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We present a detailed analysis of the two-channel atom-molecule effective Hamiltonian for an ultracold
two-component homogeneous Fermi gas interacting near a Feshbach resonance. We particularly focus on the
two-body and many-body properties of the dressed molecules in such a gas. An exact result for the many-body
T matrix of the two-channel theory is derived by both considering coupled vertex equations and functional-
integral methods. Making use of this result allows us to incorporate exactly into the many-body theory the
two-body physics of the Feshbach scattering by means of simple analytical formulas without any fitting
parameters. New interesting many-body effects are discussed in the case of narrow resonances. We give also a
description of the BEC-BCS crossover above and below TC. The effects of different approximations for the
self-energy of the dressed molecules are discussed. The single-channel results are derived as a special limit for
broad resonances. Moreover, through an analytic analysis of the BEC limit, the relation between the composite
boson of the single-channel model and the dressed-molecule of the two-channel model is established.
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I. INTRODUCTION

Since the achievement of the first Bose-Einstein conden-
sate in a trapped dilute gas of alkali-metal atoms in 1995
�1–3�, the area of ultracold atomic gases is one of the most
active fields of research in physics. The experimental realiza-
tion of this new state of matter has been made possible by
trapping an atomic gas cloud in a magnetic trap and lowering
its temperature down to about 10–100 nK by means of a
combination of laser-cooling and evaporative-cooling tech-
niques.

The extraordinary progress in the technology of trapping
and cooling alkali-metal atoms has been applied in the last
two years also to study superfluidity in fermionic gases.
However, in a BCS superconductor, the critical temperature
of the superfluid transition is exponentially small with re-
spect to the Fermi temperature, which is the temperature
scale associated with the onset of degeneracy in the gas. For
this reason, the fermionic analog of the Bose-Einstein con-
densation transition temperature, i.e., the Bardeen-Cooper-
Schrieffer �BCS� critical temperature for Bose-Einstein con-
densation of Cooper pairs, cannot be reached by means of
current techniques. Moreover, the BCS phase does not affect
the density distribution of the gas in the same manner as in a
trapped Bose gas. As a result it is not easy to detect the pair
correlations of the Cooper pairs characterizing the superfluid
properties of the gas. Fortunately, the use of Feshbach reso-
nances in atomic Fermi gases �4–9�, has solved �15,16� both
of these problems simultaneously.

Near a Feshbach resonance two atoms can virtually form
a long-lived bound molecular state during an s-wave colli-
sion. The scattering process consists of two incoming atoms
in an energetically open channel, which has a different hy-
perfine state than the bound state in the closed channel. The
coupling between the open and the closed channels is physi-
cally provided by the exchange interaction, i.e., the differ-
ence between the singlet 1�g

+ and triplet 3�u
+ potentials of the

two alkali-metal atoms in the electronic ground state. More-
over, the two channels have a different Zeeman shift in a

magnetic field because of the difference in hyperfine state.
Therefore, the energy difference between the closed-channel
bound molecular state and the two-atom continuum threshold
is experimentally adjustable by tuning the magnetic field. As
a result, the s-wave scattering length, and hence the magni-
tude and sign of the interatomic interactions, can be precisely
controlled over a wide range.

The possibility of tuning the interactions in a system is
rather unusual in condensed-matter physics and has triggered
many new experimental developments. In particular, Fesh-
bach resonances provide a remarkable opportunity to study
strongly interacting fermions. By varying the interaction
strength between the fermionic atoms, the crossover from a
Bose-Einstein condensate of molecules to a BCS superfluid
of loosely bound pairs �10–14� has been explored �15–23�.
These experiments have revealed evidence of fermionic pair
condensation �15,16� and superfluidity �21�. Moreover, in a
magnetized Fermi gas the phase separation between a super-
fluid paired component and the normal unpaired fermions
has also been observed �22,23�.

A Feshbach resonance in atomic and nuclear physics is a
multichannel problem. Already in 1962, Feshbach �4� devel-
oped a general method to solve the multichannel elastic scat-
tering equations in the presence of a bound state, using a
formalism based on projection-operator techniques. His ap-
proach reduces the solution of the multichannel problem of
the colliding particles to a single-channel problem, namely
the scattering of a particle from an optical potential. In gen-
eral, the price of this simplification is a complicated nonlocal
and energy-dependent optical potential. Neglecting the pos-
sible occupation of the bound state energy level and the en-
ergy dependence of the optical potential ultimately leads to a
many-body theory with a local interaction described by a
single adjustable parameter, namely the s-wave scattering
length a. This is usually called the single-channel approxi-
mation �10–14,25–41� in the literature related to the study of
cold atoms near Feshbach resonances. A different many-body
approach, which allows for the population of the bound mo-
lecular state and thus preserves the multichannel nature of
the Feshbach problem, has also been considered by many
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authors. This is based on a two-channel low-energy effective
Hamiltonian �42–61�, where the effects of the resonant scat-
tering are described by a bosonic molecular field coupled to
the atoms in the Fermi sea. This bosonic field describes the
bound state in the closed channel near the continuum of the
open-channel scattering states. As a result of the coupling
with the atoms, the physical bosonic degree of freedom in
the system is not this bare molecule but the so-called dressed
molecule �47�, namely the bare molecule “dressed” by the
coupling to the continuum of scattering states. The wave-
function of the latter is always a superposition sharing a
component in the closed channel and one in the open chan-
nel. The probability of the bare closed-channel component is
denoted by Z. Note that, in this language, the single-channel
model is a different model that has Z=0 from the outset.

In this work we begin a systematic analysis of a two-
channel many-body theory for a mixture of fermionic atoms
near a Feshbach resonance based on the dressed-molecule
picture. This long paper represents both an extension and a
unifying description of our previous results discussed in
�49,52,59�. While details about the derivation of the results
obtained in these short papers are given, also several results
are presented here. The paper is organized as follows. In Sec.
II we introduce the physics of Feshbach resonant scattering
in ultracold atomic gases. This preliminary analysis is based
on a microscopic atomic physics Hamiltonian with spin-
dependent interactions in the presence of an external mag-
netic field.

In Sec. III we introduce the low-energy effective quantum
field theory above the superfluid critical temperature based
on the atom-molecule Hamiltonian. The field theory is then
solved in the so-called many-body T-matrix approximation.
We show that this approach incorporates exactly the two-
body scattering properties in the presence of a Feshbach
resonance. In the two-body limit, we find new and general
analytic expressions for the binding energy and the closed-
channel component Z of the dressed molecules, which repro-
duce experimental data without any fitting parameters. Next
we generalize the results of the many-body T-matrix approxi-
mation by means of functional integral techniques, which is
important in order to go beyond the approximation of this
paper.

In the limit of a very broad resonance the many-body T
matrix of the single-channel approximation is recovered.
Moreover, new interesting many-body effects are also dis-
cussed in particular in connection with the possibility of hav-
ing narrow resonances.

In Sec. IV and Sec. V the physics of the BEC-BCS cross-
over is investigated. Section IV considers the problem of
determining the superfluid critical temperature Tc approach-
ing the transition from above, while in Sec. V we turn our
attention to the description of the crossover in the superfluid
phase below Tc. In both regimes, we give a systematic analy-
sis of the crossover equations both in the mean field approxi-
mation �11� and beyond mean field, at the level of the Gauss-
ian fluctuations �12,13,34� and according to a self-consistent
approach �14�. We focus especially on the BEC limit of the
crossover, where analytical calculations are possible. In the
case of broad resonances, we show that the dressed-molecule
approach �52,57� is consistent with the single-channel model

results. The relation between the composite boson of the
single-channel model and the dressed molecule of the two-
channel approach is established also at the mathematical
level.

II. FESHBACH RESONANCES IN ATOMIC FERMI GASES

Before discussing the many-body physics in a resonant
Fermi gas, which is the main subject of this paper, we con-
sider the scattering of two atoms at the Feshbach resonance
in the absence of a medium. This is a necessary step in order
to include exactly the two-body physics in the more general
many-body treatment. At low temperatures only s-wave scat-
tering is important in the gas, since the centrifugal barrier
prevents higher-order partial waves to enter the interaction
region. Due to the Pauli principle occurring in a gas of fer-
mionic particles, interaction effects can therefore only be ob-
served when we consider a mixture of two spin states. For
this reason we only consider such mixtures in the following.

Feshbach resonances occur in atomic physics when study-
ing collisions of ultracold atoms under variation of an exter-
nal magnetic field �62,63�. In the presence of an external
magnetic field B the spin-dependent part of the single-atom
Hamiltonian is

Hint = �ahf

�2 �s · i + B ·
2�es − �Ni

�
, �1�

where the energy ahf depends on the atomic species and char-
acterizes the hyperfine interaction between the electronic
spin s and the nuclear spin i. The two constants �e and �N
are, respectively, the electronic and nuclear magnetic mo-
ments of the alkali atom of interest and we always have that
�e��N.

The diagonalization of this Hamiltonian yields the hyper-
fine states, which, at zero magnetic field, have the magnitude
f of the total atomic spin f=s+ i and its projection on the
z-axis mf as good quantum numbers. At high magnetic fields
B�ahf /�e, the hyperfine interaction can be treated as a per-
turbation, and, to lowest order, the electronic and nuclear
spin projections ms and mi are the good quantum numbers.
At intermediate values of the magnetic field, where the Fes-
hbach resonances are often observed, the atomic eigenstates
are a linear combination of the latter states, that schemati-
cally can be written as

c−1/2�ms = − 1
2 ;mi = mf + 1

2� + c1/2�ms = 1
2 ;mi = mf − 1

2� .

This implies that only the total spin projection mf is a good
quantum number. Without much loss of generality, we con-
sider a gas of 6Li atoms from now on. This species is most
widely used in current experiments with trapped ultracold
Fermi gases. The 6Li isotope has nuclear spin i=1, which
gives in increasing order of energy, the six hyperfine states

�1� = sin �+� 1
2 ;0� − cos �+�− 1

2 ;1� ,

�2� = sin �−� 1
2 ;− 1� − cos �−�− 1

2 ;0� ,

�3� = �− 1
2 ;− 1� ,
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�4� = cos �−� 1
2 ;− 1� + sin �−�− 1

2 ;0� ,

�5� = cos �+� 1
2 ;0� + sin �+�− 1

2 ;1� ,

�6� = � 1
2 ;1� , �2�

with sin �±=1/	1+ �Q±+R±�2 /2, Q±= ��n+2�e�B /ahf±1/2,
and R±=	�Q±�2+2. Here the states �ms ;mi� have a well-
defined projection of the electron and nuclear spin, respec-
tively.

So far, we have considered only the spin degrees of free-
dom of a single atom. The spin-dependent Hamiltonian of
two noninteracting atoms is �64�

Hint = �ahf

�2 ��s1 · i1 + s2 · i2� + B ·
2�e · S − �N · I

�
, �3�

where S=s1+s2 and I= i1+ i2 are the total electronic and
nuclear spin, respectively. In view of the ongoing experi-
ments, we consider in the following a hyperfine mixture of
the states �1� and �2�. Hence, the incoming channel for two-
atom scattering is the antisymmetric state

�
12�� �
1
	2

��1�1�2�2 − �2�1�1�2� . �4�

This combination can only be trapped in a far-off resonance
optical trap �66� and not in a magnetic trap. It is, however,
the most favorable mixture experimentally, because it cannot
decay through inelastic two-body collisions. For future ref-
erence it is useful to rewrite this state as the linear superpo-
sition

�
12�� = sin �+ sin �−�1,1;1,− 1� + sin �+ cos �−� 1
	3

�0,0;0,0�

−	2

3
�0,0;2,0�� + cos �+ sin �−� 1

	3
�0,0;0,0�

+
1
	6

�0,0;2,0� −
1
	2

�1,0;1,0��
+ cos �+ cos �−�1,− 1;1,1� �5�

of the basis states �SMS ; IMI�, which diagonalize the second
term in the right-hand side of Eq. �3�. The quantum numbers
MS and MI represent the total electronic and nuclear spin
projection along the direction of the magnetic field, respec-
tively.

The central interaction for two colliding atoms depends
on the magnitude of the total electronic spin. It can be writ-
ten as �64�

VC = VS · PS + VT · PT, �6�

where PS,T are the projection operators onto the singlet and
triplet states and VS,T the corresponding interatomic poten-
tials. The singlet and triplet potentials VS,T are by now rather
accurately known from atomic-physics measurements. The
central interaction VC is diagonal in the basis �SMS ; IMI� but
induces transitions between different hyperfine levels. More
precisely, the central interaction can be rewritten as

VC = Vdir + Vexch, �7�

with the direct interaction given by

Vdir =
�VS + VT�

2
, �8�

and the exchange interaction expressed as

Vexch =
�PS − PT��VS − VT�

2
. �9�

If we describe a collision in the hyperfine basis, it is this
latter interaction that is responsible for the coupling of dif-
ferent hyperfine states in the quantum collision of cold
alkali-metal atoms. Only transitions where the quantum
number MS+MI is conserved are allowed, since the central
interaction cannot change the total electron or nuclear spin.
Therefore, the state �
12�� couples only to the states

�
14�� = sin �+ cos �−
1
	2

�1,1;1,− 1� + �	2

3
sin �+ sin �−

+
1
	6

cos �+ cos �−��0,0;2,0� + � 1
	3

cos �+ cos �−

−
1
	3

sin �+ sin �−��0,0;0,0�

− cos �+ cos �−
1
	2

�1,0;1,0�

− cos �+ sin �−�1,− 1;1,1� ,

�
25�� = cos �+ sin �−�1,1;1,− 1� − � 1
	3

sin �+ sin �−

−
1
	3

cos �+ cos �−��0,0;0,0� − �	2

3
cos �+ cos �−

+
1
	6

sin �+ sin �−��0,0;2,0�

+
1
	2

sin �+ sin �−�1,0;1,0�

− sin �+ cos �−�1,− 1;1,1� ,

�
45�� = cos �+ cos �−�1,1;1,− 1� − � 1
	3

cos �+ sin �−

+
1
	3

sin �+ cos �−��0,0;0,0� + �	2

3
cos �+ sin �−

−
1
	6

sin �+ cos �−��0,0;2,0�

+
1
	2

sin �+ cos �−�1,0;1,0�

+ sin �+ sin �−�1,− 1;1,1� ,
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�
36�� =
1
	3

�0,0;0,0� +
1
	6

�0,0;2,0� +
1
	2

�1,0;1,0� .

�10�

The magnetic field dependence of the s-wave scattering
length a�B� in the �
12�� channel is obtained by solving the
system of five coupled-channels equations for these channels
�64�. The scattering length exhibits several resonances as an
effect of the interplay between the different channels in the
scattering process. A very broad resonance occurring at
834 G is shown in Fig. 1.

Physically, this Feshbach resonance at 834 G arises when
the energy of the atoms with the incoming spin wavefunction
�
12��, which in this high magnetic field region is almost
purely triplet, coincides with the energy of a bound-state
energy in the singlet potential VS. It is convenient for this
purpose to rewrite the the spin-dependent part of the total
Hamiltonian as

Hspin = B ·
2�e · S − �N · I

�
+

ahf

�2 �s1 · i1 + s2 · i2� + VC � HZ

+
ahf

�2 �s1 · i1 + s2 · i2� + VC � HZ + Hhf + VC, �11�

because the states �SMS ; IMI� diagonalize the HZ+VC opera-
tor. The hyperfine interaction Hhf is, however, not diagonal
on the �SMS ; IMI� states. The latter couples states with I and
S quantum numbers differing at most by one. Classically, it
gives rise to the independent single-atom precessions of si
and ii about their sum vector fi. During the collision of two
lithium atoms, the hyperfine coupling Hhf can induce transi-
tions to others, spin-flipped collision channels. A Feshbach
resonance occurs when one of these supports a bound mo-
lecular state �m�r��S�MS� ; I�MI�� with energy Em, which lies
near the continuum level of the incident �
12�� channel. The
channel of the metastable bound state is said to be closed
because, due to energy conservation, atoms can be observed
asymptotically only in the incident open channel. The situa-
tion is illustrated in Fig. 2.

At the high magnetic fields where the resonance occurs,
the hyperfine interaction represents a small perturbation, and
the total spin projections MS and MI are rather good quantum
numbers. Therefore, we can approximate the basis �
ij�� with
the basis �SMS ; IMI�. More precisely, in the limit of high
magnetic field we have sin �±
0 and the six states in Eq. �2�
can be approximated by

�1� 
 �− 1
2 ;1� ,

�2� 
 �− 1
2 ;0� ,

�3� 
 �− 1
2 ;− 1� ,

�4� 
 � 1
2 ;− 1� ,

�5� 
 � 1
2 ;0� ,

�6� 
 � 1
2 ;1� , �12�

which implies that the scattering channel �
12�� is almost the
pure triplet state �see Eq. �5��:

�
12�� 
 − �1,− 1;1,1� . �13�

When the magnetic field is tuned between 800 G and 900 G,
the energy of the incoming channel �
12�� lies near the v
=38 molecular bound state energy of the singlet potential VS.
As a result a Feshbach resonance occurs which turns out to
be very broad. The closed channel �0,0;0,0�, supporting the
bare molecular state, can be written by using Eq. �10� and
taking the limit of high magnetic fields as

�0,0;0,0� 

1
	3

��
36�� + �
25�� + �
14��� . �14�

The width of the resonance is thus determined by the matrix
element

6Li

B0   - 834G

Magnetic field(G)
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FIG. 1. Scattering length as a function of the magnetic field for
two 6Li atoms in the hyperfine states �1� and �2� near the broad
resonance at 834 G �65�.

∆µB 

open channel

closed channel

FIG. 2. Illustration of a Feshbach resonance. The upper potential
curve describes, as a function of the interparticle separation, the
closed channel interaction potential that contains the bound state
responsible for the Feshbach resonance. The lower potential curve
corresponds to the open-channel interaction potential.
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�0,0;0,0�Hhf�1,− 1;1,1� ,

which describes the overlap induced by the hyperfine cou-
pling between the spin wavefunctions of the closed and the
open channel. The total atom-molecule coupling involves of
course also the overlap between the relevant spatial wave-
functions of the atomic potentials.

Another resonance, a very narrow one, occurs at about
549 G when the energy of the open channel approaches the
energy of the same v=38 bound state of the singlet potential,
but now in the channel

�0,0;2,0� 

1
	3

� 1
	2

�
36�� − 	2�
25�� +
1
	2

�
14��� ,

�15�

calculated also from Eq. �10� in the limit of high magnetic
field, i.e., approximating sin �±
0 and cos �±
1 at lowest
order in ahf /�eB. The matrix element related to the width of
the resonance is in this approximation

�0,0;2,0�Hhf�1,− 1;1,1� ,

which is of the same order as the matrix element in Eq. �15�.
Hence, the different width of these two resonances does not
originate from the overlap in the spin parts of the wavefunc-
tions but in the overlap of the wavefunctions of the spatial
degrees of freedom.

In the absence of the hyperfine coupling the energy dif-
ference between the closed and the open channels is linear in
the magnetic field, i.e.,

	m�B� = Em + 2�BB , �16�

where we have used that the difference in magnetic moment

� between the closed singlet channel and the open triplet
channel is twice the Bohr’s magneton or 
�=2�B. The hy-
perfine coupling produces a shift in the position of the mag-
netic field at which the resonance occurs �67�. It is this
shifted value B0 that is observed experimentally. The exact
location of the resonance can be used to redefine the energy
difference between the bound state in the closed channel and
the threshold continuum. This is

��B� = 
��B − B0� , �17�

and is called the detuning because it represents the variable
that can be tuned experimentally by varying the magnetic
field. At large negative detuning, the binding energy 	m�B� of
the diatomic molecules, i.e., the energy you need to break up
a molecule, goes linearly in the magnetic field B as 	m�B�

��B�. Near resonance, the hyperfine coupling leads to a
quadratic magnetic-field dependence of the binding energy
according to Wigner’s formula �24�

	m�B� = −
�2

ma2�B�
, �18�

where the total scattering length a�B� diverges near reso-
nance as

a�B� = abg�1 −

B

B − B0
� . �19�

The width of the resonance 
B is a phenomenological pa-
rameter taken from experiments and the scattering length abg

describes the nonresonant scattering in the open channel. At
positive detuning, there no longer exists a bound state be-
cause the molecule decays into two free atoms due to the
coupling with the atomic continuum.

