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1 Introduction

In his in
uential paper on the existence of Cournot-Nash equilibria, Schmeidler (1973) introduced
a continuum game model which supposes the action sets to be integrably bounded from the outset.
It is clear that this restriction was only made for the sake of analytical tractability, because the
weak quotient topology �(L1; L1) in Schmeidler (1973) plays a crucial role in the application of
a Kakutani-type �xed point result. For the same technical reason, such integrable boundedness
was retained in all the subsequent literature, even though no natural reasons can be o�ered for
the integrability of action pro�les. The purpose of this paper is to generalize Schmeidler's model
to such a degree that integrable boundedness is no longer required of the action sets. We do this
by formulating a new topology for the action pro�les, the feeble topology. This topology, which
coincides on the set of action pro�les with the weak prequotient topology �(L1;L1) when the
action sets are integrably bounded, is very closely related to the narrow topology for the mixed action
pro�les. As a consequence of non-integrability of the pro�les, the action space can also be much
more general than is customary at present. Our main existence result, Theorem 2.1, generalizes
and uni�es the extensions of Schmeidler's �rst principal result in Schmeidler (1973), as given in
Theorems 7.1, 7.8, 7.11 and 7.13 of Khan (1985); see Corollary 2.1. It also generalizes the uni�ed
treatment of Schmeidler's two principal results in pseudogame form, as given by Ichiishi (1983); see
Corollary 2.3. Also, it is indicated how both Theorem 2.1 itself (even though it is presented as a pure
equilibrium existence result) and Theorem 3.3.1, an auxiliarymixed equilibrium existence result, can
be converted into an extension of the principal mixed equilibrium existence result of Theorem 2.1 in
Balder (1995a). Further, in terms of the feeble topology, we present new evidence of a debilitating
inconsistency, recently exposed in Balder (1996c), that mars the literature on continuum games with
non-ordered preferences. Another mathematical novelty introduced in this paper is a non-Hausdor�
version of a well-known existence result for quasi-variational inequalities; such non-Hausdor�ness
serves to give existence of Cournot-Nash equilibria in terms of the original action pro�les, and not
just their quotients.

2 Main results

In this section we formulate a continuum pseudogame � and our main equilibrium existence results
for these games. Let (T; T ; �) be an abstract �nite measure space; here T is the set of all players (or
player's types). Interesting choices for T could be: (a) T is a �nite or countable set (then T = 2T ),
(b) T is a continuum, such as the unit interval (equipped with Lebesgue �-algebra and measure), or
(c) a mixture of (a) and (b) { e.g., see Corollary 2.3 below. We make the following assumption in
the main part of this paper. In Remark 3.3.2 it is demonstrated that without this technically quite
helpful assumption the main equilibrium existence results of this paper, that is, Theorems 2.1 and
3.3.1, continue to hold.

Assumption 2.1 The measure space (T; T ; �) is complete and separable.

Let the action space S be a Hausdor� locally convex topological vector space that is a Suslin space
for its topology (Dellacherie and Meyer (1975), Schwartz ((1973)). Examples of such spaces include
separable Banach spaces, equipped with their norm or weak topology, duals of separable Banach
spaces, equipped with their weak star topology, separable Fr�echet spaces, such as C(R), equipped
with the compact-open topology, or the space of all bounded, signed measures on a separable metric
and complete space. The topological dual of S is denoted by S0. For each t 2 T let St � S be the
action set of player t. We suppose that the following holds, where the multifunction � : T 7! 2S is
de�ned by setting �(t) := St.

Assumption 2.2 For every t in T the set St is compact and convex, and the graph

D := f(t; s) 2 T � S : s 2 Stg;

of the multifunction � belongs to T � B(S).
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As with other assumptions still to follow, we assume that any assumption, once presented, continues
to hold in the entire paper, unless the contrary is mentioned explicitly. Observe that Assumption 2.2
places no integrability conditions whatsoever on the multifunction �. As usual, B(S) stands for the
Borel �-algebra on S, i.e., the �-algebra generated by the open subsets of S. By D we denote the
�-algebra D \ (T � B(S)), that is, the trace �-algebra of T � B(S) on D. Let S� be the set of all
measurable functions f : T ! S for which f(t) 2 St for a.e. t in T . Mathematically speaking, S�
is the set of all measurable a.e.-selections of the multifunction �; in terms of the game �, S� forms
the set of all canonical (pure) action pro�les of �. It is useful to keep in mind that in the present
framework a function f : T ! S is measurable (of course, by this we mean measurabilitywith respect
to T and B(S)) if and only if f is scalarly measurable (that is, t 7!< f(t); s0 > is T -measurable
for every s0 2 S0). This holds because the Borel �-algebra B(S) on the Suslin space S is already
generated by the �(S; S0)-open sets of S, by Corollary 2 of Theorem II.10 of Schwartz (1973).
Assumption 2.2 implies that there exists a measurable selection of � (apply the von Neumann-
Aumann measurable selection theorem (Theorem III.22 of Castaing and Valadier (1977)); hence,
the set S� is nonempty. Let GAC;� be the vector space of all D-measurable functions g : D ! R

such that g(t; �) is a�ne and continuous on St for every t in T and such that sups2St jg(t; s)j � �(t)
for all t in T for some function � 2 L1

R
. The feeble topology on S� is de�ned as the weakest topology

for which all integral functionals

Jg : f 7!

