) 

Splitting dQ t, dQ u, dU z and dU n into external and internal 
parts, and considering that 

dQ = d,Q' + d,Q" (ss) 

and 
dU = d,U ~ + d,U u (or di UI + diU u = O) (86) 

we find 
d,Q t + deQ zz = deU z + P t d V I  + d,U 'x + P U d V n .  (87) 

The sizes of I and n being independent, it is furthermore obvious 
from (87) that 

d,Q I = d,U I + PZdV I, (88) 

and similarly for II. 
Formula (10) for the entropy supply can now be written as 

d,S = d, QZ/T' + deQU/T u, (89) 

thereby justifying the separation of dS into des (entropy supply) 
and dis (entropy production) as given by  ( 1 O) and ( 11 ). 

Subtracting (88) from (82) we find 

diQZ= d i g  z - -  h IdM I, (90) 

that is relation (63) which has been used in § 8. 
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A relation similar to (90) is also valid for vessel I I ,  so tha t  equat ion 
(8) for the conservation of energy can now be given in the following 
form 

(d,Q' + hXdM ') + (d,Q 'z + hndM n = 0 (91) 

a l ready  derived by  P r i g o g i n e 3) s). 

Received 11-7-50. 
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