So far we have seen that Feshbach resonances in atom-
atom scattering involve intermediate states that are molecular
bound states. For these molecules, the electronic and nuclear
spins have been flipped compared to the spin of the colliding
atoms by virtue of the interplay between hyperfine and ex-
change interactions. Next we consider briefly some of the
ways that the ultracold gases at Feshbach resonance can be
experimentally investigated. This account is, however, by no
means complete. We discuss only the experimental results
which are relevant in connection with the theory we want to
discuss in the following.

Ultracold gases of fermionic atoms are trapped and cooled
in optical traps �68–73�. The optical potential has the advan-
tage to trap atoms in any spin state, as well as the molecules
created from these atoms. The Fermi temperature TF of these
systems is usually of the order of 0.1–1 �K. Cooling fermi-
onic atoms down to temperatures T�TF below quantum de-
generacy is problematic under normal conditions, because
the standard evaporative cooling stops to work in the degen-
erate regime. However, in a mixture with two different spin
states, the large cross section for elastic scattering near the
Feshbach resonance can be used for efficient evaporative
cooling, expecially at negative scattering lengths above the
resonance where inelastic loss is negligible �74�. This per-
mits experiments to reach temperatures down to 0.05TF.

By sweeping an external magnetic field across a Feshbach
resonance, it is possible to create bosonic diatomic mol-
ecules. If the temperature of the gas is comparable or lower
than the binding energy of the molecular state, an almost
pure ultracold molecular gas forms. At even lower tempera-
tures, the molecules form a Bose-Einstein condensate. The
process is reversible because the gas can be converted back
to atoms by reversing the sweep. These molecules are vibra-
tionally highly excited states and would usually undergo fast
relaxational decay into deeply bound states by molecule-
molecule and atom-molecule collisions. This does occur for
Feshbach molecules made with bosonic atoms �75,76�. In
that case, the lifetime of the molecules can be increased only
by trapping the sample in an optical lattice �77,78�. However,
6Li2 and 40K2 molecules, consisting of fermionic atoms,
show very long lifetimes �68–71�.

The origin of such a long lifetime has been explained by
Petrov et al. in �79� as follows. The size of the deeply bound
state is of the order of the characteristic range of the inter-
action r0. The relaxation requires the presence of at least
three fermions at distances of about r0 from each other. As
there are only two different spin states, two particles are
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necessarily identical and the Pauli exclusion principle pre-
vents this from happening and thus suppresses the relaxation
probability.

The bound Feshbach molecule has a magnetic moment
which differs from that of the unbound atoms pairs because
its wavefunction is a superposition of the open and the
closed channels. The difference in magnetic moment facili-
tates Stern-Gerlach selection of molecules and atoms.
Jochim et al. �71� describe a purification scheme based on a
Stern-Gerlach technique that efficiently removes all the at-
oms, while leaving all molecules trapped. The basic idea of
this method consists in applying a magnetic field gradient B�
perpendicularly to the axis of the optical dipole trap. The
magnetic field pulls out of the trap particles for which the
magnetic force is larger than the trapping force. The value
Bat� at which all the atoms are lost turns out to be smaller than
the value Bmol� at which molecules start to spill out of the the
trap. This means that in principle one can remove all the
atoms while keeping the total number of molecules constant.
The magnetic moment of the bound molecules can be esti-
mated from the relation �mol=2�atBmol� /Bat� , where 2�at is the
magnetic moment of two unbound atoms in the open chan-
nel. In a gas of 6Li atoms at low density and at high magnetic
fields, the latter is almost completely in the triplet state
which implies 2�at=2�B. We have mentioned this experi-
ment because the magnetic moment of the Feshbach mol-
ecule at negative detuning near the resonance will be one of
the crucial quantities in order to verify that our theory incor-
porates the two-body physics exactly.

The long lifetime of the molecules makes it possible to
observe a Bose-Einstein condensate of K2 �68� and Li2
�72,73� Feshbach molecules. Zwierlein et al. create in �73�,
for example, the Bose-Einstein condensate of Li2 Feshbach
molecules by operating additional evaporative-cooling cycles
on the molecular side of the resonance. It is important to
point out that in all these experiments, the condensed mol-
ecules are not detected directly by standard imaging tech-
niques. In �73� the molecular density is inferred from absorp-
tion images at zero magnetic field taken with and without
dissociating the molecules on the positive-detuning side of
the resonance. The onset of Bose-Einstein condensation is
characterized by an abrupt change from a smooth distribu-
tion to a bimodal distribution �1,2�. Differently, in �68�
Greiner et al. deduce the existence of a molecular component
from radio-frequency spectroscopy by coupling the closed-
channel component to a third hyperfine state initially unoc-
cupied. In all cases, quantitative information about the tem-
perature, the total number of atoms and the condensate
fraction, is obtained by fitting the density profiles using a
Bose-Einstein distribution for the broad normal component
and a Thomas-Fermi �80,81� distribution for the narrow con-
densate component.

The success in creating a molecular condensate leads to
the new possibility of exploring the BEC-BCS crossover in
ultracold atomic Fermi gases by tuning the magnetic field
near a Feshbach resonance. In a dilute gas at very low tem-
peratures the scattering length describes the interactions of
the atoms. Hence, changing the scattering length by sweep-
ing the magnetic field across the resonance, makes it possible
to change the sign and the strength of interactions in the gas.

For positive detuning, no bound molecular state exists. At
large positive detuning, the total scattering length is usually
small and negative. In this case, the gas will undergo a
Bardeen-Cooper-Schrieffer phase transition for sufficiently
low temperatures. This state is characterized by a Bose-
Einstein condensate of Cooper pairs that are largely delocal-
ized in coordinate space. Their extension is much larger than
the interparticle distance between two atoms.

When approaching the resonance, the scattering length
diverges and the gas enters a strong-coupling regime, defined
by the condition kF�a�
1, where kF is the Fermi momentum
of the gas. At resonance, the scattering length jumps from −�
to +�, which is the hallmark of a formation of a zero-energy
bound state. At large negative detuning the superfluid gas
turns into a Bose Einstein condensate of tightly bound mol-
ecules. The evolution between the two limits is called a
crossover because the same U�1� symmetry is always broken
and there is therefore no difference between the symmetries
of the two phases. The molecular condensate obtained in
�20,68,72,73� represents one extreme of the BEC-BCS cross-
over. The investigation of the BCS side is more difficult
because the fermionic superfluid transition hardly affects the
density profile of the gas in the trap �26�. Therefore, it cannot
be detected by simple imaging techniques.

Several ideas have been put forward in order to point out
a clear signature of the superfluid transition �26,82–86�.
However, it turns out that the Feshbach resonance itself
makes it possible to study pairing effects in momentum
space directly. The method, introduced by Regal et al. at
JILA in �15�, uses the Feshbach resonance to transfer slowly
compared to the two-body physics but fast compared to the
many-body physics, the fermionic 40K pairs onto the bare
molecular state. This enables them to detect the condensate
component of the gas also on the positive side of the reso-
nance. The results of the experiment of Regal et al. give the
molecular condensate fraction after the sweep as a function
of temperature and magnetic field. The experiments reveal a
few-percent condensate fraction on the positive side of the
resonance. The fraction depends on the initial temperature T
of the gas and seems to have a threshold at about B−B0

0.5 G. This is the magnetic field at which kF�a�B�� is about
1.

The condensate component has been interpreted by Regal
et al. as a fermionic condensate. In doing so, they make use
the absence of a two-body bound state on the positive side of
the resonance. Hence the fermionic condensation must be
understood as a “macroscopic occupation of a single quan-
tum state, in which the underlying Fermi statistic of the
paired particles plays an essential role.” A similar experiment
has been realized a few months later by Zwierlein et al. �16�
at MIT using 6Li atoms. Surprisingly, they observe a much
larger molecular condensate fraction than in the experiment
at JILA. The origin of this difference still lacks an explana-
tion. Both experiments are performed in axially elongated
traps, which should exclude trapping effects as a main rea-
son.

III. ATOM-MOLECULE THEORY FOR FESHBACH-
RESONANT INTERACTIONS

Thus far, we have introduced the basic atomic physics of
the Feshbach resonance in the language of two-body quan-
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tum mechanics. We turn now to the main topic of this paper
that is to develop a many-body formulation of the theory. For
an incoherent equal mixture of fermionic atoms in two dif-
ferent hyperfine states, and in the vicinity of a Feshbach
resonance at low temperatures and densities, it is possible to
derive �42,43,45,47� a low-energy effective quantum field
theory in terms of the atom-molecule Hamiltonian

H = �
k,��
↑,↓�

�	k − ��ak,�
† ak,�

+
1

V
�

k,k�,q

Vbg�q�ak+q,↑
† ak�−q,↓

† ak�,↓ak,↑ + �
k
� 	k

2
+ �bare

− 2��bk
†bk +

1
	V

�
k,q

�g*�q�bk
†ak/2+q,↓ak/2−q,↑ + H.c.� .

�20�

Here, V is the volume, ak,�
† is the creation operator of an

atom with momentum �k in the hyperfine state ��� with
chemical potential �. In the case of 6Li gas, the hyperfine
states denoted by ��� are the two states �1� and �2� discussed
above. The operator bk

† is the creation operator of a bare
Feshbach molecule with momentum �k. Here and in the fol-
lowing, the bare molecule refers to the molecular state in the
closed channel in the absence of coupling between the open
and the closed channels. In addition, Vbg is the nonresonant
or background interaction between the atoms in the open
channel that give rise to the background scattering length abg.
The last two terms of the Hamiltonian in Eq. �20� describe
the formation of a molecule from two atoms and the time-
reverse process. The strength of this coupling is given by the
bare atom-molecule coupling g�k�. Both g and Vbg depend in
principle also on the external magnetic field B. The energy
�bare=	bare+
�B is the bare detuning, where 	bare is the en-
ergy of a bare molecule with zero total momentum when the
external magnetic field is absent, and 
� is the difference in
magnetic moment between the bare molecule and two atoms
in the states �↑� and �↓�. Bare quantities must be eliminated
with a renormalization procedure in favor of experimentally
known parameters in order to apply this Hamiltonian to a
realistic gas. For example, we will show how the bare detun-
ing �bare is related to the expression for the detuning given in
Eq �17�. In the next section such a procedure is introduced
for the normal state of the atomic gas in the framework of a
many-body formalism based on imaginary-time Green’s
function techniques �87,88�.

A. Many-body T matrix

The dynamical and thermodynamical properties of an
atomic gas interacting near a Feshbach resonance are deter-
mined by the exact �four-point� interaction vertex function
�↑,↓. The latter describes the collisions of two atoms with
spin �↑� and �↓�, in the presence of many-body correlations
introduced by the medium. Unfortunately, in the language of
imaginary-time Green’s function techniques, the exact �↑,↓ is
given by an infinite series of Feynman diagrams and cannot
be obtained in general. Therefore, we have to introduce some
approximations and to restrict ourselves to the relevant sub-

set of Feynman graphs. We assume that the average distance
between the fermions is much larger than the range of the
interactions r0, i.e., kFr0�1. Hence only two-particle colli-
sions are expected to be important and we can neglect three-
particle and more particle collisions. For a dilute system of
fermions with short-range interactions we thus have to con-
sider the ladder approximation �89–91�, which sums exactly
over all two-body processes. In this approximation only the
particle-particle channel �87� is relevant and the vertex func-
tion � is reduced to the so-called many-body T matrix. This
satisfies a Bethe-Salpeter equation of the type

TMB�k f,ki,K,�n� = Veff�k f,ki,K,�n�

−
1

�

kBT

�V �
k,�n

Veff�k f,k,K,�n�

�G↑�K

2
+ k,

�n

2
+ �n�

�G↓�K

2
− k,

�n

2
− �n�TMB�k,ki,K,�n� ,

�21�

where G� is the exact atomic Green’s function. The effective
atom-atom interaction is given by

Veff�k f,ki,K,�n� = Vbg�k f − ki� + g*�k f�
G0�K,�n�

�
g�ki� ,

�22�

where

G0�K,�n�
�

= �i��n −
	K

2
+ 2� − �bare�−1

�23�

is the bare molecular propagator. Here �k f and �ki are the
relative momenta of the incoming and outcoming particles of
the scattering process, �K is the total momentum of the two
fermions, and �n=2�kBTn /� is the total bosonic Matsubara
frequency of the fermion pair propagator and of the mol-
ecule.

In general, it is very difficult to solve this equation di-
rectly because the interaction Vbg�k� and the atom-molecule
coupling g�k� are included with all their details and are
known only numerically from very complicated atomic phys-
ics measurements. Nevertheless, as we will show, in a dilute
gas �kF�r0

−1� at very low temperatures, the vertex function
TMB can be calculated without explicitly solving the Bethe-
Salpeter equation in all its complexity. This is achieved in a
number of steps. First, we replace the complicated physical
atomic potentials with a pseudopotential that leads to a more
simple structure of the scattering equations. Then we try to
eliminate the parameters of this pseudopotential from the
theory in favor of an equal number of parameters that can be
measured experimentally. The theory eventually works be-
cause all the relevant information to describe the low-energy
physics of the system has been condensed into the phenom-
enological parameters.

When atoms are colliding at ultralow temperatures, the
problem simplifies considerably. At these temperatures they
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move so slowly that their kinetic energy is much smaller than
the energy �2 /mr0

2, related to the range of the interaction r0.
This condition can be expressed as

�th�T� � r0, �24�

where �th�T�= �2��2 /mkBT�1/2 is the thermal de Broglie
wavelength. As a result, the wave numbers of the relative
momenta �k f and �ki are much smaller than the character-
istic wave number r0

−1, i.e.,

�k f�, �ki� � r0
−1, �25�

and from scattering theory it is known that for low energy
the T matrix of a two-body collision becomes independent of
the relative momenta k f ,ki. Therefore, we can try to neglect
their explicit dependence in Eq. �21� by replacing the physi-
cal potentials with pointlike interactions Vbg��x−x�� and
gbare��x−x��. This implies that the effective interaction in
Eq. �22� can be rewritten as

Veff�K,�n� = Vbg + gbare
G0�K,�n�

�
gbare. �26�

It turns out that under these conditions the many-body T
matrix is also independent of kf and ki and may be taken out
of the integral. This gives

TMB�K,�n� = Veff�K,�n� + Veff�K,�n���K,�n�TMB�K,�n� ,

�27�

where the kernel

���K,�n� = −
kBT

�V
�
k,�n

G↑�K

2
+ k,

�n

2
+ �n�

�G↓�K

2
− k,

�n

2
− �n� �28�

contains an unphysical ultraviolet divergence because the in-
ternal integration over k in the Bethe-Salpeter equation in
Eq. �27� gives a contribution for every momenta while in the
original expression in Eq. �21� the natural continuum cutoff
around � /r0

−1 of the physical potentials cuts off the high-
momentum tail. The T-matrix renormalization procedure
consists of eliminating this divergency by means of the bare
unknown constants �bare, Vbg, and gbare from Eq. �27�. To this
purpose we introduce the full molecular propagator

G�q,�n�−1 = G0
−1�q,�n� − �m�q,�n� �29�

by using the molecular self-energy defined as

��m�q,�n� = gbare��q,�n�gMB�q,�n� . �30�

Here we have used for the momentum dependence of the
exact atom-molecule coupling gMB the same assumptions as
for TMB. For the same reason as above, there is also an un-
physical ultraviolet divergency in the self-energy of the mo-
lecular propagator that can be eliminated by a simple sub-
traction in the self-energy. This leads to the renormalization
of the bare detuning �bare to the physical detuning ��B�
=
��B−B0� defined in Eq. �17� of the previous section.

The desired renormalized atom-molecule coupling gMB is
connected to the many-body T matrix by the relation �47�

gMB�K,�n� = gbare + gbare��K,�n�Tbg
MB�K,�n� , �31�

where the many-body T matrix for the background processes
satisfies

Tbg
MB�K,�n� = Vbg + �

k
Vbg��K,�n�Tbg

MB�K,�n� . �32�

This means that we have dressed the bare atom-molecule
coupling with all the two-body background interactions. The
set of equations �29�–�32� is represented in Fig. 3 by means
of a diagrammatic notation.

By formally solving Eq. �27� and using Eqs. �29�, �31�,
and �32� to eliminate G0 , Vbg and gbare, it is possible, by
some straightforward algebra, to obtain the desired result

TMB�K,�n� = Tbg
MB�K,�n�

+ gMB*
�K,�n�

G�K,�n�
�

gMB�K,�n� ,

�33�

where all the bare quantities have been eliminated from the
theory. A nice derivation of this formula by means of an
algebra of diagrams is shown in Fig. 4.

This result represents a generalization of the solution of
the standard many-body T matrix for a dilute ultracold gas of
atoms and molecules at the Feshbach resonance �89–91�.
This solution describes the scattering of a pair of atoms at
�complex� energy i��n, while the dependence on the center-
of-mass momentum K incorporates the Pauli-blocking ef-
fects of the medium. As we have anticipated, at this level the
solution is still somewhat formal because we have only
eliminated the bare coupling constants in terms of the renor-

� �
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FIG. 3. The first two lines define the symbols we use in our
diagrammatic notation. The next four lines represent, respectively,
�3� Eq. �32�, �4� Eq. �31�, �5� Eq. �29�, and �6� Eq. �30�.
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malized ones. The next step consists in relating the renormal-
ized quantities, such as Tbg

MB and gMB, to the two-body pa-
rameters, which can be measured by experiments.

B. Two-atom properties of the many-body theory

In the two-body limit �92–94� there are only two fermions
present so that in an infinite volume, the particle density
tends to zero, i.e., kF=0, and there are no many-body effects
anymore. This limit can be achieved by letting T→0 and
i��n→E while the chemical potential is fixed to �=0. The
dressed fermion propagator G� can be replaced by the free
atomic propagator

G�,0�k,E� =
�

E − 	k
, �34�

and the dependence on the total momentum K drops out
everywhere. The many-body T matrix in Eq. �33� becomes
the two-body T matrix and Eq. �33� can be rewritten as

T2B�E� = Tbg
2B�E� + g2B*�E�

G2B�E�
�

g2B�E� , �35�

where the two-particle dressed molecular propagator at zero
momentum is given by

G2B�E�−1 � G2B�0,E�−1 = G0�0,E�−1 − �m
2B�0,E� . �36�

The on-shell energy-dependent Tbg matrix

Tbg
2B�E� =

4��2abg�B�
m

1

1 − abg�B�	− Em

�2

�37�

is obtained by solving Eq. �32� in the vacuum, which reduces
to the well-known Lippmann-Schwinger equation �24�

Tbg
2B�E� = Vbg + �

k
Vbg

1

E − 2	k
Tbg

2B�E� . �38�

The background scattering length abg�B� is the quantity
which is measurable experimentally and is defined by

Tbg
2B�0�=4��2abg/m. Noting that Eqs. �31� and �32� lead to

g2B�E�=gbareTbg
2B�E� /Vbg, we conclude that the same kind of

energy dependence can also be used for the atom-molecule
coupling constant, i.e.,

g2B�E� = g
1

1 − abg�B�	− Em

�2

, �39�

where g=g2B�0� is also inferred from experiments. The
evaluation of the molecular self-energy in the vacuum will
complete the definition of the T2B in terms of measurable
quantities.

As we have seen in the previous section, the molecular
self-energy in the dressed molecular propagator contains an
unphysical ultraviolet divergency. This can be eliminated by
rewriting the two-body propagator in Eq. �36� as

G2B�k,E�−1 = G0�k,E�−1 + �m
2B�0,0� − �m

2B�k,E� − �m
2B�0,0�

=
E − 	k/2 − ��B�

�
− �m

2B�k,E� + �m
2B�0,0� , �40�

where the energy-independent but infinite shift �2B�0 ,0� has
renormalized the bare detuning �bare to the physical detuning
��B� according to

��B� = �bare + ��m
2B�0,0� � 
��B − B0� �41�

in such a manner that the position of the resonance in the
magnetic field is now precisely at the observed magnetic
field value B0. The renormalized molecular self-energy can
now be calculated by performing a simple integration �47�

��m
2B�k,E� − ��m

2B�0,0� =
��B�

1 + �abg�B��	− Em

�2

	− E ,

�42�

where the quantity �2= �g2m3/2 /4��3�2 defines an important
energy scale in the problem which is related to the width of
the Feshbach resonance. Note that as a result of the internal
integration over k the background scattering length appears
as an absolute value in the self-energy �47�. This turns out to
be very important in the case of negative background scat-
tering length when we calculate the binding energy of the
molecule. The two-body molecular propagator takes the final
form

�G2B�E+�−1 = E+ − ��B� −
��B�

1 + �abg�B��	− Em

�2

	− E .