Z
T

g(t; f(t))�(dt); g 2 GAC;�;

are continuous; S� will be equipped with this topology from now on. The following remark calls
attention to the fact that the feeble topology, which is a novel feature of this paper, is the natural
generalization of the usual relative weak topology on L1

�.

Remark 2.1 (a) The standard situation considered in the continuum game literature obtains when
S is a separable Banach space, equipped with the weak topology �(S; S0), and when, in addition
to Assumption 2.2, the multifunction � is integrably bounded; i.e., there exists � 2 L1

R
such that

sups2St ksk � �(t) for every t 2 T . Here k � k stands for the norm on S. In this situation S is a
Suslin locally convex topological vector space, and S� is nothing but the prequotient space L1

�, that
is to say, the set of all integrable a.e.-selectors of �. Also, the feeble topology is then the relative
(prequotient) weak topology �(L1

S ;L
1
S0) on L

1
�: Indeed, since � is integrably bounded, all functions

(t; s) 7! 1A(t) < s; s0 >: D ! R, A 2 T , s0 2 S0, belong to GAC;�, and, in the converse direction, it
is a well known fact that the integral functionals Jg, g 2 GAC;�, are sequentially weakly continuous
on the space L1

� (which is semimetrizable by Assumption 2.1). For an instant proof of this fact the
reader is invited to combine Corollary 2.2 and Theorem 3.3 of Balder (1990). We should observe,
however, that, less generally (e.g., see the proof of Corollary 2.1 below), all such models in the
literature on the subject work with the quotient space L1

� instead of the prequotient L1
� as their set of

action pro�les. We �nish by observing that, if the weak topology on the Banach space S is replaced
by the norm-topology, then S� is still the prequotient space L1

� and the class GAC;� is the same
as before (this follows from standard facts involving lower semicontinuous convex functions and the
Hahn-Banach theorem, similar to the well known fact that for a�ne functions on S weak continuity
and norm-continuity are the same). Thus, the feeble topology is then again the weak topology on L1

�.
(b) Another situation used on some occasions (e.g., cf. Khan (1985)) is as follows: S is the

dual of a separable Banach space R, and, in addition to Assumption 2.2, the multifunction � is
uniformly bounded by a compact, i.e., there exists a �(S;R)-compact set K such that St � K for
all t 2 T . In this situation S is a Suslin locally convex topological vector space for the weak star
topology �(S;R), and S� is obviously the prequotient space L1� , i.e., the set of all bounded and
measurable a.e.-selectors of �. The feeble topology is then the relative weak star topology �(L1S ;L1

R)
on L1� . This is seen by the fact that, on the one hand, all functions (t; s) 7!< s; `(t) >: D ! R,
` 2 L1

R, belong to GAC;� and, on the other hand, the integral functionals Jg , g 2 GAC;�, are weak
star continuous.

Let Y := R
m�S�(TnT0), where m 2 N is a given, �xed number, T0 2 T a given, �xed subset of

the nonatomic part Tna of the measure space (T; T ; �), and where S�(TnT0) stands for the set of all
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measurable functions f : TnT0 ! S for which f(t) 2 St for a.e. t in TnT0. Following Balder (1995a)
{ but more concretely { we introduce an externality mapping d : S� ! Y in the next assumption.

Assumption 2.3 The externality mapping d is of the form

d(f) := ((

Z
T0

gi(t; f(t))�(dt))
m
i=1; f jTnT0);

where g1; � � � ; gm are Carath�eodory functions on D \ (T0 � S). 1

Above, f jTnT0 stands for the restriction of f 2 S� to TnT0. Interesting choices for T0 are (a)
T0 := ;, when under Assumption 2.3 d simply amounts to the identity mapping, or (b) T0 := Tna,
when one could consider gi(t; s) := i-th coordinate function in the setup of Remark 2.1(a) if the
action space S is additionally �nite-dimensional. Observe that when (T; T ; �) is nonatomic, this
amounts to T0 := Tna = T and the familiar choice d(f) :=

R
T
f d�.

We continue by introducing a social feasibility feature of � (incidentally, this is why � is frequently
referred to as a pseudogame; cf. Ichiishi (1983)). Let A : T � Y ! 2S be a given multifunction; an
action pro�le f 2 S� is said to be socially feasible if f(t) 2 A(t; d(f)) for a.e. t in T . In this way,
(almost) each player t 2 T is forced to take not only his/her own action into consideration (which
must belong to St), but also the actions of the other players. Often we write At instead of A(t; �).

Assumption 2.4 The multifunction A : T � Y ! 2S has nonempty closed values and satis�es

A(t; d(f)) � St for every (t; f) in T � S�.