�43�

Using this expression in Eq. �35� we recover the effective
atom-atom resonant interaction in the limit of zero-energy
scattering. This is given by

FIG. 4. Diagrammatic calculation of the many-body T matrix.
The derivation starts from the definition of the many-body T matrix
in Eq. �27� in terms of the bare quantities of the theory. The many-
body T matrix in terms of the renormalized couplings and propaga-
tors follows exactly from the algebra defined in Fig. 3 based on the
exact relations in Eqs. �29�–�32�.
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T2B�0� =
4��2a�B�

m
=

4��2abg�B�
m

−
g2�B�
��B�

�
4��2

m
�abg�B� + ares�B�� , �44�

where a�B� is the total effective scattering length that di-
verges at B=B0.

When the background scattering length can be considered
as a constant for the magnetic field range across the Fesh-
bach resonance, such as is certainly the case for a narrow
resonance, the total effective scattering length can be rewrit-
ten as

a�B� = abg�1 −

B

B − B0
� �45�

with the width of the resonance 
B defined through the re-
lation 
B=mg2 /4��2�abg�
�. For the broad resonance at
834 G in an atomic 6Li gas, however, the background scat-
tering length exhibits a strong dependence on the external
magnetic field B �95� and it is not sufficiently accurate to use
Eq. �45� �59�. The energy of the molecule is given by Ek
=	m�B�+	k /2, where the energy of the zero-momentum mo-
lecular level 	m�B� is determined by the pole of the retarded
molecular propagator given in Eq. �43� at zero kinetic en-
ergy. This is equivalent to finding the zero of the equation

	m − ��B� −
��B�

1 + �abg�B��	− 	m
+ m

�2

	− 	m
+ = 0. �46�

For negative detuning ��B��0 the molecular propagator has
a real and negative pole corresponding to the bound-state
energy. The real solution of Eq. �46� can be calculated ana-
lytically by solving the equivalent algebraic equation. We
find

	m = −
1

9
�− 		bg −

21/3�

�� + 	4�3 + �2�1/3

+
�� + 	4�3 + �2�1/3

21/3 �2

, �47�

where the coefficients are �=3�−	bg+3�		bg and �=
−18�		bg−2	bg

3/2+9�	bg. The energy 	bg, associated to the
background scattering length abg, is defined as

	bg�B� =
�2

mabg�B�2 . �48�

Interestingly, it can be shown that the solution of Eq. �47� is
equivalent to the solution of the equation for the binding
energy given by Eq. �4� in �99� in the limit when the effec-
tive range r0 can be neglected. Therefore, in the case of a
very large background scattering length, our theory repro-
duces correctly the nontrivial energy dependence due to the
interplay between the resonant background interaction and
the Feshbach resonance �95,100�.

In the limit of a vanishing background scattering length
abg→0, the solution of Eq. �47� reduces to �47�

	m�B� = ��B� +
�2

2
�	1 −

4��B�
�2 − 1� . �49�

The bound-state energy of the dressed molecule as a func-
tion of the magnetic field 	m�B� of Eq. �47�, is shown in Figs.
5�a�, 6�a�, and 7�a� for three different resonances. Near reso-
nance the binding energy goes to zero and the square-root
term in Eq. �46�, which describes the dressing effects of the
open channel, dominates the linear term. In this approxima-
tion the location of the pole is at

	m�B� = −
�2

ma2�B�
, �50�

according to the Wigner’s formula in Eq. �18� for the binding
energy in resonant scattering. At large negative detuning, far
away from resonance, the dressing effects of the coupling
with the open channel represent only a small perturbation. In
this limit, the energy of the Feshbach molecule approaches
the binding energy of the bare molecule which scales linearly
with the magnetic field as

	m�B� 
 ��B� . �51�

In general the residue of the pole of the molecular Green’s
function G2B�E+� is given by

Z�B� = �1 −
���2B�z�

�z
�

z=	m�B�

−1

= �1 +
��B�

2	�	m�B���1 +	�	m�B��
	bg�B�

�2�
−1

�52�

and is always smaller than 1, because physically the wave-
function of the dressed molecular state near the Feshbach
resonance is given by the linear superposition

�r��m;dressed� 
 	Z�B��m�r��closed�

+ 	1 − Z�B�
1

	2�a�B�
e−r/a�B�

r
�open� ,

�53�

where �m�r� denotes the wavefunction of the bare molecular
state in the closed channel of the Feshbach problem. The
quantity Z is plotted in Figs. 5�b�, 6�b�, and 7�b� for the three
different Feshbach resonances already considered. The
dressed molecular state therefore only contains with an am-
plitude 	Z�B� the bare molecular state ��m;bare� of the
closed channel. The remaining 	1−Z�B� component is car-
ried by the continuum of the scattering states in the open
channel.

The density of states of the dressed molecule can be cal-
culated from the imaginary part of the Green’s function �87�.
The density of states at negative detuning is shown in Fig.
8�a�. The probability Z corresponds to the wavefunction
renormalization constant of the bare molecule in the closed
channel. It goes linearly in �B−B0� to zero near resonance,
where the dressing due to the open channel is maximum. It
goes to one monotonically at large negative detunings where
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the eigenstate of the Feshbach problem approaches the bare
molecule of the closed channel. �See also the right sides of
Figs. 5–7�. For a broad resonance, we usually have that �2


	bg. In this case the “crossover” between these two regimes
takes place at detunings such that

�	m� 
 	bg. �54�

When abg is small the turning point between the quadratic
and the linear regime is given by the condition �	m�
�2. The
quantity Z is also related to the magnetic moment �mag of the

dressed molecules. Taking the derivative on both sides with
respect to the magnetic field B in Eq. �46� we have that

�	m

�B
− 
� −

���2B

�	m

�	m

�B
= 0, �55�

where we recall again that 
� is the difference in the mag-
netic moment between the atomic pair and the bare molecule
and closed channel in absence of coupling. Using the defini-
tion of Z, Eq. �55� can be rewritten as

Z�B�
� =
�	m

�B
� 
� − �mag�B� . �56�
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FIG. 5. �a� Binding energy 	m�B� and �b� the probability Z�B� as
a function of the magnetic field near the broad resonance at 834 G
in a mixture of 6Li atoms in the hyperfine states �1� and �2�. In �a�
the full line shows the binding energy obtained from Eq. �47�. The
dashed line merging at about 600 G with the full line represents the
binding energy approximated according to the Wigner formula in
Eq. �50�. The detuning ��B� is shown by the dotted line for com-
parison. In �b�, the full line represents the value of Z calculated
from Eq. �52�. The short arrow at about 675 G indicates the
magnetic-field scale associated with the energy 	bg=�2 /mabg

2 , while
the long arrow on the right side of the picture indicates the location
of the resonance. The curve for the binding energy is calculated for
the most recent measured value of the location of the resonance at
B0
834 G. We are not aware of more recent publications of the
binding energy data incorporating this position of the resonance.
However, our theory is in perfect agreement with the coupled-
channel calculations and the experimental data reported in �71�
when just shifting the location of the resonance to B0
850 G �71�.
This result was reported in �59�. The curve for Z agrees perfectly
with the experimental data of �20� in the range of validity of the
two-body approximation �see also Fig. 24�.

(a)

(b)

FIG. 6. �a� Binding energy and �b� the probability Z as a func-
tion of the magnetic field near the resonance at 224 G in a mixture
of 40K atoms in the hyperfine states �f ;mf�= �9/2 ;−9/2� and
�f ;mf�= �9/2 ;−5/2�. The dashed line in �a� represents the binding
energy approximated according to the Wigner formula in Eq. �50�.
The stars represent the experimental data taken from �96�. The ar-
row at about B−B0=−1.6 G indicates the magnetic field associated
with the energy 	bg. The curves are calculated using the the same
experimental parameters abg=174 a0, 
�=1.27 �B, and 
B
=9.7 G as in �53�. Note that for this resonance the high-field ap-
proximation discussed in Sec. II is not valid and the structure of the
spin states of the 40K atoms is thus more complicated.
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Therefore the change of the difference in magnetic moments
due to the dressing of the molecule near resonance is given
by the relation

�mag�B� = 
��1 − Z�B�� �57�

and is automatically included in our theory �47�. The curve
of Eq. �57� is in very good agreement �59� with the measure-
ment of the dressed-molecule magnetic moment in 6Li gas
taken if �71� and discussed earlier in Sec. II.

For positive detuning ��B�
0 the solution of Eq. �46� has
a negative imaginary part, in agreement with the fact that the
molecule decays when its energy is above the two-atom con-
tinuum threshold. The molecular density of states at positive
detuning does no longer have a delta function at negative
energy but is given by a Lorentzian-like curve depicted in

Fig. 8�b�. The analytic expression which gives the maximum
in the density of states 	m at positive detuning can be easily
calculated in the limit of abg=0 and reads �56�

	m =
1

3
�� −

�2

2
+	�4

4
− �2� + 4�2� . �58�

At large positive detuning, the peak of the Lorentzian distri-
bution is located at the detuning. Near resonance, it is shifted
from the detuning by the nonzero coupling, and located at
�2 /ma2�B�. This is up to a sign exactly the position of the
real pole at small negative detuning.

C. Reexamination of the many-body T matrix: Functional
integral approach

The approximation developed to solve the two-body scat-
tering problem, based on Eq. �33�, can be generalized rather
straightforwardly to include the Pauli-blocking effects on the
many-body T matrix and on the molecular propagator. Nev-
ertheless, for completeness we prefer here to rederive the
many-body T matrix approach also by means of functional-

(a)

(b)

FIG. 7. �a� Binding energy and �b� the probability Z as a func-
tion of the magnetic field near the resonance at 202.1 G in a mix-
ture of 40K atoms in the hyperfine states �f ;mf�= �9/2 ;−9/2� and
�f ;mf�= �9/2 ;−7/2�. The dashed line in �a� represents the binding
energy approximated according to the Wigner formula in Eq. �50�.
The crosses represent the experimental data taken from �96�. The
arrow at about B−B0=−1.2 G indicates the magnetic field associ-
ated with the energy 	bg. The curves are calculated using the experi-
mental parameters abg=174 a0, 
�= �16/9��B and 
B=7.8 G as in
�97,98�. Note that also for this resonance the high-field approxima-
tion discussed in Sec. II is not valid and the structure of the spin
states of the 40K atoms is thus more complicated.

FIG. 8. Molecular density of states in the two-body limit at �a�
negative detuning and �b� positive detuning. In �a� the delta func-
tion at E=	m�B� indicates the real dressed molecular state at nega-
tive energies, while the delta function at E=��B� denotes the energy
of the bare molecular level in the absence of coupling between the
open and the closed channels. The broad continuum distribution at
positive energies is associated with the scattering states in the open
channel. The absence of a true bound state at positive detuning is
shown in �b� by the nonzero width of the molecular level at E

	m�B�
�2 /ma�B�2. However, due to the interchannel coupling
the maximum of the density of states distribution is shifted with
respect to the value E=��B� in the absence of coupling.
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integral methods �88,101,102�. The reasons for this are two-
fold. First, it simplifies considerably the many-body calcula-
tions in order to go beyond the mean-field approximation.
Second, as we will see, it helps in connecting our theory with
the other studies developed in the literature.

The path integral expression for the grand-canonical par-
tition function of the effective atom-molecule model in Eq.
�20� is

Z =� d��m
* �d��m���

�

d���
*�d�����e−S��m

* ,�m,��
* ,���/�

�59�

with the Euclidean action given by

S��m
* ,�m,��

* ,��� = �
0

��

d�� dx�
�

��
*�x,����

�

��
−

�2�2

2m
− �����x,��

+ �
0

��

d�� dx�m
* �x,����

�

��
−

�2�2

2�2m�
+ �bare�B� − 2���m�x,��

+ �
0

��

d�� dx� dx�Vbg�x − x���↑
*�x,���↓

*�x�,���↓�x�,���↑�x,��

+ �
0

��

d�� dx� dx��g*�x − x���m
*
„�x + x��/2,�…�↓�x�,���↑�x,�� + c.c.� , �60�

where �m denotes the molecular bosonic field, the Grassmann fields �� represent the fermionic atoms in the two atomic
hyperfine states, and �=1/kBT. By means of the Hubbard-Stratonovich transformation

e−��↑�↓�Vbg��↓�↑� =� d�
�d�
*�e+�
��↓�↑�+��↑�↓�
�+�
�Vbg
−1�
� �61�

we can introduce the auxiliary field 
�x ,��, which describes the quantum fluctuations in the particle-particle channel according
to the ladder approximation. Using this identity, we can rewrite the full action as

S��m
* ,�m,��

* ,��,
*,
� = �
0

��

d�� dx�
�

��
*�x,����

�

��
−

�2�2

2m
− �����x,��

+ �
0

��

d�� dx�m
* �x,����

�

��
−

�2�2

2�2m�
+ �bare�B� − 2���m�x,�� −

�
�x,���2

Vbg

+ �
0

��

d�� dx�gbare�m�x,�� − 
�x,����↑
*�x,���↓

*�x,��

+ �
0

��

d�� dx�gbare�m
* �x,�� − 
*�x,����↓�x,���↑�x,�� . �62�

Note that we have made the replacements Vbg�x−x��=Vbg��x−x�� and g�x−x��=gbare��x−x�� as in Eq. �26� above.
Recalling the definition of the noninteracting atomic Green’s function �88�

��
�

��
−

�2�2

2m
− ��G�,0�x,�;x�,��� = − ���x − x����� − ��� �63�

and using a 2�2 matrix �Nambu-space� notation, the dressed atomic Green’s function can be written as

Gf
−1�x,�;x�,��� = �G↑,0

−1 �x,�;x�,��� 0

0 − G↓,0
−1 �x�,��;x,��

� −
1

�
� 0 gbare�m�x,�� − 
�x,��

gbare
* �m

* �x,�� − 
*�x,�� 0
���x − x��

���� − ��� � Gf,0
−1�x,�;x�,��� − �f�x,�;x�,��� . �64�

The integration over the atomic fields now involves a Gaussian integral which adds the formal result −�Tr�ln�−Gf�� to the
effective action, that can be treated perturbatively. The effective Gaussian action is obtained by keeping terms up to the
quadratic level in the 
 and �m fields. It reads

DRESSED MOLECULES IN RESONANTLY INTERACTING… PHYSICAL REVIEW A 75, 023612 �2007�

023612-13



S�
*,
,�m
* ,�m� = �

0

��

d�� dx
�x,��*�−
1

Vbg
�
�x,��

+
�

2
Tr�G f ,0�f�2 + �

0

��

d�� dx�m
* �x,��

���
�

��
−

�2�2

2�2m�
− �bare�B� − 2���m�x,�� ,

�65�

where the trace Tr�Gf,0�f�2 can be rewritten as

Tr�Gf,0�f�2 =
2

�2�
0

��

d�� dx�
0

��

d��� dx�

��− gbare�m�x�,��� + 
�x�,������0�x,�;x�,���

��− gbare
* �m

* �x,�� + 
*�x,��� �66�

if we introduce the free pair propagator

��0�x,�;x�,��� = − G↑,0�x,�;x�,���G↓0�x,�;x�,���
�67�

in coordinate space. Using as a definition of the pairing-field
propagator

− �G
bg

−1 �x,�;x�,��� = −
��x − x����� − ���

Vbg
+ �0�x,�;x�,���

�68�

the effective Gaussian action in Eq. �65� can be put finally
into the form

S�
*,
,�m
* ,�m� =� d�� dx� d��� dx��
*�x�,���

��− �G
bg

−1 �x,�;x�,����
�x,��

+ �m
* �x�,����− �G0

−1�x,�;x�,���

+
1

�
gbare��0�x,�;x�,���gbare��m�x,��

−
1

�

*�x,����0�x,�;x�,���gbare�m�x�,���

−
1

�
�m

* �x,��gbare��0�x,�;x�,���
�x�,���� ,

�69�

which represents a generalization to the two-channel atom-
molecule model of the Gaussian fluctuation theory developed
in �13� for a single-channel resonantly interacting Fermi gas.
From Eqs. �68� and �32� we see that the Fourier transform of
the pair propagator G
bg

can be identified with the many-
body Tbg matrix. It can be easily calculated by performing
the sum over the Matsubara frequencies in �0 and using the
Lippmann-Schwinger equation in Eq. �38� at E=0. We ob-
tain �13,91�

�G
bg

−1 �K,�n� = Tbg
MB−1

�K,�n� =

−
1

V
�
k
� 1 − NK/2+K − NK/2−k

i��n + 2� − 2	k − 	K/2
+

1

2	k
�

+
m

4��2abg
. �70�

The Fermi distribution factors Nk describe the effects of
Pauli blocking in the medium.

The renormalized pair propagator G
, which includes the
effects of the resonant scattering, is calculated by integrating
out also the molecular field in Eq. �69�. After some algebra,
which involves the definitions in Eqs. �26�–�32�, we recover
the expected result

G
�K,�n�/� = TMB�K,�n� = Tbg
MB�K,�n�

+ gMB*
�K,�n�

G�K,�n�
�

gMB�K,�n� ,

�71�

where G�K ,�n� is the full molecular propagator. Note that in
this derivation we have assumed �=�0 which corresponds
to neglecting many-body effects in fermionic atomic propa-
gators. Nevertheless, this restriction would disappear if we
consider the complete series in the expansion of the
−�Tr�ln�−Gf�� term. At the saddle point 
�x ,��=0, there are
no contributions coming from the �Tr�ln�−Gf�� term, and the
solution of the pair propagator reduces to

�G

−1�K,�n� = �4��2abg

m
+

gbare
2

i��n + 2� − �bare − 	K/2
�−1

.

�72�

Thus the Feshbach molecule makes the pair field dynamical,
even before including the fluctuations around the saddle
point, in contrast with the usual BCS theory, where the
dynamics of the pair field is generated only via the
�Tr�ln�−Gf�� term. As we will see in two next sections, this
can have a large effect on the bare molecular component
above the resonance in the case of a narrow resonance
�2�	F.

D. Many-body T matrix for a very broad resonance

For a very broad resonance, the dynamics of the molecu-
lar boson close to resonance is dominated by the self-energy
in the molecular propagator in Eq. �29�. The dynamics of the
bare boson, given by the term i�� in the free propagator, is
then effectively screened by dressing effects. This can be
explicitly verified by carefully studying the low-energy be-
havior of the exact many-body T matrix in Eq. �71�.

At fixed density the width of the BEC-BCS crossover
region, delimited by

�kFa�B�� 
 		F
�

���B��
� 1, �73�

is determined by the energy scale �2, related to the width of
the specific resonance under consideration. As the latter in-
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creases, so does the range of the magnetic fields which spans
the crossover region. Within this range the detuning in gen-
eral turns out, except of course very close to resonance, to be
much larger than the other energy scales:

���B�� � �2��,	m. �74�

To put it more precisely, at positive detuning it is ��B�
�2�
2	F, where 	F is the Fermi energy. At negative de-
tuning, the chemical potential approaches half the molecular
binding energy 2���
�	m�� ���B��. Furthermore, at low en-
ergies ��
	F and low momenta ��q�
�kF, we have ��
���m�q ,��
���q ,�� due to the large coupling �. Under
these conditions, the full molecular propagator in Eq. �29�
and �71� can be approximated by

�G�q,��−1 
 − �bare − ��m�q,�� . �75�

Introducing also

Vres = −
gbare

2

�bare
�76�

as a new definition of the bare resonant part of the potential
and using the set of relations in Eqs. �26�–�32�, we obtain
without any further approximation

TMB�K,�� 
 Tbg
MB�K,�� + gMB*

�K,��

�
1

− �bare − ��m�K,��
gMB�K,��

=
Vbg + Vres

1 − �Vbg + Vres���K,��
. �77�

This is the formal solution of a Bethe-Salpeter equation for
the many-body T matrix of the bare interaction Vbg+Vres
�89–91�. A derivation of Eq. �77� based on the diagrammatic
calculus developed in Sec. III B is shown in Fig. 9. Renor-
malizing the bare interactions to the two-body T matrix as in
Eq. �70� this equation can be rewritten as �13�

�G

−1�K,�n� = TMB−1

�K,�n� 

m

4��2a�B�

−
1

V
�
k
� 1 − NK/2+k − NK/2−k

i�n + 2� − 2	k − 	K/2
+

1

2	k
� .