Also, for every t in T the multifunction At : Y ! 2St is continuous, and the graph of A, given by

f(t; s; y) 2 D � Y : s 2 A(t; y)g;

belongs to D � B(Y ).

Next, we introduce the payo� functions of the game �. For each player t let Ut : St � Y !
[�1;+1] be player t's payo� function. Given the action pro�le f 2 S�, player t's payo� amounts
to Ut(s; d(f)) if he/she replaces the pro�le-prescribed action f(t) by the action s 2 St. Let U :
D � Y ! [�1;+1] be the function given by U (t; s; y) := Ut(s; y).

Assumption 2.5 For every t 2 T the function Ut is continuous on St�Y and for every y 2 Y the
function U (�; �; y) is D-measurable.

Assumption 2.6 For every (t; y) 2 (TnT0)� Y the set argmaxs2At(y))Ut(s; y) is convex.

The latter assumption is very mild. Most certainly it is ful�lled under standard conditions which
demand that At(y) is convex and Ut(�; y) is quasi-concave on At(y) for every t and y, but it allows
for nonstandard situations as well: e.g., think of a non-quasi-concave Ut for which the argmax set
�guring in Assumption 2.6 is a singleton for each t (see Example 2.2 below). Observe that in the
nonatomic case, already considered above (i.e., T0 = Tna = T ), Assumption 2.6 holds vacuously.

Theorem 2.1 (equilibrium existence result) Under the above assumptions the pseudogame � :=
(T;�; U;A) has a socially feasible Nash equilibrium in pure action pro�les, i.e., there exists f� 2 S�
such that

f�(t) 2 argmaxs2At(d(f�))Ut(s; d(f
�)) for a.e. t in T .

Observe that the equilibrium solution f� of the theorem is both socially feasible and has the property
that almost every player achieves maximum payo� under the pro�le f�.

1I.e., each gi : D \ (T0 � S) ! R is D-measurable, with gi(t; �) continuous on St for every t 2 T and with
sups2St jgi(t; s)j � �(t) for some integrable � : T0 ! R; cf. section 3.2.
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Corollary 2.1 (Theorems 7.1, 7.8, 7.11 of Khan (1985)) Let (S; k � k) be a separable Banach
space, equipped with the weak topology �(S; S0). Let St be weakly compact, convex and nonempty
for every t 2 T . Also, let � : t 7! St have a measurable graph D and be integrably bounded (cf.
Remark 2.1(a)). Let u : D � L1

� ! [�1;+1] be such that ut := u(t; �; �) is continuous on St � L1
�

for every t 2 T , u(�; �; x) is D-measurable on D for every x 2 L1
�, and u(t; �; x) is quasi-concave for

every (t; x) 2 T � L1
�. Here L1

� is equipped with the relative weak topology �(L1
S ; L

1
S0). Then there

exists x� 2 L1
� such that

x�(t) 2 argmaxs2Stut(s; x
�) for a.e. t in T .

Proof. Take T0 := ;; so d is the identity on S�. Observe that S� = L1
� by Remark 2.1. Let � be

the usual quotient mapping from the prequotient space L1
S into L1

S and set U (t; s; f) := u(t; s; �(f))
and At(f) := St. Then the assumptions of Theorem 2.1 all hold. Given f�, as guaranteed to exist
by Theorem 2.1, we then set x� := �(f�) to �nd an equilibrium solution in the present context.
Q.E.D.

Observe that Theorem 7.1 of Khan (1985) has an additional uniform inclusion for the action sets
St, t 2 T , which we have dropped altogether. The fact that Theorem 2.1 completely generalizes
Theorem 7.1 of Khan (1985), solves a question left open in Balder (1995a), p. 89. In the same
way we can show that Theorem 2.1 generalizes Theorem 7.13 of Khan (1985), by taking on S� the
(relative) weak star topology instead of the weak topology; see Remark 2.1(b). As a new application
in the above standard context, consider the version of Corollary 2.1 in which the weak topology
�(S; S0) is systematically replaced by the norm topology:

Corollary 2.2 Let (S; k � k) be a separable Banach space, equipped with the norm topology. Let St
be norm-compact, convex and nonempty for every t 2 T . Also, let � : t 7! St have an measurable
graph D and be integrably bounded (cf. Remark 2.1(a)). Let u : D � L1

� ! [�1;+1] be such that
ut := u(t; �; �) is continuous on St � L1

� for every t 2 T , u(�; �; x) is D-measurable on D for every
x 2 L1

�, and u(t; �; x) is quasi-concave for every (t; x) 2 T � L1
�. Here L1

� is equipped with the
relative weak topology �(L1

S ; L
1
S0). Then there exists x� 2 L1

� such that

x�(t) 2 argmaxs2Stut(s; x
�) for a.e. t in T .