�78�

In the limit of zero-energy scattering in the vacuum it re-
duces to the atom-atom effective interaction in Eq. �44�:

4��2a�B�
m

=
4��2abg�B�

m
−

g2�B�
��B�

�
4��2

m
�abg�B� + ares�B��

�79�

that we obtain by integrating out the molecular field from the
very beginning in the original action in Eq. �60�. This shows
that for a very broad resonance, the low-energy behavior of
the many-body T matrix in Eq. �71� in most of the BEC-BCS
crossover region determined by Eq. �73�, does not differ sig-
nificantly from the many-body T matrix of a single-channel
interaction with scattering length a�B�. A detailed analysis of
the analytic structure of the many-body T matrix �78� has
been carried out by Combescot in �30,31�.

However, even for a broad resonance, a complete ap-
proach to investigate the physics across the Feshbach reso-
nance cannot neglect the closed channel from the beginning.
This is essentially for two reasons. First, at sufficiently nega-
tive detuning, where the systems approaches a gas of weakly
interacting bare molecules with binding energy linear in the
magnetic field, the closed channel dominates. In that regime,
the approximation introduced in Eq. �75� fails because the
analytic expression of the two-body scattering amplitude
contained in Eq. �77� has the wrong pole structure in the
complex plane in order to reproduce the correct binding en-
ergy. The pole which denotes the binding energy of the mo-
lecular state follows Wigner’s formula 	m�B�=−�2 /ma2�B�,
which is quadratic in the detuning, at every magnetic field
below resonance. Therefore only a two-channel model can
allow a full description at every magnetic field across the
resonance. Second, near the resonance the gas consists of a
mixture of atoms and dressed molecules which can in prin-
ciple be measured separately. Dressed molecules have non-
zero components on two different spin state configurations,
even above the Feshbach resonance, which can also be mea-
sured by experiments �20�. Thus, even when the dressing

FIG. 9. �1� Diagrammatic representation of the bare resonant
interaction introduced in Eq. �76�. �2� Approximated form of the
molecular propagator defined in Eq. �75�. �3� Diagrammatic deriva-
tion of the formula in Eq. �77�.
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effect is so strong that the wavefunction contains almost
completely only atomic scattering states in the open channel,
the distinction between the two different components can be
crucial for the interpretation of the experiments.

E. Many-body molecular self-energy

The physics of the dressed molecules is described by the
molecular propagator in the presence of the medium. The
effective Gaussian action for the molecules is obtained by
integrating out the pairing field 
�x ,�� in Eq. �69�. In this
manner we obtain

S��m
* ,�m� =� d�� dx� d��� dx��m

* �x�,���

��− �G0
−1�x,�;x�,��� +

1

�
gbare��0�gbare

+
1

�2G
bg
�x,�;x�,�����0gbare���m�x,�� . �80�

When we recall the definition of the pairing propagator G
bg
in Eq. �68� and Eqs. �31� and �32�, we observe that the effect
of the Gaussian integration over the field 
 consists of dress-
ing the atom-molecule coupling constant with ladder dia-
grams. Therefore, we obtain the renormalized molecular
propagator

S��m
* ,�m� =� d�� dx� d��� dx��m

* �x�,���

��− �G0
−1�x,�;x�,���

+
1

�
g��0�x,�;x�,���gMB��m�x,�� . �81�

By repeating the same renormalization procedure of the ul-
traviolet divergencies described above in Eqs. �40� and �41�,
the many-body molecular propagator can be rewritten as

�GMB−1
�k,E� = E + 2� − ��B� − 	k/2 − ��m

MB�k,E�

+ ��m
2B�0,0� , �82�

where the many-body self-energy in the ladder approxima-
tion is given by

��m
MB�q,E� − ��m

2B�0,0� =
1

V
�
k

�gMB�q,2	k��2

�� 1 − Nq/2+k − Nq/2−k

E + 2� − 2	k − 	q/2
+

1

2	k
� .

�83�

If we neglect the many-body corrections in gMB and the
Fermi factors in the numerator of the integrand, we recover
the two-body result in Eq. �42�. The integral of Eq. �83�
cannot be performed analytically but some progress can be
made by considering a special limit. Neglecting the many-
body effects in the dressed coupling constant gMB, the ex-
pression reduces to

��m
MB�q,E� − ��m

2B�0,0�

=
1

V
�
k

�g2B�0,2	k��2� 1 − Nq/2+k − Nq/2−k

E + 2� − 2	k − 	q/2
+

1

2	k
� .

�84�

In this case, the integral can be integrated analytically at T
=0 but the solution is rather cumbersome and we do not
reproduce it here. The solution at T=0 in the limit abg→0, is
given by �52�

��m
�+��q,E� − ��m

2B�0,0� = − �i	E + 2� −
	q

2
+ 2�

	2�

�
+ �

E

�	2	q

ln�E − 	q + 2	�	q

E − 	q − 2	�	q
�

+
�

�
	E + 2� −

	q

2 �ln

	E + 2� −
	q

2
− �	2� +		q

2
�

	E + 2� −
	q

2
+ �	2� +		q

2
� + ln

	E + 2� −
	q

2
− �	2� −		q

2
�

	E + 2� −
	q

2
+ �	2� −		q

2
�� .

�85�

As an important point, we must mention the fact that in Eq. �84� the Galilean invariance is lost. This is because the Fermi sea
introduces a preferred coordinate frame in the description of the scattering. Physical insight is gained by observing the T=0
solution for q=0. In that case the solution is

��m
MB�0,E� − ��m

2B�0,0� = �
	− E − 2�

1 +	− E − 2�

	bg

+
�

1 +
E + 2�

	bg

� 4

�
		bg Arctan�	2	F

		bg
� −

4

�
	− E − 2� Arctan� 	2	F

− E − 2�
��

�86�

or
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��m
MB�0,E� − ��m

2B�0,0� = �	− 2� − E +
4

�
�	2	F −

4

�
�	− E − 2� Arctan� 	2	F

− E − 2�
� �87�

in the limit of abg→0 when it is possible to neglect the energy dependence of the atom-molecule coupling constant.
Only the imaginary part of the self-energy in Eq. �84� can be calculated by simple analytic methods. In the limit abg→0 we

find �48�

Im
��m
MB�q,E+�� =

�

�		q

2

 �E + 2� −
	q

2
� � ln� cosh

�

2
�E+

2
+	�E+ + 2� −

	q

2
� 	q

2
�

cosh
�

2
�E+

2
−	�E+ + 2� −

	q

2
� 	q

2
�� . �88�

The real part at nonzero temperatures can only be calculated
numerically. The effects of the nonzero temperature correc-
tions are shown in Figs. 10 and 11. Figure 12�a� illustrates
the real part of the zero-temperature self-energy in Eq. �85�
at different momenta q. Figure 12�b� shows the effect of the
corrections introduced by the background scattering length
abg. In Fig. 13�a� the real part of the self-energy in Eq. �84�
is plotted at fixed energy �� as a function of the momentum
�q at different temperatures. Finally in Fig. 13�b� the relative
dependence between the two variables � and q is illustrated.
Some physical consequences of this behavior of the molecu-
lar self-energy are discussed next.

F. Fermi edge effects for a narrow Feshbach resonance

A two-component Fermi gas with negative s-wave inter-
actions exhibits a superconducting instability when lowering
the temperature to T�TF. The instability is signaled by a
singularity at K=�=0 in the two-particle propagator G


which describes the Cooper channel. For a weak attractive
background interaction abg�0, for example, the pair propa-
gator in Eq. �70� of the traditional BCS theory

�G
bg

−1 �0,0� = Tbg
MB−1�0,0� = −

1

V
�
k
� 1 − 2Nk

2� − 2	k
+

1

2	k
�

+
m

4��2abg
�89�

has a pole at �13,103�

Tc 

8	F

kB�
e�−2 exp�−

�

2kF�abg�
� , �90�

where �=0.5772 is Euler’s constant.
From a mathematical point of view, the logarithmic sin-

gularity is generated by the rather sharp Fermi surface in Eq.
�89�. The same structure occurs in the self-energy in Eq.
�84�. This is because many-body effects on the propagation
of the molecule and the Cooper instability are described by
the same ladder diagrams. As a result, the pairing mechanism
must be enhanced by the presence of the molecular bound
state. The effects of the resonant interaction on the Cooper
instability are considered in the next section, by focusing on

the singularities of the total many-body T matrix in Eq. �71�.
Here we follow the opposite logic and concentrate on the
effects of the logarithmic singularity, introduced by the
atomic Fermi sea, on the molecular field.

The bare molecular field is a true independent degree of
freedom. Even at the lowest order in the self-energy, its
propagator

�G0
−1�K,�n� = �i��n −

	K

2
+ 2� − �bare� �91�

is dynamical. This is in contrast with the auxiliary pairing
field 
bg of BCS theory, which, at lowest order, is described
by a static propagator

FIG. 10. Real part �a� and imaginary part �b� of the molecular
self-energy in Eq. �84�, with q=0 and �g2B�0 ,2	k��2
�g2B�0 ,0��2
=g2, and at different temperatures: �1� T
0, �2� T=10−2TF, �3� T
=10−1TF, �4� T=TF.
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�G
bg

−1 =
1

Vbg
. �92�

This explains why we expect the logarithmic singularity to
have nontrivial effects on the molecule thermodynamics. It
turns out that it can lead to important consequences, expe-
cially in the case of a narrow resonance �2�	F. Surpris-
ingly, the bare molecular component of the gas becomes
strongly enhanced by the presence of a sharp Fermi surface
when approaching the resonance from positive detuning. The
mechanism underlying this effect can be better understood
when examining the analogy with other well-known phe-
nomena in condensed-matter physics. In particular, the reso-
nant molecular level embedded in the continuum of the at-
oms is reminescent of the Anderson model for a quantum
dot, where a localized electron level is located just below the
Fermi energy of the metal leads.

Quantum dots are small solid-state devices in which the
number of electrons is a well-defined integer N �104,105�. In
Fig. 14 the quantum dot is sketched as an electron box, sepa-
rated from the leads by tunable tunnel barriers and with a
number of spin-degenerate energy states that can be single or
doubly occupied by electrons of either spin up or down. An
electron on the leads cannot tunnel onto the dot because it
would cost an energy EC−	F, which is assumed to be much
larger than the thermal energy kBT of the leads. The inhibi-
tion of such a transition, called the Coulomb blockade, sup-

presses exponentially the conduction through the dot at low
temperature. This suppression occurs because the process of
electron transport through the dot involves a real transition to
the state in which the charge of the dot differs by one unit
from the thermodynamically most probable value. However,
the Heisenberg uncertainty principle allows higher-order pro-
cesses for short durations, in which virtual states participate
in the tunneling process. The leading contributions to this
activationless transport are provided by the inelastic and
elastic cotunneling processes described in Fig. 14.

It turns out that in a quantum dot the amplitude of the
elastic cotunneling process with a singly occupied level of
Fig 14�c� diverges logarithmically when the energy ��

kBT of an incoming electron approaches zero. The singu-
larity in the transition amplitude gives a dramatic enhance-
ment of the conductance through the dot. In the elastic co-
tunneling process �c� the electron on the dot is quickly
replaced by another electron, when the electron on the dot
tunnels to one of the leads. The characteristic time scale for
such a cotunneling is about � /EC. Events of type �c� also
effectively flip the spin on the dot. Successive spin-flip pro-
cesses screen the local spin on the dot until a spin singlet is
formed by the electrons in the leads and on the dot. Macro-
scopically, the system enters in a many-body correlated
quantum state. The formation of this entangled state, which
is a pure many-body effect, represents the Kondo effect in
quantum dots �104,106�. If we interpret the tunneling as an
effective magnetic-exchange coupling, the physics of a quan-
tum dot between two leads becomes analogous to the origi-

FIG. 11. Real part �a� and imaginary part �b� of the molecular
self-energy in Eq. �84�, with �g2B�0 ,2	k��2
�g2B�0 ,0��2=g2, and at
different momenta and temperatures: �1� kBT=	q /2
0, �2� kBT
=	q /2=3�10−3kBTF, �3� kBT=	q /2=3�10−2kBTF, �4� kBT=	q /2
=3�10−1kBTF.

FIG. 12. �a� Real part of the molecular self-energy �85�, at dif-
ferent momenta: �1� 	q /2=	F, �2� 	q /2=10−1	F, �3� 	q /2=10−2	F,
�4� 	q=0. �b� Real part of the molecular self-energy in Eq. �86� for
different values of the background scattering length abg.
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nal Kondo effect �107� for magnetic impurities coupled to
conduction electrons in a metal host. As shown in Fig. 15�a�,
the Kondo effect is signaled by a narrow resonance at the
Fermi energy in the density of states of the dot.

Returning back to our model, we expect something simi-
lar to happen when the molecular level is located at some-
what more than twice the Fermi energy above the threshold
of the atomic continuum. Differently than in quantum dots,
the molecular state has to lie above twice the Fermi energy
of the atoms, because otherwise the ground state of the gas
would contain a Bose-Einstein condensate of molecules. The
atom-molecule coupling produces virtual transitions between
the molecules and two atoms above and two holes below the

Fermi sea, as is shown in Fig. 16. In this case the virtual
cotunneling of pairs of atoms to the molecular level is indeed
reminiscent of the inelastic cotunneling of Fig. 14�c�. How-
ever, in our case, no Coulomb blockade is required. The
Fermi sea removes the symmetry between scattering to and
from the virtual molecular level, because atoms can tunnel
only in pairs. This leads to the logarithmic singularity in the
self-energy in Eq. �84� as mentioned above. The onset of a
singularity in the self-energy signals the formation of a new
many-body collective state. Taking the lowest-order pre-
cesses shown in Fig. 16 this many-body resonant state can be
written as a linear superposition

FIG. 13. �a� Real part of the molecular self-energy in Eq. �84� as
a function of the momentum q, at different energies and tempera-
tures. The various curves are �1� kBT=0,��=	F; �2� kBT=0,��
=0.1	F; �3� kBT=0,��=0.01	F; �4� kBT=0.1kBTF ,��=0.01	F; �5�
kBT=kBTF ,��=0.01	F; �b� Real part of the molecular self-energy
in Eq. �84� as a function of the scaling variable �� /	q. The curves
are �1� Re ��m�� /	q ,q� /�, �2� Re ��m�� /	q ,kF� /�, �3�
Re��m�� /	q ,0.3kF� /�.

FIG. 14. Examples of cotunneling processes: �a� inelastic cotun-
neling transferring an electron between the leads leaves behind an
electron-hole pair in the dot; �b� elastic cotunneling; �c� elastic co-
tunneling with a flip of the spin. This figure is taken from �105�.

FIG. 15. �Color online� �a� Kondo resonance in quantum dots.
�b� Many-body resonance in the molecular density of states near the
Feshbach resonance. Note that, in order to make more evident the
analogy with �a�, we have plotted in �b� the quantity !��� /� �see
also Fig. 18�a��.

FIG. 16. �Color online� Virtual tunneling of pairs of atoms to the
molecular level in the Fermi gas near a Feshbach resonance.
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�"K� 
 	ZK�b0
†�#F� + �

�k�
kF

�kak,↑
† a−k,↓

† �#F�

+ �
�k��kF

�kb0
†b0

†ak,↑a−k,↓�#F�� , �93�

where �#F� indicates the filled Fermi sea and the molecular
field is treated in the zero-mode approximation that considers
only the lowest molecular state. This is justified at very low
temperatures. In the formation of the many-body coherent
state the system gains an energy


EK = �"K�H�"K� − EG, �94�

where EG=2��k��kF
�	k−�� is the ground state of the Fermi

mixture in absence of the Feshbach resonance. This shift can
be calculated variationally �108,109� as follows.

First we evaluate H �"K� considering the Hamiltonian
given in Eq. �102�. Then we project this state on the three
different components of the ground-state ansatz of Eq. �93�.
As a result Eq. �94� is turned in three equations for the vari-
ables 
EK, �k, �k. The variable Z cancels out because it is
the normalization constant. Eliminating �k and �k we obtain
at T=0 a self-consistent equation for 
EK. This is


EK + 2� − ��B� 
 �
4	2�

�

+ �
2

�
	
EK + 2� ln

	
EK + 2� − 	2�

	
EK + 2� + 	2�
,

�95�

where we have used that �=	F=�2kF
2 /2m. At large detunings

��2� this equation has only one solution at 
EK
��B� as
expected when resonance effects can be neglected. However,
when �$2�, we have three solutions. The lowest-energy
solution defines the ground state of the systems and occurs
when 
EK
0. The logarithm in the last term diverges when

EK→0. Therefore, we have that 2��
EK, �ln 
EK �
�
EK and we can approximate Eq. �95� as

2� − ��B� 
 �
2	2�

�
�2 + ln� �
EK�

8�
�� . �96�

This leads to a nonperturbative expression for the energy
shift of the ground state given by

�
EK� 

8�

e2 e��/2��	2�/��e−��/2����B�/�	2��. �97�

The change in the ground-state energy defines a temperature,
i.e., the analogous of the Kondo temperature.

The singular behavior of the self-energy is associated with
the occurrence of a resonance in the spectral density !�q ,��
of the molecular bosons given by

!m�q,�� = − Im�Gm
�+��q,���/�� . �98�

This feature is clearly illustrated in Fig. 15�b�. Figure 17
shows the function !m�q ,�� for different detunings and mo-
menta q both at nonzero and zero temperature. At large posi-
tive detuning, the spectral function shows just a single broad
peak centered around the detuning. This is the expected situ-
ation for a single molecular state with a finite lifetime. As the
detuning gets closer to twice the Fermi energy, the spectral
density shows two other sharp peaks slightly above and be-
low the zero frequency. When approaching the resonance,
the spectral density of the molecular field at low momenta
and temperatures does no longer satisfy the unitarity sum
rule �110�

�
−�

�

d����!m�q,�� = 1, �99�

despite the fact that the self-energy in Eq. �84� is analytic in
the upper-half complex plane. This happens already above
the BCS critical temperature and is due to the appearance of
a complex pole in the upper-half plane in the propagator.
This feature is an artifact of the weak-coupling approxima-
tion, which neglects self-consistency effects on the Fermi
propagators in the calculation of the molecular self-energy
when the gas enters the strong-coupling regime kFa�B��
−1. For fermions, Luttinger’s theorem �111� shows that the
causality of the self-energy is a sufficient condition to have
also a causal propagator. We are not aware of an analogous
theorem in the case of bosons and our findings indeed

FIG. 17. Molecular spectral density �a� calculated from the self-
energy in Eq. �87� at different detunings. Molecular spectral density
�b� calculated from the self-energy in Eq. �84� at �=5	F for differ-
ent temperatures: �1� TBCS
0.02TF, �2� T=0.06TF, �3� T=0.1TF,
�4� T=0.5TF, �5� T=TF.
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present a counter example �112�. The double-peak feature
arises because the spectral density must be negative at nega-
tive frequencies for a bosonic field. By plotting the quantity
!m��� /� �113�, as shown in Fig. 18�a�, a single peak at zero
frequency is obtained.

We call this a molecular Kondo resonance. The effects of
nonzero momentum and of corrections due to a nonzero
background scattering lenght abg are shown in Fig. 18�b�.
Both tend to suppress the resonance. Nonzero momentum
corrections spoil the coherence of the many-body virtual co-
tunneling events similarly as BCS pairing is suppressed at
nonzero total momentum. A large background scattering
length means that there is a bound state in the open channel
potential �100�. This induces some density of states at large
energy. Because the total density of states is normalized to 1,
this results in an effective reduction of the resonance peak.

The additional spectral weight at low frequencies, induced
by the above-mentioned many-body effects, leads to an in-
crease of the bare molecular component in the gas, calculated
by means of

nB�T� = �
−�

+�

d���� � dq

�2��3!m�q,��N� ��

kBT
� �100�

with respect to that estimated from two-body physics. The
enhancement of the bare molecular components for realistic
resonance parameters is discussed in detail in �52�.