The proof is virtually a replica of the one given for the previous corollary, in view of what was
concluded in Remark 2.1(a). In comparison with the previous corollary, the compactness assumption
for the action sets has become stronger, whereas the continuity condition for the payo� functions
is weakened. The next corollary of Theorem 2.1 captures Theorem 4.7.3, the main continuum
pseudogame existence result by Ichiishi (1983), which combines the two results of the original paper
of Schmeidler (1973). In Ichiishi (1983), just as in the present paper, this result is stated in terms
of the prequotient space L1

�, but it should be noticed that the mathematical apparatus of Ichiishi
(1983), which is built on Hausdor� spaces, does not go beyond the quotient space L1

� and hence
does not seem capable of fully supporting such a result.

Corollary 2.3 (Ichiishi (1983), Theorem 4.7.3) Let T be the union (or direct sum) of a set C
and a singleton-atom b, where (C; C; �) is a �nite nonatomic measure space. Let S be the direct
sum of Rl and a compact convex subset Z of a Hausdor� locally convex space. Let St be weakly
compact, convex and nonempty for every t 2 C, such that � : t 7! St has a measurable graph D and
is integrably bounded on C. Let u : D �

R
C
� � Z ! [�1;+1] be such that ut is continuous on

St �
R
C ��Z for every t 2 C and such that u(�; �; y; z) is D-measurable for every (y; z) 2

R
C ��Z.

Also, let ub : Z �
R
C
� � Z ! [�1;+1] be continuous and such that ub(�; y; z) is quasi-concave

on Z for every (y; z) 2
R
C
� � Z. Further, let F : C �

R
C
� � Z ! 2R

l

have a measurable
graph and be such that Ft is continuous for every t 2 C with nonempty closed values, and let
G :

R
C
� � Z ! 2Z also have a measurable graph, be continuous and have nonempty closed convex

values. Here
R
C
� is the usual integral f

R
C
f d� : f 2 L1

�g of the multifunction �. Then there exists
a pair (f�; z�) 2 L1

��Z such that f�(t) 2 argmax
s2F (t;

R
C
f� ;z�)

ut(s;
R
C f

�d�; z�) for a.e. t in C and

z� 2 argmax
z2G(

R
C
f�;z�)

ub(z;
R
C
f�d�; z�).
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Proof. We take T0 := C; observe already that no Suslin condition is required for Z, since
TnT0 is the singleton fbg, upon which all measurability considerations are trivial. We de�ne gi
in Gbb;� by gi(t; s) := i-th coordinate of s, i = 1; � � � ; l. For the externality mapping this gives
d(f) := (

R
C
f; f(b)). We substitute Ut(s; d(f)) := ut(s;

R
C
f; f(b)) and At(d(f)) := Ft(

R
C
f; f(b)) for

\continuum players" t 2 C, and Ub(s; d(f)) := ub(s;
R
C
f; f(b)), Ab(d(f)) := G(

R
C
f; f(b)) for the

\atomic player" b. Then all assumptions of Theorem 2.1 are easily seen to hold. For f� 2 S� =
L1
Sigma, as guaranteed to exist by Theorem 2.1, we then set z� := f�(b). Q.E.D.

The following paradigmatic examples describe trivial continuum game equilibrium existence
problems, in which each player can take only one action. Existence of a Nash equilibrium pro-
�le in these examples is a trivial matter, but neither the two corollaries above, nor the literature
which they generalize can deal directly with this problem. However, Theorem 2.1 applies in both
instances:

Example 2.1 Let f : T ! S be a measurable, non-integrable function. Consider the case where St
is the singleton ff(t)g for each t 2 T , and where At � St and U � 0. The standard continuum game
literature on existence is unable to deal with this situation, because � : t 7! ff(t)g is not integrably
bounded { cf. Remark 2.1(a). Nevertheless, Theorem 2.1 applies, since Assumption 2.2 evidently
holds and for T0 := ; the other assumptions hold trivially.

Example 2.2 For arbitrary (T; T ; �) we consider the case where St is the interval [�1=2;+2] for all
t, where At � St and Ut(s; y) := �(1�s2)2 for each t in T . The standard continuum game literature
on existence is unable to deal with this situation (directly), because Ut(s; y) is not quasiconcave in s.
However, Theorem 2.1 applies here: Assumption 2.2 clearly holds, as do Assumptions 2.5 and 2.6
(observe that argmaxs2[�1=2;2]Ut(s; y) is the singleton f1g, which is a convex set), and for T0 := ;
the other assumptions hold trivially.

If in the last example St is taken to be [�2;+2] for all t, then Theorem 2.1 does not apply, since
Assumption 2.6 no longer holds. In contrast to Theorem 2.1, however, the related mixed equilibrium
existence result Theorem 3.3.1 still applies in that situation, and it leads to the desired (but trivial)
existence result by an ad hoc puri�cation argument. This underlines the fact that mixed equilibrium
existence results are more fundamental than their pure counterparts, a fact known at least for �nite
games since von Neumann.