G. Exact mapping to the anisotropic Kondo Hamiltonian

The analogy with the Kondo effect in a quantum dot,
introduced in the previous section, requires a more formal
analysis. It is very desirable to search for an exact mapping
from the atom-molecule Hamiltonian to the Hamiltonian of
the Kondo problem.

The physics of the Kondo effect is described by a model
Hamiltonian based on the assumption that the magnetic mo-
ment of a local impurity is coupled via an antiferromagnetic
exchange interaction J with the conduction electrons. This is
known as the Kondo Hamiltonian and reads

H = �
k,�

�	k − ��ck,�
† ck,� + �

k,k�

�J+S+ck,↓
† ck�,↑ + J−S−ck,↑

† ck�,↓

+ JzSz�ck,↑
† ck�,↑ − ck,↓

† ck�,↓�� , �101�

where 	k is the energy of the conduction electrons and Sz and
S±��Sx± iSy� are the spin operators for the impurity with
spin 1/2. The operators ck,� and ck,�

† correspond to the cre-
ation and annihilation operators of conduction electrons with
momenta k and one of the possible spin states �= �↑ � or ��
= ↓ � which scatters of the impurity. The coupling constants
J± and Jz describe spin-flip and non-spin-flip scattering, re-
spectively.

The Hamiltonian of our model in Eq. �20� appears rather
different than the Hamiltonian in Eq. �101�, but it becomes
more similar when a restricted many-body Fock space is
considered �114�. For our present purpose, we can in first
instance consider only the zero-momentum molecular state
�115�. We can also neglect the effects of the background
interaction. Within these approximations, the atom-molecule
Hamiltonian in Eq. �20� becomes

H = �
k,��
↑,↓�

�	k − ��ak,�
† ak,� + ���B� − 2��b0

†b0

+
1

	V
�
k

�g*b0
†ak,↓a−k,↑ + H.c.� . �102�

The bosonic number operator b0
†b0 acts on the occupied �un-

occupied� lowest energy molecular state �1� ��0�� according
to b0

†b0�1�=1�1� and b0
†b0�0�=0. Hence, in this reduced Hil-

bert space, we can formally identify the molecular operators
b0

† and b0 with spin 1/2 raising and lowering operators S+

=Sx+ iSy and S−=Sx− iSy, which satisfy analogous relations

S+S−� + 1/2� = �1

2
+ Sz�� + 1/2� = 1� + 1/2� , �103�

S+S−�− 1/2� = �1

2
+ Sz��− 1/2� = 0 �104�

in the two-dimensional Hilbert space 
�+1/2� , �−1/2��.

FIG. 18. �a� The spectral density is plotted together with
!��� /�. At small frequencies, the latter quantity is proportional to
the density of states times the occupation number. The double struc-
ture of the molecular resonance merges then into a single Kondo-
like resonance. �b� Effects on the molecular spectral density, calcu-
lated from the self-energy in Eq. �87�, of the kinetic energy of the
molecules: �1� q=0, �2� q�0.3kF, and �3� q=kF. The curve �4� is
calculated from the self-energy �86� using q=0, abg�103 a0, 	F

�3.6 �K. It shows the corrections given on the density of states by
a large background scattering length.
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More progress can be made by rewriting the atom-
molecular coupling in terms of the symmetrized atom-pair
operators dk= �a−k,↓ak,↑+ak,↓a−k,↑� /	2 and dk

+= �ak,↑
† a−k,↓

†

+a−k,↑
† ak,↓

† � /	2, which satisfy the commutation relation

�dk
+,dk� =

1

2
�Nk,↑ + N−k,↓ + N−k,↑ + Nk,↓ − 2� . �105�

In the restricted two-dimensional Hilbert space, defined by
the condition that the eigenvalues of Nk,↑+N−k,↓ and N−k,↑
+Nk,↓ are either 2 or 0, the commutator in Eq. �105� can be
put �116� into the matrix form �dk

+ ,dk�=�k
z , by means of the

z-component Pauli matrix

�1 0

0 − 1
� = �k

z . �106�

This suggests the correspondence dk→�k
+� 1

2 ��k
x + i�k

y� and
dk

+→�k
−� 1

2 ��k
x − i�k

y�. Finally, by rewriting the spin ladder
operators �k

±, by means of the Abrikosov representation
�118�, in terms of anticommuting fermionic operators �k

+

=ck,↑
† ck,↓ and �k

−=ck,↓
† ck,↑ the atom-molecule Hamiltonian in

Eq. �20� can finally be transformed into

H = �
k,�

�	k − ��ck,�
† ck,� + �� − 2��Sz +

g
	2V

�
k

�S+ck,↑
† ck,↓

+ S−ck,↓
† ck,↑� . �107�

When �=2�, this Hamiltonian is equivalent of the aniso-
tropic Kondo Hamiltonian in Eq. �101� if we state the corre-
spondence g /	2=J+=J− and Jz=0. At nonzero detuning but
larger than 2�, the term ��−2��Sz represents an external
magnetic field applied on the localized spin, which removes
its degeneracy and ultimately destroys the Kondo effect.
Moreover, it is important to realize that the lack of the non-
flipping spin-interaction term, signaled by the condition Jz
=0, does not rule out the possibility that such a term is gen-
erated by higher-order processes. As illustrated in the ex-
ample of Fig. 19, the renormalization group flow in the so-
lution of the Kondo problem can generate nonzero values of
Jz starting from a point with Jz=0 �117�. A renormalization

group analysis of the coupling constants flow reveals that
this occurs also in Eq. �107�.

H. Fermi-liquid description of the normal state in the weak-
coupling regime

In the absence of the Feshbach resonance, the ultracold
dilute fermionic mixture weakly interacting in the back-
ground scattering channel above some certain critical tem-
perature Tc, is a Fermi liquid �119�. In this section, we con-
sider the weak-coupling regime 1/kFa�B��−1 in the
presence of the Feshbach resonance from the point of view
of the Fermi-liquid theory �50�. The thermodynamics of a
normal-fluid Fermi liquid is determined by the fermionic
Green’s function

G��k,�n� =
�

i��n − �	k − �� − ���
f �k,�n�

. �108�

In a self-consistent approach, the fermionic self-energy
���

f �k ,�n� is calculated in the ladder approximation from

���
f �k,�n� = −

1

�2��3 � d3k�
1

��
�
�n�

� TMB�k + k�,�n + �n��G−��k�,�n�� , �109�

where the many-body T matrix of Eq. �33� is determined by
Eqs. �82�, �83�, and �70�. From the self-energy ���

f �k ,�n�
we can calculate the atomic spectrum given by the poles of
the fermionic propagator in Eq. �108� �90,119� according to
the equation

��k =
�k2

2m
+ �� f�k,�k� = 	k + �� f�k,�k� , �110�

where we have suppressed the spin indices because the two-
species have the same mass and chemical potential. This
equation can be simplified in the weak-coupling limit as

��k 
 	k + �� f�k,pk� , �111�

because we expect a quasiparticle spectrum for the single
particle excitations of the type ��k=	k�1+O(kFa�B�)� and
the self-energy �� f�k ,�k� to be of the order of O(kFa�B�).
The real part Re��� f�k ,	k�� gives a shift in the single-
particle energies of momentum k, while the imaginary part
Im���k����k leads to a finite lifetime proportional to 1/�k.
Since the lifetime becomes infinite at kF, the chemical poten-
tial is defined by

� � ��kF
= 	kF

+ �� f�kF,	kF
� . �112�

Close to the Fermi surface the energy spectrum can be ex-
panded into a Taylor series

Re���k� = 	kF
+

�2kF

m* �k − kF� + O„�k − kF�2
… , �113�

which defines the effective mass

J ±

2Jz

0.10− 0.1

FIG. 19. Scaling trajectories for the anisotropic Kondo model in
Eq. �101� �117�.
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m* = �2kF�� � Re���k�
�k

�
k=kF

�−1

. �114�

The effective mass determines the properties of the system in
the zero-temperature limit.

In presence of the resonance it is important to distinguish
�50� between the weak-coupling regime near a broad and a
narrow resonance. For a broad resonance the condition �2

�	F implies that in the weak-coupling regime 1/kFa�B��
−1 we have ��B��	F. Therefore, we can neglect the retar-
dation effects on the atom-atom interaction induced by the
dynamics of the bare molecular boson. According to the dis-
cussion of Sec. III D, near a broad resonance, the many-body
T matrix of Eq. �33� can be approximated by the single-
channel expression of Eq. �78�. Then the atomic self-energy
becomes

�� f�k,�n� = −� d3k�

�2��3

1

��
�
�n�

4��2

m � 1

a�B�

−
4��2

m

1

V�
p
�1 − N�k+k��/2+p − N�k+k��/2−p

i�n + 2� − 2	p − 	�k+k�� % 2

+
1

2	p
��−1

G��k�,�n�� . �115�

In the weak-coupling limit the many-body T matrix in Eq.
�115� can be expanded in powers of a�B� and we obtain

�� f�k,�n� =
n

2

4��2a�B�
m

+ ��̃ f�k,�n� , �116�

where n is the total atomic density of the gas and ��̃ f�k ,�n�
represents a correction of order �kFa�B��2. Calculating the

self-energy ��̃ f�k ,�n� in the limit of zero temperature one
finds the expression of ��k, �k, and m* up to order �kFa�B��2

of a dilute Fermi-liquid theory �14,28,32,50,90�

��kF
=

�2kF
2

2m
�1 +

4

3�
�kFa�B�� +

4

15�2 �11 − 2 ln 2��kFa�B��2�
m*

m
= 1 +

8

15�2 �7 ln 2 − 1��kFa�B��2

�k = −
�kF

2

2m

2

�
� kF − k

kF
�2

�117�

for �k−kF� /kF�1.
In the case of a narrow resonance the bare dynamics of

the molecular propagator cannot be neglected in the weak-
coupling limit 1 /kFa�B��−1. Therefore, we have to retain
the full expression of the molecular propagator in the many-
body T matrix of Eq. �33�. Using the formal definition of the
effective mass in Eq. �114� and calculating the integral in Eq.
�109�, we recover the additional contribution to the effective
mass of Eq. �117�

�m*

m



g2

2��B�2n , �118�

calculated by Bruun and Pethick in �50�. However, we have
seen that, in the weak-coupling regime 1/kFa�B��−1 on the
positive side of the resonance, non-trivial correlations arise
in the molecular degree of freedom. These correlations in-
duce a resonance in the molecular spectral function. As a
result the finite-lifetime molecule on the positive side of the
resonance cannot be pictured as a well-defined quasiparticle,
as one would naively think in the case of a narrow resonance.
Therefore, it is reasonable to ask if it is not possible that the
Fermi-liquid description could partially break down in the
case of a narrow resonance in combination with the onset of
the molecular resonance at the Fermi surface. This requires a
more detailed analysis of the fermionic Green’s function in
Eq. �108� and will be addressed elsewhere.

IV. THE EQUATION FOR THE CRITICAL TEMPERATURE
Tc IN THE BEC-BCS CROSSOVER IN RESONANT

ATOMIC FERMI GASES

The ability to control experimentally the strength of the
interactions between ultracold atoms offers the exciting pos-
sibility to study in detail the crossover between the Bose-
Einstein condensation �BEC� of diatomic molecules and the
Bardeen-Cooper-Schrieffer �BCS� transition of atomic pairs
�10–13,44,46,48,60�.

According to the Thouless criterion �120�, the superfluid
phase transition in a Fermi system with attractive interac-
tions occurs at the temperature for which the many-body T
matrix in Eq. �33� develops a pole at �K ,��= �0 ,0�. At large
positive detuning, i.e., in the weak-coupling BCS limit, the
Thouless criterion yields the equation for the determination
of the BCS critical temperature of a Fermi gas with attractive
interactions. However, when approaching the resonance, the
attraction increases and the Fermi surface of the gas gets
strongly renormalized. Hence, the approximation �
	F,
valid in the weak-coupling BCS limit, is no longer valid.
Particle number conservation gives the desired condition on
the chemical potential of the gas under equilibrium condi-
tions �10–12�. This leads to a set of two coupled equations
for Tc and �. In the opposite BEC limit the role of the two
equations is inverted. The equation of state determines the
critical temperature for the Bose-Einstein condensation of
dressed molecules. The pole of the many-body T matrix be-
comes two-body in nature. This fixes the chemical potential
to half the binding energy of a dressed molecule.

The equation of state can be determined in different ap-
proximations. The simplest mean-field theory at nonzero
temperature neglects finite-lifetime effects of the molecules
and does not reproduce the correct binding energy of the
dressed molecules. The latter problem can be repaired by
replacing in the equation of state the bare energy of the mo-
lecular level with its dressed value calculated at Sec. III B in
the two-body scattering approximation. This leads to the
modified mean-field description �49� discusssed in Sec.
IV A. However, this mean-field approach still neglects finite-
lifetime effects of the molecules. As a result, it exhibits a
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phase transition between the BCS phase and the BEC phase.
Since we expect, from symmetry principles, a smooth curve
for Tc and �, this must be considered to be an artifact of the
mean-field theory. The inclusion of Gaussian fluctuations on
top of the mean-field solution, according to the Nozieres-
Schmitt-Rink approach �12,13�, is sufficient to obtain a
smooth crossover in the two-channel model �46,48,51�. This
approximation is described in Sec. IV B. A comparison of
the critical temperature as a function of the magnetic field for
a broad resonance reveals that our modified mean-field ap-
proach agrees quantitatively fairly well with the Nozieres-
Schmitt-Rink result. The Gaussian approximation exhibits a
maximum in the curve for Tc �46,51,121�. It has been shown
that, in a self-consistent approach, this maximum in the
curve for Tc disappears both in a single-channel �14� and in a
two-channel model �61�. In Sec. IV C, we discuss the self-
consistent equations in connection with our dressed-
molecule picture through a systematic analysis of the BEC
limit where analytical calculation are possible.

A. Modified mean-field equations

In order to study the pole structure of the many-body T
matrix in Eq. �33�, it is crucial to consider explicitly the
many-body corrections of the atom-molecule coupling con-
stant in the calculation of the self-energy of the dressed mo-
lecular propagator in Eq. �83�. However, a more transparent
derivation of the equation for the critical temperature can be
obtained by rewriting the many-body T matrix in Eq. �33� in
terms of the simpler two-body T matrix in Eq. �35�. We start
by considering the definition of the many-body T matrix in
Eq. �27�

TMB�K,E� = Veff + Veff��K,E�TMB�K,E� ,

with Veff given in Eq. �26�. Then we replace the kernel in Eq.
�28�

���K,E� = −
kBT

�V
�
k,�n

G↑�K

2
+ k,

E

2
+ �n�

� G↓�K

2
− k,

E

2
− �n� �119�

with the result of Eq. �67�

��0�K,E� = −
kBT

�V
�
k,�n

G0,↑�K

2
+ k,

E

2
+ �n�

� G0,↓�K

2
− k,

E

2
− �n�

=
�

V
�
k
� 1 − NK/2+k − NK/2−k

E + 2� − 2	k − 	K/2
� , �120�

as we have done in the calculation of the molecular self-
energy in Eq. �83�. Subtracting from the many-body T matrix
equation in Eq. �27� the two-body limit

T2B�E� = Veff + Veff
1

V
�
k
� 1

E − 2	k
�T2B�E� �121�

at E=2�, the many-body T-matrix can be put into the form

TMB�K,E� =
T2B�2�+�

1 − T2B�2�+���0�K,E� −
1

V
�
k
� 1

2�+ − 2	k
�� ,

�122�

where the two-body T matrix T2B�E� is known from Eqs.
�35�–�43�. At K=�=0 this becomes

TMB�0,0� =
T2B�2�+�

1 + T2B�2�+�&�0,0+�
, �123�

where

&�K,E� =
1

V
�
k
� NK/2+k + NK/2−k

E + 2� − 2	k − 	K/2
� . �124�

According to the Thouless criterion the denominator of
Eq. �123� vanishes at the critical temperature. To illustrate
more clearly the physics involved we consider first a system
when the background interaction can be neglected, i.e., the
limit abg→0. This is the case, for example, in 40K mixtures
where the background scattering length is small and does not
contribute to the pairing mechanism because is positive. In
that case the condition to have a pole in Eq. �123� becomes

��B� − 2� + �	− 2� − g2&�0,0+� = 0. �125�

The critical temperature Tc and the chemical potential � are
determined at every magnetic field in the mean-field approxi-
mation by solving self-consistently Eq. �125� together with
the equation of state. At the mean-field level, neglecting the
finite lifetime of the molecules, the latter is calculated from
the thermodynamic potential � �87� according to the formula

n = −
1

V

��

��
= −

1

�V

�

���− �
�

Tr�ln���G�,0
−1 ��

+ Tr�ln���G0
−1��� =

1

V
�
k


2N�	k − ��

+ 2NB�	k/2 + ��B� − 2��� , �126�

where the free-particle atomic and molecular propagators are
given by G0 /�= �i��−	k /2+2�−��B��−1 and G�,0 /�
= �i��−	k+��−1, N�	k−�� is the Fermi distribution Nk, and
NB is the Bose distribution function. However, to neglect
completely self-energy effects in the molecular propagator is
not consistent. This can be repaired in a first approximation
by replacing the detuning � in the free molecular propagator
occurring in Eq. �126� with the two-body curve of Eq. �58�

	m =
1

3
�� −

�2

2
+	�4

4
− �2� + 4�2� , �127�

which we have discussed in Sec. II C. This replacement is
necessary because the energy of the dressed molecule in the
equation of state must be the same as the binding energy
resulting from the chemical potential in the BEC limit from
the gap equation. As we shall see, this is crucial in the case
of a crossover near a broad resonance where the binding
energy is quadratic in the detuning in a large part of the
crossover region. For a very narrow resonance, when �2
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�	F, the binding energy of the dressed molecule can be
approximated as 	m
��B� except on a small range of mag-
netic field close to resonance, and the equation of state in Eq.
�126� turns out to be a good approximation. However, the
resonances used in current experiments on the BEC-BCS
crossover are broad in nature. Therefore, the mean-field
equation of state has to be modified to

n =
1

V
�
k

�2N�	k − �� + 2NB�	k/2 + 	m − 2��� . �128�

Note that the two-body quantity 	m does not account for a
possible many-body shift of the molecular bound state. How-
ever, for a broad resonance, this seems to be a smaller cor-
rection when compared to the two-body shift.

At positive detuning, in the BCS limit, the chemical po-
tential is positive and the many-body term of Eq. �125� is

g2&�0,0+� = g2 Re�&�0,0+�� + �	− 2� . �129�

Therefore we obtain the gap equation

��B� − 2� = g2 Re�&�0,0+�� . �130�

Note that our derivation is based on the many-body T matrix
calculated in the ladder approximation. Therefore, it neglects
the Gorkov correction �103� to the transition temperature in-
troduced by the effects of the density fluctuations of the me-
dium on the effective two-body interactions.

It turns out that for a narrow Feshbach resonance with
�2
	F, we can be in the weak-coupling regime kF�a�B��
�1 at magnetic fields such that �
2�
	F. In this case the
BCS critical temperature is given by

Tc 

8	F

kB�
e�−2e

2
�

	2�
� exp�−

�

2kF�a�B��� . �131�

When the resonance is broad and �2�2	F, the detuning is
always ��2�
	F in the weak-coupling range kF�a�B���1,
and the term e2	2�/�� can be neglected. In this limit the BCS
critical temperature can be approximated by

Tc 

8	F

kB�
e�−2 exp�−

�

2kF�a�B��� . �132�

This is the same result that one would obtain by looking at
the pole of the the single-channel many-body T matrix given
by Eq. �77�. Therefore, we conclude that the positive shift of
the weak-coupling BCS critical temperature by the factor
e2	2�/��, characteristic of the resonant superfluidity, can be
observed only in narrow resonances.

At large negative detuning, the pole of the many-body T
matrix in Eq. �27� determines the chemical potential 2� of
the dressed molecule, i.e., the energy we need to make a
dressed molecule from two atoms at zero momenta. In the
BEC limit this is very large and negative and corresponds to
the binding energy of the dressed molecule. Indeed the pole
of the many-body T matrix becomes two-body in nature be-
cause, for negative �, the many-body factor is

g2&�0,0+� = g2 Re�&�0,0+�� �133�

and vanishes exponentially as �2�� /kBT→�. The condition
�125� becomes

��B� − 2� + �	− 2� 
 0, �134�

which is the same algebraic equation as in Eq. �46�, again in
the limit of abg→0, satisfied by the binding energy in Eq.
�49�

	m�B� = ��B� +
�2

2
�	1 −

4��B�
�2 − 1� . �135�

Notice that the curve 	m of Eq. �127� that we have replaced
in the equation of state coincides with the binding energy of
Eq. �135� at zero detuning.

Once more, it is instructive to distinguish between the two
limits of narrow �2�	F and broad 	F��2 resonances. On
the BEC side of a narrow resonance, when the chemical
potential approaches half the binding energy, we have �

	m/2
� /2, and the dressed molecular wavefunction has
only a small amplitude in the open channel, that is, Z
1.
This can be checked easily if we assume that the chemical
potential approaches half the molecular binding energy �

	m/2 approximatively at some value BBEC when
kF�a�BBEC��
1. From the definition of the resonant scatter-
ing length in Eq. �44�, we have that ���BBEC��
�		F. Then
we can evaluate with the help of the formula in Eq. �135� the
binding energy for this value of the magnetic field. This
gives

	m�BBEC� 
 − �		F +
�2

2
�	1 +

4		F

�
− 1� . �136�

Substituting this expression in the definition of Z in Eq. �52�
and expanding the result in the small parameter �2 /	F, we
obtain

Z�BBEC� 
 1 −
1

2
��2

	F
�1/4


 1. �137�

Therefore, for a narrow resonance the bare component of the
dressed molecule cannot be neglected. It turns out that also
in the so-called universal region, where kF�a�B���1, we
have 0�Z�1 and the thermodynamics is actually not uni-
versal �39�.

For a very broad resonance, the bare component Z in the
universal region kF�a�B���1, is not strictly zero but it is
rather small. When the chemical potential approaches half
the binding energy, the bare component weight is still Z
0.
In fact, expanding Eq. �136� in 	F /�2 we find

Z�BBEC� 
 2
	F

�2 � 1. �138�

This implies that at magnetic fields where the BEC-BCS
crossover takes place, the dressed molecule is almost com-
pletely in the open channel component. Furthermore, the
binding energy in Eq. �135� can be approximated like in Eq.
�50� by
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	m�B� = −
�2

ma2�B�
' �2 �139�

which is equivalent to neglecting the term 2� in Eq. �134�.
Note that this is the same solution determined by the pole of
the the many-body T matrix in the single-channel approxi-
mation of Eq. �77�. It is also clear now why, in the case of a
broad resonance, it is essential to replace in the equation of
state the detuning with the curve of Eq. �127� in order to
avoid inconsistency in the BEC limit between the two cross-
over equations. In conclusion, in the case of a broad reso-
nance, we can, roughly speaking, distinguish between two
different crossovers. At detunings where the many-body
crossover to a Bose-Einstein condensate of dressed mol-
ecules takes place, the dressed molecules live essentially in
the states of the atomic continuum. At larger negative detun-
ing, the wavefunction of the dressed molecules undergoes a
second two-body crossover to the bare closed-channel eigen-
state. The energy scale of this second crossover is �2 as
mentioned above.

In general, as far as the background interaction satisfies
the weak-coupling condition kF�abg��1, the above discus-
sion does not change qualitatively if we extend the analysis
of the many-body T matrix in Eq. �123� without taking the
limit abg=0. The gap equation in Eq. �130� in the BCS weak-
coupling regime modifies to

1 + �Tbg
2B�0� + g2 1

2� − ��B��&�0,0+� 
 0. �140�

In the case of a broad resonance the weak-coupling solution
is again given by Eq. �132� and can now be written as

Tc 

8	F

kB�
e�−2 exp�−

�

2kF��ares� + �abg��
� . �141�

At large negative detuning the pole of the many-body
T-matrix �123� reproduces the correct two-body physics of
the dressed molecules. The equation for the chemical poten-
tial in Eq. �134� assumes the general form as in Eq. �46�

��B� − 2� +
��B�

1 + �abg�B��	− 2�m

�2

	− 2� 
 0. �142�

Therefore the chemical potential goes to half the binding
energy of the dressed molecules 	m given by the more gen-
eral solution �47�. The analysis concerning the differences
between the broad and narrow resonances remains un-
changed, except that the energy of the second two-body
crossover defined above is now near �2 /mabg

2 . This analysis
holds in general for the resonances currently used in experi-
ments. One exception, however, concerns the region at large
positive detuning of the broad resonance at 834 G in a gas of
of 6Li atoms. In that case the background interactions turn
out to be so large that �2 /mabg

2 
	F. In other words, the gas
never enters a weak-coupling regime at positive detuning
and the gap equation in Eq. �140� is not expected to be valid.

Figure 20 shows the mean-field curve for the critical tem-
perature for a gas of 40K atoms near the broad resonance near
201.2 G. The mean-field approach based on Eqs. �125� and
�128� does not describe a smooth BEC-BCS crossover be-
cause it neglects finite lifetime effects of the molecules. The
curve for Tc exibits a sharp phase transition between a Bose-
Einstein condensation phase of dressed molecules with bind-
ing energy 	m to a Bardeen-Cooper-Schriffer superfluid. This
phase transition is only an artifact of the mean-field aproxi-
mation because the two phases break the same U�1� /Z2 sym-
metry �11�. However, the dressed-molecules are the real
physical components of the system. Therefore, the location
of the kink in the curve for Tc of Fig. 20 leads to an inter-
esting interpretation. According to the poor man’s approach
of �49�, it fixes a scale in the magnetic field below which, the
superfluid transition temperature is determined by the con-
densation temperature of the dressed molecules. Note that
this value of the magnetic field coincides also with the mag-
netic field value at which the size of the dressed-molecule,
that is equal to a�B�, approaches the interparticle separation
kF

−1 �38�. It is important to stress that, without the replace-
ment in the equation of state of the detuning with the true
location of the molecular level in presence of coupling de-
scribed by Eq. �127�, this scale would have been orders of
magnitudes smaller. Interestingly, the location of the cross-
over line in our mean-field picture that is shown in the
dashed curve of Fig. 20, coincides with the threshold for the
nonzero condensate fraction in the �T /TC ,
B� plane found
by Regal et al. in the experiment of �15� that we have dis-
cussed in Sec. II.

B. Theory of Gaussian fluctuations

A smooth curve for the critical temperature Tc can be
obtained by including finite lifetime effects of the molecular

BCSBEC

TF=0.35µK

B−B0(G)

T
/T

F

0.80.60.40.20− 0.2− 0.4

0.4

0.3

0.2

0.1

0

FIG. 20. Phase diagram of atomic 40K near the broad resonance
near 201.2 G, as a function of magnetic field and temperature for a
Fermi temperature of the gas of TF=0.35 �K. The solid line exhib-
iting a kink at about 0.5 G gives the critical temperature for either a
Bose-Einstein condensation of dressed molecules or a Bose-
Einstein condensation of atomic Cooper pairs. The critical tempera-
ture for the latter is calculated by simultaneously solving the BCS
gap equation of Eq. �125� and the equation of state of an ideal
mixture of atoms and dressed molecules as in Eq. �128�. For com-
parison, the upper dashed curve is the analytical BCS result of Eq.
�132�. The lower dashed line is the crossover between the two
Bose-Einstein condensed phases. The other solid smooth line de-
scribes the result of the Nozieres-Schmitt Rink approximation.
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field in the theory. This can be achieved by considering the
quadratic fluctuations on top of the mean-field, according to
the Nozieres-Schmitt Rink approach �12,13,46,48,51�. In the
Nozieres-Schmitt Rink approximation, one equation is still
determined by the Thouless condition expressed by Eq.
�140�. The equation of state, however, is modified because it
has to incorporate the effects of Gaussian fluctuations around
the saddle point. The new equation of state reads �48�

n = −
1

V

��

��
= −

�

���−
1

�V
�
�

Tr�ln���G�,0
−1 ��

+
1

�V
Tr�ln���G−1��� , �143�

where the full molecular propagator G is given by Eqs. �82�
and �83� and the symbol Tr� � denotes the sum over the Mat-
subara frequencies and momenta. This equation describes a
gas of atoms and dressed molecules �122�. Using the defini-
tion of the full molecular propagator Eq. �143� can be rewrit-
ten as

n =
1

��V
�
�

Tr�G�,0� − 2
1

��V
Tr�G� +

1

��V
Tr�G

�

��
��m� .

�144�

The partition of the different contributions in this equation of
state suggests a possible interpretation of each term on the
right-hand side of Eq. �144�. The first term denotes the num-
ber of unbound atoms. The second term describes the contri-
bution of the bare molecular component while the third one
defines the open-channel component of the dressed mol-
ecules. The analysis of the BEC extreme of the crossover
reveals that this interpretation is correct in that regime. In the
BEC limit the chemical potential approaches half the binding
energy of the dressed molecules, i.e., �
	m/2. Therefore,
the chemical potential becomes large and negative and the
contribution of the unbound atoms can be neglected. In first
approximation the gas constituted mainly of dressed mol-
ecules

n 
 2nm. �145�

We thus want to show that in that limit

− 2
1

��V
Tr�G� +

1

��V
Tr�G

�

��
��m� = 2nm. �146�

Taking the contribution of the pole of the dressed molecular
propagator we have

− 2
1

��V
Tr�G� +

1

��V
Tr�G ·

�

��
��m� =

1

V
�
k
�2ZN�	k/2

+ 	m − 2�� + ZNB�	k/2 + 	m − 2�� ·
�

��
��m�E=	m

�
=

1

V
�
k

�2ZN�	k/2 + 	m − 2�� + 2�1 − Z�NB�	k/2 + 	m

− 2��� = 2Znm + 2�1 − Z�nm = 2nm, �147�

where we have used the definition of the residue Z given in

Eq. �52�, and that in the BEC limit we have � /��
2� /�E
because the many-body molecular self-energy approaches its
two-body limit given by Eq. �43�.

In the remaining part of this section we want to show that
in the limit of a very broad resonance our two-channel model
reproduces the results for Tc found by Sa De Meló et al. in
�13� based on a single-channel model �12�. As we have
shown in Sec. III E, in the case of a broad resonance, the
general expression for the pairing field propagator �G
 given
in Eq. �71� reduces to that given in Eq. �78�. The latter cor-
responds exactly to that defined by Sa De Meló et al. in �13�.
This argument is sufficient to proof that our two-channel
model is able to reproduce the results of the single-channel
model in the limit of a very broad resonance when �2�	F.
However, a detailed analysis of our crossover equations for a
broad resonance, gives us more insight about the two differ-
ent descriptions. When �2�	F, the gap equation in Eq. �140�
can be approximated with

1 + �Tbg
2B�0� + g2 1

− ��B��&�0,0+� 
 0, �148�

along the full range of magnetic fields where the BCS-BEC
crossover takes place. This is possible because, as we have
explain in Sec. III E, in the case of a broad resonance we
have ���B��� �2�� ,	m except of course very close to reso-
nance. However, in that region the gas becomes essentially
universal and it can be shown that the nonuniversal correc-
tion term 2� can also be neglected �39�. By using Eq. �44�,
Eq. �148� can be rewritten as

1 + �4��2a�B�
m

�&�0,0+� 
 0, �149�

which corresponds to the single-channel gap equation of Sa
De Meló et al. in �13�. A similar analysis concerns the equa-
tion of state in Eq. �144�. In the case of a broad resonance the
weight of the bare molecular component remains quite small
such that Z
0 even when the chemical potential approaches
half the binding energy �
	m
�2 /ma2. Therefore we can
neglect completely the bare molecular contribution to the
number of particles and the equation of state reduces to

n 

1

��V
�
�

Tr�G�,0� +
1

��V
Tr�G

�

��
��m� . �150�

Furthermore, in the crossover near a broad resonance the
bare dynamics of the molecular field can be neglected and
the molecular propagator in Eq. �150� can be approximated
as in Eq. �75�. Therefore Eq. �150� can be rewitten as

n 

1

��V
�
�

Tr�G�,0� +
1

��V
Tr� �

− ��B� − ��m

�

��
��m� ,

�151�

or
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n 

�

���2
1

�V
�
�

Tr�ln���G�,0
−1 ��

−
1

�V
Tr�ln���

− ��B� − ��m

�
��� . �152�

At this point, to make this part of the derivation more trans-
parent we consider the special case when abg→0. In that
case the molecular self-energy of Eq. �83� is

��m�q,�n� = g2 1

V
�
k
� 1 − Nq/2+k − Nq/2−k

i��n + 2� − 2	k − 	q/2
+

1

2	k
� .

�153�

Using the expression of the total scattering length in Eq. �44�
this can be rewritten as in �13�:

n =
�

��� 1

�V
�
�

Tr�ln���G�,0
−1 �� +

1

�V
Tr�ln���G


−1��� ,

�154�

where G
 is the pairing field propagator in the Gaussian
approximation defined in Eq. �78�. In the general case when
abg is finite, the derivation is analogous but more involved
because of the energy dependence of the atom-molecule cou-
pling �123�.

By comparing Eq. �150� and Eq. �154� we argue that the
propagator G
 of the composite boson in the single-channel
picture contains the open-channel contribution of the
dressed-molecules. The precise mathematical relation be-
tween the two entities will be discussed further in one of the
following sections where we give a detailed analysis of the
BEC limit in the superfluid state.

The curve of the critical temperature Tc for the broad
resonance in 40K atoms based on the crossover Eqs. �149�
and �154� is shown also in Fig. 20. This result shows that our
modified mean-field approach, based on the two-body phys-
ics of the dressed molecules, can be considered a rather good
approximation in view of its simplicity.

C. Beyond Gaussian fluctuactions

The curve of Tc in Fig. 20 calculated according the
Nozieres-Schmitt Rink approximation exhibits a maximum.
This maximum disappears in the self-consistent approach of
�14�. The latter includes some fluctuations that lead to an
increase of the effective mass of the dressed molecules and
therefore to a descrease of the transition temperature. This
self-consistent approach for the calculation of Tc in a dilute
gas of fermions interacting with strong attractive interactions
has been developed by Haussmann in �14� in relation with a
single-channel model, and has been extended by Xiang and
Ji in �61� to the two-channel Feshbach model. Their numeri-
cal results shows clearly that the curve for Tc in the BEC-
BCS crossover evolves monotonically from one limit to the
other when self-energy effects between atoms and molecules
are treated self-consistently. In this self-consistent approach,
the conservation of the number of total particle in the BEC-
BCS crossover is given by the equation

n =
1

��V
�
�

Tr�G�� − 2
1

��V
Tr�G� , �155�

where the full atomic Green’s function is calculated from the
many-body T matrix as in Eq. �109� but including to all order
the self-energy effects in the fermionic and molecular propa-
gators. In this section we want to discuss the two coupled
Eqs. �155� and �140� in connection with our dressed-
molecules picture. The analysis of the BEC limit is particu-
larly illuminating in this respect. We consider here the case
when the background interaction can be neglected. However,
as we have seen, it is always straightforward to generalize
our result including the effect of the nonresonant interac-
tions.

In the BEC limit we have 2�
	m and 	m�kBT ,	F and
the fermionic self-energy

���
f �k,�n� = −� d3k�

�2��3

1

��2�
�n�

g2

�G�k + k�,�n + �n��G−��k�,�n�� �156�

can be approximated to the lowest order in the fermionic
propagator as �14�

���
f �k,�n� 
 − G−�,0�k,�n�g2� d3k�

�2��3

1

��2�
�n�

G�k�,�n�� ,

�157�



G−�,0�k,�n�

�
g2Znm�T� ,

where Z in the BEC limit is given by taking the limit abg
→0 in Eq. �52�, that is �47�,

Z = �1 +
�

2	�	m��−1

. �158�

This means that the fermionic propagator assumes a double
fraction structure as

G��k,�n� = ���i��n − �	k − �� −
g2Znm�T�

i��n − �	k − ��� ,

�159�

which is equivalent to a fermionic BCS propagator charac-
terized by a “gap” in the spectrum defined as

�
pg�2 � g2Znm�T� . �160�

Therefore the equation of state in Eq. �155� can be rewritten
as

n = − 2
1

��V
Tr�G�

− 2� d3k�

�2��3

1

��
�
�n�

��i��n + �	k − ���
���n�2 + �	k − ��2 + �
pg�2

= 2Znm�T�

− 2� d3k�

�2��3

1

��
�
�n�

��i��n + �	k − ���
���n�2 + �	k − ��2 + �
pg�2

. �161�

Far enough in the BEC limit, it is always possible to expand
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the second term on the right-hand side in powers of

pg/ ���

pg/	m and we get

n = 2Znm�T� + �
pg�2
m2

4��3	2m���
, �162�

which can be rewritten as

n = 2�1 − Z�nm�T� + 2Znm�T� = 2nm�T� . �163�

Therefore, at sufficiently negative detuning we find a gas of
thermal dressed molecules. However, we have not specified
the approximation of the molecular self-energy in the mo-
lecular propagator G. To lowest order, the molecular self-
energy ��m is given by the expression in Eq. �83� calculated
taking two free fermionic propagators G�,0G−�,0. In this ap-
proximation, Eq. �163� reproduces the gas of noninteracting
dressed molecules as in the Nozieres-Schmitt Rink approach
found in Eq. �146�.

The interaction between the dressed molecules at T(Tc is
introduced by calculating the molecular self-energy to the
lowest order in the fermionic self-energy. This requires to
take one free and one dressed fermionic propagator
�G�,0G−�� in the diagram of the molecular self-energy. Tak-
ing, in the lowest order, the self-energy in the fermionic
propagator G� given by Eq. �156�

���
f �k,�n� 
 −� d3k�

�2��3

1

��2�
�n�

g2

�G�k + k�,�n + �n��G−�,0�k�,�n�� , �164�

the molecular propagator assumes the form

�G−1�K,�n� = i��n −
	K

2
+ 2� − ��B� − ��m�K,�n�

− �
�m�K,�n� . �165�

The first-order correction �
�m is given by

�
�m�K,�n� =� d3K�

�2��3

1

��
�
�n�

G�K�,�n��

� �m
Born

„K + K�,K + K�,�K + K��/2,

��n + �n��/2… , �166�

with the many-body molecule-molecule vertex given by

�m
Born

„K + K�,K + K�,�K + K��/2,��n + �n��/2…

= 2g4� d3k

�2��3

1

��4�
�n

G↑,0�K − k,�n − �n�

� G↓,0�k,�n�G↑,0�k,�n�G↓,0�K� − k,�n� − �n� .

�167�

In the BEC limit at temperature near Tc, we have
�	m�B����� ,�2K2 /4m and �
�m�� ��m� and the molecular
propagator of Eq �165� can be expanded around the pole of
the molecular propagator without the �
�m correction. This
gives

�G−1�K,�n� 

1

Z
�i��n −

	K

2
+ 2� − 	m�B�

− Z�
�m�K,�n�� �168�

=
1

Z
�i��n −

	K

2
+ �m − Z�
�m�K,�n�� , �169�

where we have defined the dressed-molecule chemical poten-
tial as

�m � 2� − 	m�B� . �170�

Furthermore, the zero momentum and zero energy correction
to the molecular self-energy in Eq. �168� is given by

Z�
�m�0,0� = Z�m
Born�0,0,0,0� � d3K�

�2��3

1

��
�
�n�

G�K�,�n��

= �m
Born�0,0,0,0�Z2nm�T� . �171�

Evaluating the Matsubara summation and the momentum in-
tegral of Eq. �167� in the BEC limit where 2�
	m we find

Z�
�m�0,0� = g4 m3/2

8��3�	m�B��3/2Z2nm�T�

= g2 1 − Z

Z�	m�B��
Z2nm�T� , �172�

where we have used the definition of Z in Eq. �158�. In the
case of a very broad resonance at large negative detuning,
when the gas of dressed molecules enters the weak-coupling
regime kFa�B��1 and the chemical potential is essentially
equal to half the binding energy of the two-body dressed
molecules, the wavefunction in Eq. �53� of the dressed mol-
ecule can still contain only a very small amplitude in the
closed bare molecular channel. This means that the binding
energy is in the quadratic regime in the magnetic field given
by Wigner’s formula 	m
−�2 /ma2�B� and that Z
0. In this
case Eq. �172� can be written as

Z�
�m�0,0� 
 2
4��22a�B�

2m
nm�T� � 2�m

Born�0,0,0,0�nm�T� .