3 Proofs

Roughly speaking, the proof of Theorem 2.1 consists of the following stages: (1) formulation of a
mixed version of the pseudogame �, (2) obtaining the existence of a mixed equilibrium pro�le ��

as the solution of a quasi-variational inequality in mixed pro�les (Theorem 3.3.1), (3) puri�cation
of ��. As for (1), we shall see in section 3.2 that, via the barycentric mapping � 7! bar � : R� !
S�, the feeble topology is strongly related to the narrow topology for transition probabilities; cf.
Balder (1988, 1995b). The latter topology plays a crucial role in stage (2), which hinges on the
application of an abstract existence result for quasi-variational inequalities in a non-Hausdor� space
(Corollary 3.1.1). Section 3.1 serves to derive this abstract existence result from Ky Fan's well-
known inequality. In stage (3) the mixed equilibrium pro�le of Theorem 3.3.1 is converted into
an equilibrium of the desired pure type, on the one hand by taking pointwise barycenters (i.e.,
expectations) of ��(t) for players t in TnT0 and on the other hand by aggregated Lyapunov-type
puri�cation for players in T0.

3.1 Quasi-variational inequalities on a non-Hausdor� space

To enable the use of the prequotient space S�, the proof of Theorem 2.1 is based on an application,
in a non-Hausdor� context, of Corollary 3.1.1. The ancillary Theorem 3.1.2, which we derive �rst, is
an existence result for a quasi-variational inequality, whose counterpart is well-known in a Hausdor�
vector space context; see Theorem 9.13 of Aubin (1993) or Theorem 3.1 of Balder (1996b). Below
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we recall Ky Fan's inequality (Ky Fan (1961), Lemma 1); we point out in particular that this result
remains valid in a non-Hausdor� setting, because, as already observed in Ding and Tan (1990),
pp. 500-501, the proof of Ky Fan (1961) does not require the Hausdor� property.

Theorem 3.1.1 (Ky Fan's inequality) Let C be a compact convex and nonempty subset of a
topological vector space (possibly non-Hausdor�). Let � : C �C ! [�1;+1] be such that

�(�; y) is lower semicontinuous for every y 2 C,

�(x; �) is quasiconcave for every x 2 C,

�(x; x) � 0 for every x 2 C:

Then there exists x� 2 C such that �(x�; y) � 0 for all y 2 C.

With the aid of Theorem 3.1.1 we now prove an existence result for a quasi-variational inequality
on a non-Hausdor� vector space, similar to Theorem 9.13 of Aubin (1993), the proof of which we
mimick in a non-Hausdor� way. Let E be a locally convex topological vector space (possibly non-
Hausdor�); the topological dual of E is denoted by E0.

Theorem 3.1.2 Let C � E be compact, convex and nonempty. Let � : C �C ! R be such that

�(�; y) is lower semicontinuous for every y 2 C,

�(x; �) is concave for every x 2 C,

�(x; x) � 0 for every x 2 C:

Also, let F : C ! 2C be a multifunction with convex and nonempty values, such that

�(F (�); x0) : x 7! sup
y2F (x)

< y; x0 > is upper semicontinuous on C for every x0 2 E0,

� : x 7! sup
y2F (x)

�(x; y) is lower semicontinuous.

Then there exists x� 2 C such that x� 2 F (x�) and �(x�; y) � 0 for all y 2 F (x�).

Proof. Suppose that for every x 2 C one either has (1) x 62 F (x) or (2) �(x) > 0. By the
Hahn-Banach theorem, which continues to hold in the present non-Hausdor� setup (Edwards (1995),
Corollary 2.2.3), possibility (1) implies the existence of x0 2 E0 such that x 2 V (x0) := fz 2 C :<
z; x0 >> �(F (z); x0)g. Thus, C is covered by the open sets V0 := fx 2 C : �(x) > 0g and V (x0),
x0 2 E0. By compactness of C there exists a �nite subset fx01; � � � ; x

0
ng of E

0 such that V0 and the
V (x0i), 1 � i � n also cover C. By point (5) on p. 23 of Edwards (1995), a reference which carefully
avoidsmaking unnecessary Hausdor� assumptions, there exists a continuous partition fc0; c1; � � � ; cng
of unity which is subordinate to the cover of the n + 1 sets mentioned above (observe that C is of
course paracompact). We now de�ne �� : C �C ! R by

��(x; y) := c0(x)�(x; y) +
nX
i=1

ci(x) < x� y; x0i >;

which is lower continuous in x, concave in y, and meets ��(x; x) � 0. By Ky Fan's inequality
(Theorem 3.1.1), this implies existence of �x 2 C such that ��(�x; y) � 0 for all y 2 C. If �(�x) > 0,
then there exists y 2 F (�x) with �(�x; y) > 0. This causes ��(�x; y) > 0, which cannot be (observe
that < �x; x0i >> �(F (�x); x0i) �< y; x0i > whenever ci(�x) > 0). On the other hand, if �(�x) � 0,
then c0(�x) = 0 and there exists at least one i, 1 � i � n, such that ci(�x) > 0. Again we �nd an
impossibility: now ��(�x; y) > 0 for any y 2 F (�x) (use the same observation as above). This brings
the desired reductio ad absurdum. Q.E.D.
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Corollary 3.1.1 Let C � E be compact, convex and nonempty. Let b : C �C ! R be such that

b(�; �) is upper semicontinuous,

b(�; y) is continuous for every y 2 C,

b(x; �) is concave for every x 2 C.