�173�

This term in the dressed molecular propagator of Eq. �168�
represents a many-body mean-field shift of a dilute gas of
molecules interacting with positive scattering length 2a�B�.

The interaction energy of the dressed molecular gas has
been measured �18� by fitting a Thomas-Fermi profiles to the
spatial distributions of the trapped ultracold Fermi gas at
densities of about 1013 cm−3 in the BEC limit. These experi-
ments consider the crossover across the broad resonance at
about 834 G in atomic 6Li atoms. They assume, for magnetic
fields between 600 and 780 G, a dilute gas of tightly bound
interacting molecules. They find that the molecule-molecule
scattering length is in agreement with am�B�
0.6a�B�. The
origin of the value of 0.6a�B� has been explained by solving
directly the Schrödinger equation of the four-body problem
�79� and also in terms of Feynmann diagrams in �40,41� by
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using a single-channel model. In the latter approach, the au-
thors of �40,41� have identified the exact equation for the
generalized molecule-molecule vertex �m that contains the
dominant fluctuations in the BEC limit leading to the value
found in the experiment. Considering the same class of dia-
grams in our two-channel formulation for the vertex �m in-
troduced in Eq. �167� would also lead to a dressed molecule-
molecule T matrix �m�0 ,0 ,0 ,0�
4��20.6a�B� /2m. For
example, by summing over all the ladder diagrams in the
particle-particle channel beyond the Born approximation de-
scribed by �m

Born we would recover the result �m�0 ,0 ,0 ,0�

4��20.75a�B� /2m found by Pieri and Strinati in �33�.

The interaction between dressed molecules introduced in
Eq. �173� does not cause any shift on the critical temperature
of the Bose-Einstein condensation of the dressed molecules
because it does not shift the effective mass of the dressed
molecules. Therefore, we have to consider the momentum
and frequency dependence in the interaction vertex �m

Born in
Eq. �167�. Following the analysis of the BEC limit given by
Haussmann �14�, we consider the ansatz

�G−1�K,�n� 

1

ZZ1
�i��n −

�2K2

4m* + �m� �174�

for the dressed-molecular propagator. The Nozieres-Schmitt
Rink approximation corresponds clearly to the case Z1=1
and m*=m. To find the first-order corrections to Z1 and m*,
we substitute the ansatz of Eq. �174� in Eqs. �166�–�168�, we
perform the frequency sum and the momentum integral in
Eq. �167�, and finally we expand the resulting expression up
to the first order in K2 and �n. Ultimately, in the case of a
broad resonance, we find �14�

m* 
 m
1 + 2��nma�B�3�� , �175�

Z1 
 1 + 6�nma�B�3, �176�

�m 
 2�m
Born�0,0,0,0�nm�T� . �177�

The critical temperature in the BEC limit is determined by
the equation of state. For a broad resonance, one generally
has still Z
0 when the gas enters the BEC limit of the
crossover. In that case, the number of particles in the equa-
tion of state of Eq. �155� is determined mainly by the fermi-
onic Green’s function

n 

1

��V
�
�

Tr�G�,0� . �178�

The evaluation of this term given in Eq. �163� is calculated
by taking for the fermionic propagator G� only the zeroth-
and first-order correction in the self-energy into account. Ex-
panding the fermionic Green’s function up to the second or-
der in its self-energy, one can show �14� that the result of Eq.
�163� is modified as

n 
 −
1

Z1
2

1 − Z

Z

1

��V
Tr�G� 
 −

1

Z1
2

1

Z

1

��V
Tr�G� .

�179�

Substituting in this equation the propagator of Eq. �174� the
Z and Z1 factors drop out. Therefore the equation of state
describes effectively an ideal gas of dressed molecules with
renormalized mass m*. The critical temperature is calculated
from the relation

n 
 2nm�T� =� d3K

�2��3NB��2K2

4m* � = 2)�3/2�

��2m*kBTc/2��2� . �180�

This leads to the negative shift of the critical temperature Tc
with respect to the ideal Bose-Einstein critical temperature
TBEC


Tc/TBEC = m/m* − 1 = −
1

�3���kFa�B��3 �181�

found by Haussmann.
Although the above self-consistent calculation is more

general than the Nozieres-Schmitt Rink approximation, we
believe that the correct theory should lead to a positive shift
and then to a maximum in the curve of Tc. In fact, according
to the theory of dilute weakly interacting Bose gases
�124–126�, the repulsive interactions between the molecules
in the asymptotic BEC limit are expected to enhance the
value of the critical temperature. The physical origin of this
maximum, therefore, is clearly different than that described
by the Nozieres-Schmitt Rink approach, as the latter neglects
the interactions between the noncondensed molecules.

V. BEC-BCS CROSSOVER BELOW Tc

In this section, we consider the BEC-BCS crossover in the
broken symmetry state. The Gross-Pitaevskii theory at T=0
of the dressed-molecule condensate and the Bogoliubov
theory at nonzero temperature are derived in the BEC limit
by means of analytical methods. As before, the single-
channel results are derived as a special case in the limit of
very broad resonances. Moreover, the relation between the
composite boson of the single-channel model and the
dressed-molecule of the two-channel model is clearly formu-
lated.

A. Mean-field theory at T=0

At T=0 a set of two self-consistent equations for the BCS
energy gap and the chemical potential can be derived gener-
alizing the variational approach introduced by Leggett �11�
to our two-channel atom-molecule Hamiltonian given by Eq.
�20�. The zero-temperature ground state can be written �58�
as a product state of both a bare molecular and an atomic
contribution, i.e.,

�"0� = �#0
F� � �#0

B� , �182�

where the normalized fermionic wavefunction is the standard
crossover ground state �10,11�
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�#0
F� = �

k
0
�uk + vkck

†c−k
† ��0� , �183�

and the normalized bare molecular contribution �#0
B� is given

by

�#0
B� = e−n0/2+	n0b0

†
�0� . �184�

The real variational parameters are uk, vk, and 	n0. Minimiz-
ing the grand-canonical energy with respect to the parameter
	n0, we find the constraint

�b0� � 	n0 =
gbare
bg

��bare − 2��Vbg
, �185�

where 
bg is the order parameter related to the attractive
background interaction


bg � −
1

V
�
k

Vbgukvk = −
1

V
�
k

Vbg�a−k↓ak↑� . �186�

The variation with respect to vk, under the normalization
constraint vk

2 +uk
2 =1, yields

uk
2 =

1

2�1 +
	k − �

	�	k − ��2 + �
�2
� ,

vk
2 =

1

2�1 −
	k − �

	�	k − ��2 + �
�2
� , �187�

where the total gap of the theory 
 is defined as


 = 
bg − gbare
	n0. �188�

Substituting these results in the definition in Eq. �186� and
using the constraint in Eq. �185�, we arrive at the gap equa-
tion in the compact form

−
1

Vbg −
gbare

2

�bare − 2�

=
1

V
�
k

1

2	�	k − ��2 + �
�2
. �189�

This equation can be rewritten in terms of the renormalized
quantities as

−
1

Tbg
2B −

g2

� − 2�

=
1

V
�
k
� 1

2	�	k − ��2 + �
�2
−

1

2	k
� ,

�190�

where now


 � 
bg − g	n0 �191�

and


bg =
	n0�� − 2��Tbg

2B

g
, �192�

as a consequence of the general result for the many-body T
matrix in Eq. �33�, combined with the fact that the gap equa-
tion in Eq. �190� must be equivalent to a sum over all ladder
diagrams. The description of the BEC-BCS crossover at the

mean-field level of approximation is completed by the equa-
tion of state

n = 2n0 +� d3k

�2��3�1 −
	k − �

	�
�2 + �	k − ��2� . �193�

Equations �190�–�193� represent a set of coupled equations
in 
 and � at fixed density. Note that in contrast to the
normal-state result, the analysis at zero temperature in the
broken symmetry state does not require any modification of
the equation of state in order to get the proper two-body
physics of the dressed molecules in the BEC limit. This is
because the equation of state of BCS mean-field theory at
T=0 sums automatically over the ladder diagrams. As a re-
sult, we expect also to have smooth crossover curves for 

and � already at the mean-field level.

At positive detuning, in the weak-coupling regime
kF�a�B��*1, the binding is a cooperative effect in the

FIG. 21. BCS energy gap �a� and chemical potential �b� as a
function of the magnetic field for the very broad resonance at 834 G
in a 6Li mixture at low density. Full lines are obtained by solving
numerically the crossover equations of Eqs. �190�–�193� or equiva-
lently by Eqs. �197� and �198�. Both quantities are rescaled in unit
of the Fermi energy of the noninteracting Fermi mixture. In �a�, the
dashed line called “BEC” shows the aymptotic BEC limit of the
energy gap given by 
=	�16/3��	F /	kFa�B�, while the dotted
line called “BCS” describes the BCS asymptotic solution given by
Eq. �194�. In �b� the dashed line shows the two-body binding energy
	m
�2 /ma�B�2. The region inside the two vertical arrows repre-
sents the strong-coupling regime kF �a�B� � 
1.
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vicinity of the Fermi surface. The gas consists of largelyover-
lapping weakly bound Cooper pairs. The chemical potential
is fixed at �=	F by the equation of state in Eq. �193�. The
solution of Eq. �190� is then easy calculated analytically with
the result


 
 8	Fe−2e
2
�

	2�
� exp�−

�

2kF�a�B��� . �194�

The energy gap is related to the BCS critical temperature
�131� by the relation kBTc= �e� /��
, as is expected for weak-
coupling superconductivity. Note that the energy gap of Eq.
�194� coincides formally with the shift in the ground-state
energy of Eq. �97�. This is not surprising because the singu-

larity in the molecular self-energy discussed in Sec. III F and
the Cooper pairing occur in the same diagram.

At negative detuning, the system evolves to a Bose-
Einstein condensate of tightly bound dressed molecules. The
roles of the gap equation and the number equation are ex-
changed. In the BEC limit, the chemical potential becomes
large and negative. The crossover equations then can be ex-
panded in powers of �
� / ��� as

FIG. 22. BCS energy gap �a� and chemical potential �b� as a
function of the magnetic field for the very broad resonance at 834 G
in a 6Li mixture at high density. Full lines are obtained by solving
numerically the crossover equations of Eqs. �190�–�193� or equiva-
lently by Eqs. �197� and �198�. Both quantities are rescaled in unit
of the Fermi energy of the noninteracting Fermi mixture. In �a�, the
dashed line called “BEC” shows the aymptotic BEC limit of the
energy gap given by 
=	�16/3��	F /	kFa�B�, while the dotted
line called “BCS” describes the BCS asymptotic solution given by
Eq. �194�. In �b� the dashed line shows the two-body two-body
binding energy 	m
�2 /ma�B�2. The vertical arrow at negative de-
tuning indicates the value of the magnetic field for which kFa�B�
=1. Note that due to the large background scattering length abg of
the 6Li atoms, at high density, the gas never enters the weak-
coupling regime kFa�B��−1 at positive detuning.

(a)

�
/�

F

0.80.40− 0.4− 0.8

1.8

1.4

1

0.6

0.2

(b)

40K

40K

TF=0.35µK

TF=0.35µK

BCS

BCS

BEC

BEC

B−B0(G)

B−B0(G)

2�
/�

F

0.80.40− 0.4− 0.8

3

1

− 1

− 3

− 5

FIG. 23. BCS energy gap �a� and chemical potential �b� as a
function of the magnetic field for the broad resonance at 202.1 G in
a 40K mixture at low density. Full lines are obtained by solving
numerically the crossover equations of Eqs. �190�–�193� or equiva-
lently by Eqs. �197� and �198�. Both quantities are rescaled in unit
of the Fermi energy of the noninteracting Fermi mixture. In �a�, the
dashed line called “BEC” shows the aymptotic BEC limit of the
energy gap given by 
=	�16/3��	F /	kFa�B�, while the dotted
line called “BCS” describes the BCS asymptotic solution given by
Eq. �194�. In �b� the dashed line shows the two-body two-body
binding energy 	m
�2 /ma�B�2. The curve for the two-body bind-
ing energy is continued at positive detuning by the location of the
maximum in the molecular density of states given in Eq. �58�. The
region inside the two vertical arrows represents the strong-coupling
regime kF �a�B� � 
1. Note the at positive magnetic field, the con-
dition kFa�B�=−1 coincides with the magnetic field where the en-
ergy of the maximum in the density of states of the molecules is
equal to twice the Fermi energy of the atoms. Significantly, this
value of the magnetic field coincides also with the value where, in
the experiment at Jila of �15�, the condensation of pairs begins to be
observed.
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1

Tbg
2B −

g2

� − 2�

= �2m

�2 �3/2	���
8�

�1 +
1

16

�
�2

�2 � �195�

and

n = 2n0 + �
�2
m2

4�	2m����3
. �196�

Neglecting the term quadratic in �
� / ���, Eq. �195� becomes
equivalent to Eq. �142�. Thus the chemical potential ap-
proaches half the binding energy of Eq. �47� of a Bose-
Einstein condensed dressed molecule, as expected.

The curves for � and 
 obtained by solving numerically
the mean-field crossover Eqs. �190�–�193� are shown in Figs.
21 and 22 for a gas of 6Li atoms at two different densities
and in Fig. 23 for a gas of 40K atoms. In both cases we have
�2�	F. In each figure the vertical lines represent the bound-
ary of the strong coupling regime kF�a�B��
1. In the 6Li gas
with the high density of Fig. 22, the gas never enters the
weak-coupling regime kF�a�B���1 in the range of the mag-
netic field considered in the figure.

The mean-field curves for 
 and � do not differ quanti-
tatively from the solutions obtained by the single-channel
approximation �11,13� based on the equations

−
1

Tbg
2B −

g2

�

= −
1

4��2a�B�
m

=
1

V
�
k
� 1

2	�	k − ��2 + �
sc�2

−
1

2	k
� , �197�

and

n =� d3k

�2��3�1 −
	k − �

	�
sc�2 + �	k − ��2� , �198�

where the single-channel gap is defined as 
sc���Vbg

+Vres��↑�x��↓�x��. These equations are obtained from Eqs.
�190� and �193� neglecting explicitly the contribution of the
bare molecular boson. They can be derived also by integrat-
ing out the molecular field in the action of Eq. �60� from the
very beginning.

At negative detuning the chemical potential goes to half
the binding energy 	m
−�2 /ma2�B� described in Figs.
21�b�, 22�b�, and 23�b� by dotted lines. In Fig. 23�b� the
curve of the binding energy of the dressed molecules is con-
tinued at positive detuning by the location of the maximum
in the molecular density of states given in Eq. �58�. This
illustrates the main idea of our modified mean-field picture
of Sec. IV A. The magnetic field at which this curve crosses
2� is indicated by a vertical line. At this magnetic field the
energy of the two-body dressed molecules approaches the
chemical potential of the gas �49�.

In Figs. 21–23 the dotted lines represent the two extreme
limits of the crossover. The lines denoted as BCS correspond
to the BCS solution of Eq. �190�. The lines denoted as BEC

correspond to the curve 
=	�16/3��	F /	kFa�B�, which is
the asymptotic solution for the energy gap according to the
single-channel gap equation in Eq. �197�.

B. Asymptotic limit of Z in the deep BEC limit

The analysis of the equation of state in the BEC limit
requires some special consideration. The correct picture of
the crossover across the Feshbach resonance is based on the
dressed molecule, which is the true energy eigenstate of the
diatomic molecule in the presence of the atom-molecule cou-
pling. Unfortunately, however, the dressed molecule density
does not appear explicitly in the coupled equations of our
mean-field treatment and mean-field theory is therefore not
able to extract this quantity.

Nevertheless, a gas of weakly interacting closed-channel
bare molecules is realized at sufficiently large negative de-
tunings. More precisely, denoting the condensate of bare
molecules by n0, the total density amounts to

n 
 2n0 �199�

when kFa�B��1 and ���B��(�2 /mabg
2 . For less negative de-

tunings we must use �57�

n0 = Znmc, �200�

where nmc is defined as the condensate density of the dressed
molecules. A careful analysis of the equation of state in Eq.
�196� shows that this definition is indeed consistent. The
proof proceeds as follows. First we assume that in the deep
BEC limit the total density can be approximated by the den-
sity of the dressed molecules, instead of bare molecules as in
Eq. �199�,

n 
 2nmc, �201�

with binding energy 	m
2� given by Eq. �47�. Then, we
eliminate the explicit dependence on � and 
bg by using Eqs.
�192� and �142�, to rewrite the equation of state as

2nmc 
 2Znmc +
2Znmc�

2	�	m��1 +	�	m�
	bg

�2 . �202�

Solving for Z we recover the correct two-body limit expres-
sion of Eq. �52�, i.e.,

Z = �1 +
�

2	�	m��1 +	�	m�
	bg

�2�
−1

.

Putting back this Z in the equation of state we find again Eq.
�201�.

It is important to stress the fact that the approximation
introduced in Eq. �201� is valid only deep in the BEC limit of
strongly bound dressed molecules. This can be understood as
follows. According to the BCS theory, at zero temperature all
the atoms are paired far below resonance. In our case we
have a gas of dressed molecules which have an amplitude to
be in the open-channel Cooper pairs wavefunction and on the
bare closed-channel molecular bound state. However, even at
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zero temperature not all the dressed molecules are condensed
because interactions deplete the condensate density as the
interactions between the Cooper pairs do in the zero-
temperature BCS theory. Therefore, Eq. �201� neglects the
depletion of the dressed-molecules condensate and is correct
only asymptotically in the deep BEC limit when the deple-
tion decreases progressively because the gas becomes more
and more dilute.

This means that Eq. �201� is valid only at magnetic fields
such that kFa�B��1, when the many-body part of the BEC-
BCS crossover has already taken place, and where the
chemical potential approaches half the molecular two-body
binding energy in Eq. �47�. When kF�a�B��(1, the fluctua-
tions in the atomic fields become important and also at T
=0 the gas cannot be approximated only by a condensate of
dressed molecules �57�. As a result, the bare molecular prob-
ability Z is not given by 2n0 /n �60,127� as in the asymptotic
BEC limit. Moreover, Z deviates from its two-body expres-
sion of Eq. �52� and the two mean-field equations are not
sufficient to calculate its value, because they cannot calculate
the depletion of condensate of the dressed-molecules. A more
refined approach is needed beyond the saddle-point solution
�57�. The quantity Z has been recently measured by Partridge
et al. �20�. Their data are illustrated in Fig. 24. The experi-
mental data in the BEC limit are in very good agreement
with our two-body Z of Eq. �52�.