Also, let F : C ! 2C be a multifunction with convex and nonempty values, such that

�(F (�); x0) : x 7! sup
y2F (x)

< x; x0 > is upper semicontinuous on C for every x0 2 E0,

a : x 7! sup
y2F (x)

b(x; y) is lower semicontinuous.

Then there exists x� 2 C such that x� 2 F (x�) and b(x�; x�) � b(x�; y) for all y 2 F (x�).

This result follows immediately from applying Theorem 3.1.2 to �(x; y) := b(x; y) � b(x; x).

3.2 On the feeble and narrow topologies

This subsection establishes some general facts about the narrow topology for transition probabilities
and its connection with the feeble topology. The Hausdor� locally convex space S is completely
regular; hence, its points are separated by Cb(S), the set of all bounded continuous functions on
S. Since S is also Suslin, the points of S are already separated by a countable subset (ci) of Cb(S)
(apply Lemma III.32 of Castaing and Valadier (1977)). It is easy to see that

dS(s; z) :=
1X
i=1

2�i
jci(s) � ci(z)j

supS jcij

de�nes a weak metric on S that is weaker than the original topology. Hence, on compact subsets
of S the original and dS-topology coincide. It is important to observe that the Borel �-algebra
corresponding to dS coincides with B(S), because S is Suslin (apply Corollary 2 of Theorem II.10
of Schwartz (1973)).

Let M+
1 (S) be the set of all probability measures on (S;B(S)). Recall from Proposition 26.3 of

Choquet (1969) that for every compact convex subset K of S and every � 2M+
1 (S), �(K) = 1, there

exists a barycenter (or representant) bar � of �; this is a point in K that is uniquely determined by

< bar �; s0 >=

Z
K

< s; s0 > �(ds) for all s0 2 S0. (3:1)

Recall also from Dellacherie and Meyer (1975) that the classical narrow topology onM+
1 (S) is de�ned

as the coarsest topology for which all mappings

� 7!

Z
S

c(s)�(ds); c 2 Cb(S);

are continuous. Recall further that a transition probability (alias Young measure) from T into S can
be de�ned as a T -measurable function � : T ! M+

1 (S), where M
+
1 (S) is equipped with the Borel

�-algebra corresponding to the classical narrow topology (since (S; dS) is certainly separable and
metrizable, it is not hard to see that this de�nition is equivalent to the one given in section III.2 of
Neveu (1965)). Let RS be the set of all transition probabilities from T into S and let R� be the set
of all � 2 RS such that �(t)(St) = 1 for a.e. t in T . The elements fromR� will be referred to asmixed
action pro�les. Assumption 2.2 implies that to every mixed action pro�le � 2 R� there corresponds
a pure action pro�le bar � 2 S�, de�ned as follows: Let �f be some arbitrary, �xed element of S�.
Let N be the null set of those t in T for which �(t)(St) < 1. De�ne (bar �)(t) := bar �(t) if t 2 TnN
and (bar �)(t) := �f (t) otherwise. Then scalar measurability of bar � follows from the fact that for
every s0 2 S0 the function t 7!< bar �(t); s0 >=

R
S
`(t; s)�(t)(ds) is measurable by section III.2 of
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Neveu (1965). Here `(t; s) :=< s; s0 > if (t; s) 2 D and `(t; s) := 0 if (t; s) 2 (T �S)nD. Thus, bar �
is also measurable with respect to T and B(S), in view of an earlier observation. Since bar �(t) 2 St
for all t 2 TnN by Assumption 2.2, it follows that bar � belongs to S�.

Recall from Balder (1988) that the narrow topology (alias Young measure topology) on RS is the
coarsest topology for which all mappings

� 7!

Z
A

[

Z
S

c(s)�(t)(ds)]�(dt); A 2 T ; c 2 Cb(S);

are continuous; the narrow topology on R� is of course de�ned by relativization. Equivalently, the
narrow topology on R� is the coarsest topology for which all mappings

Ig : � 7!