C. Gross-Pitaevskii theory of the dressed-molecule condensate
at T=0

We show in this section that, in contrast to the normal-
state analysis, the Born interactions between the dressed
molecules in the BEC limit of the crossover described in the
previous section arise already at the mean-field level based

on Eqs. �190� and �193�. The effective chemical potential for
a dilute weakly interacting gas of dressed molecules, is de-
fined, at the leading order, as

�m �
4��2am

Bornnmc

mm
, �203�

where am is scattering length of two dressed molecules with
mass mm=2m. The quantity �m is given by

�m = 2� − 	m, �204�

where 2� is calculated retaining the quadratic term �
�2 / ���2
in the gap equation in Eq. �195�. Using Eqs. �200� and �201�
and that 2�
	m, the gap equation in Eq. �195� can be re-
written as

	m = 2� + nmc
4��2aeff�B�

m
Z

�

2	�	m��1 +	�	m�
	bg

�2

+ O�� 


2�
�4� , �205�

or

�m 
 nmc
4��2aeff�B�

m
Z

�

2	�	m��1 +	�	m�
	bg

�2 , �206�

where the binding energy 	m is given by the general solution
of Eq. �47�, and the quantity aeff has the dimensions of a
length and is given by

aeff�B� �
�

	m�	m�
. �207�

Using in Eq. �205� the definition of Z in Eq. �52�, we find for
the effective chemical potential of the dressed molecules at
the mean-field level

�m 
 nmc
4��2

mm
2aeff�B��1 − Z� , �208�

which implies

am
Born = 2aeff�B��1 − Z� . �209�

However, for very broad resonances such as that at 834 G in
the 6Li gas, when the gas enters the weak-coupling regime
kFa�B��1, the wavefunction in Eq. �53� of the dressed mol-
ecule still contains only a very small amplitude in the closed
bare molecular channel. This implies that the dependence of
the binding energy on the magnetic field is still in the qua-
dratic regime by Wigner’s formula 	m
−�2 /ma2�B�. There-
fore, in this regime Eq. �208� can be approximated as

�m 
 nmc
4��2

mm
2a�B��1 − Z� . �210�

This result is equivalent to that of a Gross-Pitaevskii theory
�128,129� for a gas of Bose-Einstein condensed dressed mol-
ecules interacting with an effective scattering length
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FIG. 24. The value of Z measured in �20� is plotted as function
of the magnetic field �dots�. The continous line represents the two-
body Z given by Eq. �52�. The vertical dashed lines represent the
boundary of the strong coupling regime kF�a�B��
1. Below
800 Gauss, we have 2�
	m and the two-body Z matches perfectly
with the experimental value. The Fermi energy of the gas is at TF

=380nK.
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am
Born 
 2a�B��1 − Z� . �211�

Because in this regime we have Z
0, however, the scatter-
ing length between the dressed molecules in the Born ap-
proximation and in the mean-field approximation is given
essentially by

am
Born 
 2a�B� . �212�

Such a situation is typical of a very broad resonance.

D. Dressed molecules versus composite bosons

Our derivation in the previous section, has to be consid-
ered as an extension of the mean-field analysis of the BEC
limit for a single-channel model crossover discussed by Sa
de Melo et al. in �13� �see also �25�� based on Eqs. �197� and
�198�. In the mean-field single-channel model the Cooper
pairs evolve in the BEC limit toward a dilute gas of weakly
interacting composite bosons with scattering length 2a�B�. In
the BEC limit, the equation of state of the mean-field single-
channel model at zero temperature can be approximated by
�14,34,36�

n 

m2a�B�
4��4 �
sc�2. �213�

The composite boson condensate "0
B of the single-channel

model is defined from �14,34,36�


sc �	 8��4

m2a�B�
"0

B �214�

such that the BEC limit of Eq. �213� is characterized by a gas
of composite bosons

n 
 2�"0
B�2. �215�

The equation of state in Eq. �213� must be compared with its
two-channel analogue in the BEC regime where 2�
	m. We
have

n 
 2n0 + �
�2
m2

4�	2m����3
= 2Znmc +

2Znmc�

2	�	m��1 +	�	m�
	bg

�2

= 2nmc. �216�

Moreover, for a very broad resonance, we have 2�
	m

−�2 /ma2�B� and Z
0. Therefore we have 	m�	bg, and we
find

g2Z 
 g22	�	m�
�

=
8��4

m2a�B�
. �217�

This relation between the residues of the poles associated
with the composite boson and with the dressed molecule of
the two-channel model in the case of a very broad resonance
can now be better understood if we remember the physical
meaning of Z �47� and of 8��4 /m2a�B� �14,34,36�. The fac-
tor 8��4 /m2a�B� reflects the difference between the bosonic
propagator of the single-channel composite boson and the
particle-particle ladder propagator in Eq. �78� in the BEC

limit. In that limit we have 2���
��2 /ma�B�2��kBT and the
latter can be approximated as

�G

−1�K,�n� = TMB

−1 �K,�n� 

m

4��2� 1

a�B�

−	m

�2	− i��n +
�2K

4m
− 2�� .

�218�

Expanding for small a�B� this can be rewritten in the polar
form �36�

G
�K,�n�/� = TMB�K,�n� 

8��4

m2a�B�
1

i��n −
�2K

4m
− �CB

,

�219�

where the chemical potential of the composite boson is de-
fined as �CB=2�−�2 /ma�B�2 and can be calculated from the
single-channel gap equation �197� in the BEC limit. We find
�14,36�

�CB 

4��22a�B�

2m



�
sc�2

4���
. �220�

To be rigorous, we should have considered the particle-
particle ladder propagator in the superfluid state. However, in
the BEC limit, ��n, �2K /4m, and �CB are of the same order
or smaller than �2 /ma�B�2. Therefore the mean-field inverse
particle-particle propagator �G


−1, up to the first order in ��n
and �2K /4m, is the same as in the normal state.

The factor Z reflects the difference between the bare and
the dressed molecule �47�. The full molecular propagator in
Eq. �82�

�G−1�K,�n� = i��n −
�2K

4m
+ 2� − ��B�

−
1

V
�
k

�g2B�0,2	k��2� 1 − NK/2+k − NK/2−k

i��n + 2� − 2	k − 	K/2

+
1

2	k
� , �221�

can be approximated in the BEC regime, where 2�
	m

−�2 /ma2�B� and Z
0, as

�G−1�K,�n� = i��n −
�2K

4m
+ 2� − ��B�

−
1

V
�
k

�g2B�0,2	k��2� 1

i��n + 2� − 2	k − 	K/2

+
1

2	k
� . �222�

However, for broad resonances, in this limit we have also
that ���B���2���, �2K /4m, and ��n, �2K /4m����K ,�n�
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. Therefore, we can approximate the dressed-molecular
propagator further as

�G−1�K,�n� 
 − ��B�

−
1

V
�
k

�g2B�0,2	k��2� 1

i��n + 2� − 2	k − 	K/2

+
1

2	k
� . �223�

Calculating the integral this can be rewritten as

�G−1�K,�n� 

1

g2

m

4��2� 1

a�B�

−	m

�2	− i��n +
�2K

4m
− 2��

�224�

from which, expanding as in Eq. �223�, we obtain

�−1G�K,�n� 

1

g2

8��4

m2a�B�
1

i��n −
�2K

4m
− �m

, �225�

where �m=�CB. However, expanding Eq. �223� around the
real pole at 	m
�2 /ma2�B� the propagator can also be writ-
ten as

�−1G�K,�n� 
 Z�B�
1

i��n −
�2K

4m
− �m

. �226�

Comparing Eqs. �225� and �226� we find again the relation in
Eq. �217�. Our above analysis is based on a mean-field ap-
proach and due to this reason the propagators of Eq. �225�
and �219� describe free bosons. This is because we are con-
sidering only the bosonic propagators only up to first order in
��n and �2K /4m.

E. Gaussian fluctuations around the saddle-point solution

In order to obtain in the BEC limit a superfluid of inter-
acting bosons, we have to extend our analysis beyond the
saddle-point approximation. The nonzero temperature mo-
lecular propagator in the broken-symmetry state at the level
of Gaussian fluctuations can be approximated in the BEC
limit by the matrix

− �G−1 
 �− i��n − 2� + 	K/2 + ��B� 0

0 i��n − 2� + 	K/2 + ��B�
� + ���11�K,�n� ��12�K,�n�

��21�K,�n� ��22�K,�n�
� , �227�

where the molecular self-energies are given by �57�

��11�q,i�n� 

g2

1 + �abg�	− 2�

1

V�
k
� uk

2uk−q
2

i��n − ��k − ��k−q
−

vk
2vk−q

2

i��n + ��k + ��k−q
+

1

2	k
� ,

��12�q,i�n� 

g2

1 + �abg�	− 2�

2

V�
k
�ukvkuk−qvk−q� 1

i��n − ��k − ��k−q
+

1

+ i��n + ��k + ��k−q
�� , �228�

and ��22�q , i�n�=��11�q ,−i�n�, ��12�q , i�n�=��21�q , i�n�, and �k=	
2+ �	k−��2 is the atomic spectrum in the BCS state.
Note that the we have neglected the thermal Fermi factors Nk−q and Nk and that the corrections due to the background
interactions to the self-energy �see also �123�� are approximated in the two-body normal state limit. This is justified in the BEC
limit where ����
, kBT. To the lowest order in perturbation theory the dressed-molecule propagator given by Eqs. �227� and
�228� can be approximated by the matrix

− �G−1 

1

Z� − i��n + 	K/2 +
�
�2

4���
�1 − Z��1 + 4	�	m�

	bg
� �
�2

4���
�1 − Z��1 + 4	�	m�

	bg
�

�
�2

4���
�1 − Z��1 + 4	�	m�

	bg
� i��n + 	K/2 +

�
�2

4���
�1 − Z��1 + 4	�	m�

	bg
��



1

Z
�− i��n + 	K/2 + Tm

Bornnmc Tm
Bornnmc

Tm
Bornnmc i��n + 	K/2 + Tm

Bornnmc
� �229�

with
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Tm
Born � �m

Born�0,0,0,0�

= �4��2/mm�2aeff�B��1 − Z�2�1 + 4	�	m�
	bg

� .

�230�

The derivation of Eq. �229� follows essentially from an ex-
pansion in �
� / ��� of the normal and anomalous molecular
self-energies at nonzero energy and momentum retaining
only the linear terms in ��n and 	K /2 �130�. A sketch of the
derivation is given in Appendix A. Note that in Eq. �230�, we
have made use of �
�2 /4���= �4��2 /mm�2aeff�B��1−Z�nmc


�4��2 /mm�2a�B�nmc, where aeff�B� has been defined in
Eq. �207�. Clearly, Eq. �230� implies that the molecule-
molecule scattering length in the Born approximation is
given by

am
Born = 2aeff�B��1 − Z�2�1 + 4	�	m�

	bg
� . �231�

In the BEC regime investigated experimentally until now for
the broad resonance in 6Li, where 	m
−�2 /ma2�B� this es-
sentially reduces to

am
Born = 2a�B��1 − Z�2�1 + 4	�	m�

	bg
� . �232�

However, we know that in that regime we have Z
0 and
	bg� �	m�, such that

am
Born 
 2a�B� �233�

in a very good approximation. The results of Eqs.
�231�–�233� have to be compared with the mean-field results
we obtained in Eqs. �209�, �211�, and �212�. Moreover, it can
be shown that the nonuniversal correction induced by the
factor �1−Z�2�1+4	�	m� /	bg� is independent of the approxi-
mation used in the calculation of the molecule-molecule ver-
tex interaction. Therefore we can anticipate that the full
dressed-molecule scattering length should obey

am�B� 
 0.6a�B��1 − Z�2�1 + 4	�	m�
	bg

� �234�

in the BEC limit of the crossover region after including
higher-order corrections �40,41�.

For ��−	bg, the approximation 	m
−�2 /ma2�B� is not
valid, and the dressed-molecules scattering length is ex-
pected to be

am�B� 
 0.6aeff�B��1 − Z�2�1 + 4	�	m�
	bg

� , �235�

which scales as �	m�−3 at larger negative detunings when the
wavefunction renormalization factor Z goes fast to Z
1.
Unfortunately, the molecule-molecule scattering length of
6Li2 has not been investigated yet at such large negative
magnetic fields �B�650 G�. Note also that, in the case of
6Li, this formula does not hold for all magnetic fields below
the resonance. We have seen �see also Fig. 5� that the

molecules never enter in the asymptotic region 	m
��B�.
Hence, the formula in Eq. �235� describes the small “nonuni-
versal” corrections due to the closed-channel in the region
just below B�650 G.

From the Bogoliubov propagator of Eq. �229� we find an
energy spectrum for the dressed molecules �57� which is lin-
ear at low momenta

Em�K� = 	��2K2/2mm�2 + ��2K2/2mm�2Tm
Bornnm.

�236�

In the remaining part of this section we want to show that in
this regime the gas is mainly constituted by a gas of inter-
acting dressed molecules. The mean-field equation of state in
Eq. �193�, however, needs to be modified after the introduc-
tion of the fluctuations that lead to the superfluid dressed-
molecule propagator of Eq. �229�. In the self-consistent ap-
proach of �14�, the total number of particles is given by the
formula

n = 2Znmc − 2
1

��V
Tr�G� + 2

1

��V
Tr�Gf� , �237�

where the fermionic single-particle propagator Gf is given by
the matrix

�Gf,11
−1 �k,i�n� Gf,12

−1 �k,i�n�
Gf,21

−1 �k,i�n� Gf,22
−1 �k,i�n�

�
= �G↑,0�k,i�n�−1 0

0 − G↓,0�− k,i�n�−1 �
− � ��11

f �k,i�n� ��12
f �k,i�n� + 


��21
f �k,i�n� + 
� ��22

f �k,i�n�
� , �238�

and the fermionic self-energies ��ij
f �k , i�n� contain the feed-

back effects of the dressed molecules on the atoms. The term
Tr�G� is easily evaluated according to the theory of a weak-
interacting Bose gas. We have

2Znmc − 2
1

��V
Tr�G� = 2Znmc

+ 2Z� dq

�2��3 �um
2 �q�NB„Em�q�…

− vm
2 �q�NB„− Em�q�…� = 2Z�nmc�T�

+ nm� �T�� , �239�

where

vm
2 �q� = um

2 �q� − 1 =

q2

2mm
+ Tm

Bornnmc − Em�q�

2Em�q�
�240�

are the standard bosonic coherence factors of the Bogoliubov
transformation �87� and nm� �T� is the noncondensed density
of dressed molecules at temperature T. The density of Eq.
�239� corresponds to the bare-molecular contribution to the
total density. It is very small because in the BEC limit that
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we are considering for a broad resonance, we have Z
0.
Therefore, we have that the main contribution in the equation
of state in Eq. �237� comes from Tr�Gf�. To calculate this

trace we have first to calculated the fermionic self-energies.
Upon neglecting higher-order contributions, we ultimately
find �34�

��Gf,11
−1 �k,i�n� Gf,12

−1 �k,i�n�
Gf,21

−1 �k,i�n� Gf,22
−1 �k,i�n�

� =�i��n + � − 	k −

�2

i��n − � + 	k




� − i��n − � + 	k −

�2

i��n − � + 	k

� �241�

where


�2 =
g2Znm�

�1 +	�2��
	bg

�2 . �242�

Note that we have neglected the off-diagonal fermionic self-
energies because in the limit under consideration we can
show that ��12

f �0,0�
�
 � ��
�2 /2 ���2�. From Eq. �241� we
get the expression for Gf,11 in the BEC limit �34�

Gf,11�k,�n� 

�

i��n + � − 	k −
�
�2 + 
�2

i�n − � + 	k

, �243�

where we have neglected a term of order 
�2 / ��� with re-
spect to ���. Note that Eq. �243� has the same formal struc-
ture of the corresponding BCS expression �87�, with the re-
placement �
�2→ ��
�2+
�2�. Accordingly, the trace of the
fermionic propagator can be rewritten in the BCS-like form

1

��V
2Tr�Gf� 
 � d3k

�2��3�1 −
	k − �

	��
�2 + 
�2� + �	k − ��2� .

�244�

Expanding the right-hand side of this equation as we did for
the mean-field BCS equation of state in Eq. �196�, we have

1

��V
2Tr�Gf� 
 ��
�2 + 
�2�

m2

4�	2m����3
. �245�

Moreover, using 2�
�	m� and the definition of two-body Z
we find

2
1

��V
Tr�Gf� 


2Z�nmc + nm���

2	�	m��1 +	�	m�
	bg

�2 
 2�1 − Z��nmc + nm� � .

�246�

Joining the two contributions of Eqs. �246� and �239� we
have

n 
 2�nmc�T� + nm� �T�� . �247�

This result holds asymptotically for kBT� �	m� and it repre-
sents the extension to a two-channel model in the case of a
broad resonance, of the description of the BEC limit in
�34,36� based on the composite bosons of the single-channel
model. However, it is important to stress that these results
are only valid in the lowest order of perturbation theory.
Furthermore, we use a definition of the probability Z that is
only true in the asymptotic BEC limit. The calculation of Z
in the strong-coupling region requires a more general ap-
proach as shown in �57�.

Nevertheless, our analysis of the BEC limit shows the
way to connect the two models in the limit of a very broad
resonance, where the single-channel model accounts fairly
well for the thermodynamics of the gas inside the BEC-BCS
crossover region.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have shown that our dressed-molecule
picture represents an effective and consistent approach in
order to describe the physics of ultracold Fermi gases near a
Feshbach resonance. The dressed molecule is the real physi-
cal entity of the BEC-BCS crossover in atomic Fermi gases
near a Feshbach resonance, because the wavefunction of the
Feshbach molecules is always a coherent superposition. In
this formulation the information about the mixing of the two-
channels is preserved at each stage in the many-body calcu-
lation. Therefore it has the advantage that it can be applied
also to medium and narrow resonances, when �2�	F, where
the single-channel approximation is expected to fail. How-
ever, a proper treatment of the narrow resonance case re-
quires the inclusion of the finite-range corrections in the
theory �47,131�. This will be addressed elsewhere.
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APPENDIX

In this appendix we present the detailed calculation which
leads to the dressed-molecule propagator of Eq. �229� from
Eq. �227�. In order to make the derivation more transparent
we discuss first the case when abg=0, because the inclusion
of the background interactions does not change qualitatively
the discussion. Neglecting the background scattering length
corrections, the molecular self-energies of Eq. �228� reduce
to

��11�q,i�n� =
g2

V
�
k
� uk

2uk−q
2

i��n − ��k − ��k−q

−
vk

2vk−q
2

i��n + ��k + ��k−q
+

1

2	k
� ,

��12�q,i�n� =
2g2

V
�
k
�ukvkuk−qvk−q� 1

− i��n + ��k + ��k−q

+
1

i��n + ��k + ��k−q
�� , �A1�

where, in the definition of the gap of Eq. �188� entering the
definition of the coherence factors vk and uk, the contribution
due to the background interaction has to be neglected as
well. In the BEC limit, where 2�
	m�kBT, 
, we can ex-
pand the selfenergies of Eq. �A1� for small values of �q� and
�n as

��11�q,i�n� = A0 + A1i��n + A2	q/2 + O��n
2, �q�4� ,

��12�q,i�n� = B0 + O��n
2, �q�2� . �A2�

with the coefficients of the expansion given by

A0 =
g2

V
�
k

1

2	k
−

1

2�k
+

g2

V
�
k

�
�2

4�k
3 ,

A1 = −
g2

V
�
k

	k − �

4�k
3 ,

A2 =
g2

V
�
k

1

8� �	k − ���2�	k − ��2 − �
�2�
4�k

5 +
2	k�
�2�8�	k − ��2 + 3�
�2�

3�k
7 � ,

B0 =
g2

V
�
k

�
�2

4�k
3 . �A3�

Substituting these results in Eq. �227� and using the gap equation of Eq. �190�, the dressed-molecule propagator can be
rewritten as

− �G−1 
�− i��n + 	K/2 −
g2

V
�
k

�
�2

4�k
3 + A1i��n + A2	K/2

g2

V
�
k

�
�2

4�k
3

g2

V
�
k

�
�2

4�k
3 i��n + 	K/2 −

g2

V
�
k

�
�2

4�k
3 − A1i��n + A2	K/2� . �A4�

This expression can be simplified further by noting that in the BEC limit one has

g2

V
�
k

�
�2

4�k
3 
 �1 − Z

Z
� �
�2

4���
, A1 
 A2 
 �Z − 1

Z
� �A5�

in the leading order of �
�2 / ���. Therefore, we get

− �G−1 

1

Z�− i��n + 	K/2 +
�
�2

4���
�1 − Z�

�
�2

4���
�1 − Z�

�
�2

4���
�1 − Z� i��n + 	K/2 +

�
�2

4���
�1 − Z� � . �A6�

This derivation can be generalized rather straightforwardly in order to include the effects of the background scattering
length in the molecular self-energies of Eq. �228�. The coefficients of Eq. �A3� differ only by an overall factor 1 / �1
+ �abg �	−2��, and Z, 	m, 
, and the gap equation must be replaced everywhere with the more general expressions that include
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the background scattering length corrections. Note, however, that the background scattering corrections in the self-energies of
Eq. �228� are valid only in the BEC limit. Therefore, in order to simplify the dressed-molecule propagator as we have done in
Eq. �A4�, we cannot use the general gap equation of Eq. �190�. Alternatively, we expand the coefficients of Eq. �A3� in powers
of 
 / ��� and then we use the expanded version of the gap equation of Eq. �195�. Ultimately we find in this manner that

− �G−1 

1

Z�− i��n + 	K/2 +
�
�2

4���
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as given in Eq. �229�.
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