Z
T

[

Z
S

g(t; s)�(t)(ds)]�(dt); g 2 Gbb;�; (3:2)

are lower semicontinuous; here Gbb;� is the set of all normal integrands on D, i.e., the set of all D-
measurable functions g : D ! R such that g(t; �) is lower semicontinuous on St for every t 2 T and
infs2St g(t; s) � �(t) for some � 2 L1

R
. This follows by Theorem 2.2.(c) in Balder (1988) (observe

that for g 2 Gbb;� the function g0 : T �S ! (�1;+1], de�ned by g0(t; s) := g(t; s) if (t; s) 2 D and
g0(t; s) := +1 if (t; s) 2 (T � S)nD, is a normal integrand on T �S). Hence, equivalently (bis), the
narrow topology on R� is the coarsest topology for which all mappings Ig, g 2 GC;�, are continuous,
where GC;� is the set of all Carath�eodory integrands on D, i.e., the set of all D-measurable functions
g : D ! R such that g(t; �) is continuous on St for every t 2 T and sups2St jg(t; s)j � �(t) for
some � 2 L1

R
. This follows simply by observing that on the one hand GC;� is the intersection of

Gbb;� and �Gbb;�, and that on the other hand GC;� contains all functions g : D ! R of the form
g(t; s) := 1A(t)c(s) for A 2 T and c 2 Cb(S). More fundamentally, a similar equivalence holds on RS

itself Theorem 2.2(b) of Balder (1988): the narrow topology is the coarsest topology for which all
mappings Ig, g 2 GC, are continuous, where GC is the set of all Carath�eodory integrands on T � S.
The de�nition of the narrow topology on RS extends in an obvious way to MS , the vector space
spanned by RS , and we shall continue to refer to this as the narrow topology. Since GC is a linear
space, it is identi�able with the topological dual M0

S (apply Proposition 22.4 of Choquet (1969)).

Proposition 3.2.1 The set R� is a compact, convex and nonempty subset of the seminormed space
MS .

Proof. By Assumption 2.1 (which is essential for this result to hold), the �-algebra T is
generated by some (countable) sequence (Aj) in T . Since (S; dS) is obviously a metric Suslin space,
it follows that the points of M+

1 (S) can be separated by a countable collection (c0i) in Cb(S) (in fact,
this already follows from the fact that S is separable and metric). De�ne for any � in MS

pM(�) :=
1X
i=1

1X
j=1

2�i�j
j
R
Aj

R
S
c0i(s)�(t)(ds)�(dt)j

�(Aj) supS jc
0
ij

:

Then pM is a seminorm on MS , whose topology obviously coincides with the narrow topology on
RS � R�. Convexity of R� is trivial, and narrow compactness of R� follows by the results in
Balder (1988): Set h(t; s) := 0 if s 2 St and h(t; s) := +1 if s 62 St; then h is T � B(S)-measurable
and h(t; �) is inf-compact on S for every t 2 T . Hence, R� is compact for the narrow topology by
Theorem 2.3(b) of Balder (1988), 2 since it is the set of all � 2 RS for which Ih(�) � 0, where Ih
is as de�ned in (3.2). Finally, it was already observed that S� is nonempty and contains some f .
Then �f belongs to R�, which is therefore nonempty. Q.E.D.

In the above proof the following notation was used: for any pure action pro�le f 2 S�, �f 2 R�

stands for the canonical mixed action pro�le given by

�f (t) := Dirac measure at f(t):

2In Balder (1989) it was proven that this result remains valid in the present Suslin space context; see also Theo-
rem 5.1 in Balder (1990) and Theorem 5.5 in Balder (1995a).
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Proposition 3.2.2 The mapping � 7! bar � from R�, equipped with the narrow topology, into S�,
equipped with the feeble topology, is continuous.

Proof. Simply observe that for any g in GAC;�, the class of integrands de�ning the feeble
topology on S�, we have by (3.1)

Z
T

[

Z
St

g(t; bar �(t))]�(dt) =

Z
T

[

Z
St

g(t; s)�(t)(ds)]�(dt) = Ig(�)

for all � 2 R�, where the right hand side is narrowly continuous in � because of the obvious inclusion
GAC;� � GC;�. Q.E.D.

The following result generalizes what is called Diestel's theorem in Theorem 3.1 of Yannelis
(1991) (cf. Diestel (1977)).

Proposition 3.2.3 S� is semimetrizable and compact.

Proof. Compactness follows immediately by the previous results: If (fn) is a sequence in S�,
then the corresponding sequence (�fn ) in R� has a subsequence (�fnk ) that converges narrowly to
some � 2 R� (Proposition 3.2.1). By Proposition 3.2.2, it follows that (fnk) feebly converges to
f := bar �. To prove semimetrizabilitywe argue as follows. Because S is Hausdor� locally convex, S0

separates the points of S (Hahn-Banach theorem). Since S is also Suslin, it follows by Lemma III.32
of Castaing and Valadier (1977) that S0 contains a countable sequence (s0i) which still separates the

points of S. For each i; j de�ne gi;j : D ! R by gi;j(t; s) := 1Aj
(t)

<s;s0i>
�(Aj) supz2St j<z;s

0

i
>j , where (Aj) is

the countable collection generating the �-algebra T , as introduced in the proof of Proposition 3.2.1.
Then we claim that

dS�(f; f
0) :=

1X
i=1

1X
j=1

2�i�jj

Z
T

[gi;j(t; f(t)) � gi;j(t; f
0(t))]�(dt)j

metrizes the feeble topology. First, observe that the above integrals are well-de�ned, in view of the
de�nition of the gi;j. For by Assumption 2.2 and Theorem III.30 of Castaing and Valadier (1977),
the multifunction � has a Castaing representation: There exists a sequence (�n) of measurable
selections of � such that St = cl f�n(t)g for all t 2 T , and this gives sups2St j < s; s0i > j = supn j <
�n(t); s

0
i > j, hence measurability. Clearly, dS�-convergence is implied by feeble convergence, since

each function gi;j belongs to GAC;�. Conversely, suppose that a sequence (fn) converges in dS�
to f0 in S�, without giving feeble convergence as well. Then for some ~g 2 GAC;�, � > 0 and
some subsequence (fnk) we have j

R
T
[~g(t; fnk(t)) � ~g(t; f0(t))]�(dt)j � �. By Proposition 3.2.1, the

corresponding sequence (�fnk ) in R� has a subsequence (�fnp ) that narrowly converges to some
�� 2 R�. By Proposition 3.2.2 this implies fnp = bar �fnp ! f� := bar �� in the feeble topology.

But now
R
T
gi;j(t; f�(t))�(dt) =

R
T
gi;j(t; f0(t))�(dt) for all i; j, and this implies easily f�(t) = f0(t)

for a.e. t in T (recall that (Aj) generates T and that (s0i) separates the points of S). Since alsoR
T
~g(t; fnp(t))�(dt) !

R
T
~g(t; f�(t))�(dt) =

R
T
~g(t; f0(t))�(dt), a contradiction has been reached.

This proves the claim. Q.E.D.

It is rather interesting to observe that, in the opposite direction, the feeble topology on S� leads
to the narrow topology on R�. This goes as follows: given a metric Suslin space Z, it follows by
a slight expansion of Theorem III.60 in Dellacherie and Meyer (1975) that S := M (Z), the space
of all bounded, signed measures on Z, is a Hausdor� locally convex topological vector space that is
Suslin for the classical narrow topology (de�ned just as above, but now on M (Z)). Let Zt � Z be
compact convex and nonempty for every t 2 T , such that the graph of 
 : t 7! Zt is measurable. For
t 2 T , de�ne St to be the set of all probability measures s in M+

1 (Z) such that s(Zt) = 1. Then St
is compact for the classical narrow topology by Theorem III.60 in Dellacherie and Meyer (1975) and
the multifunction t 7! St is easily seen to have a measurable graph by Theorem IV.12 of Castaing
and Valadier (1977). In short, we have the starting situation of Assumption 2.2, but now with 

instead of �. The set S
 is easily seen to be identical to R� (recall that scalar measurability is
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enough, since S was seen to be Suslin, and observe that the dual space of S can be identi�ed with
Cb(Z), by Proposition 22.4 of Choquet (1969)). Also, the feeble topology on S
 coincides with the
narrow topology on R�, since for any g 2 GC;
 the function ~g, de�ned by

~g(t; s) :=

Z
Zt

g(t; z)s(dz);

belongs to GAC;�.

3.3 Proof of the main result

The proof of Theorem 2.1 consists of an application of Corollary 3.1.1 in the setting of section 3.2,
followed by a standard puri�cation argument. First, we follow Balder (1995a) in de�ning a mixed
version e : R� ! Y of the externality mapping d. Namely, we de�ne e(�) := (e1(�); e2(�)), where

e1(�) := (

Z
T0

[

Z
S

gi(t; s)�(t)(ds)]�(dt))
m
i=1; e2(�) := bar � jTnT0 :

By Assumption 2.3 and the previously established facts about the barycentric mapping, this is well-
de�ned. First, we prove the following mixed version of Theorem 2.1. By an argument similar to
Remark 3.3.2, one can show that its Assumption 2.1 can be lifted.

Theorem 3.3.1 (mixed equilibrium existence result) Under the above Assumptions 2.1{2.5
the pseudogame � := (T;�; U;A) has a socially feasible Nash equilibrium in mixed action pro�les,
i.e., there exists �� 2 R� such that

��(t)(argmaxs2At(e(��))Ut(s; e(�
�))) = 1 for a.e. t in T ,

Lemma 3.3.1 The mapping e : R� ! Y is continuous.

Proof. Since each gi is a Carath�eodory function on D \ (T0 � S), the function g0i : D ! R,
de�ned by g0i(t; s) := gi(t; s) if (t; s) 2 D \ (T0 � S) and g0i(t; s) := 0 if (t; s) 2 D \ (TnT0 � S),
belongs to GC;�. Hence, the m-vector function that forms the �rst component of e is narrowly
continuous. The continuity of the second, barycentric component of e is an immediate consequence
of Proposition 3.2.2. Q.E.D.

We now de�ne a function b : R� �R� ! R by

b(�; �) :=

Z
T

[

Z
S

~U (t; s; e(�))�(t)(ds)]�(dt):

Here ~U := arctanU is used to ensure boundedness. Quite similar forms were employed in Balder
(1991,1995,1996a) for more abstract and a priori given mixed externality mappings et, t 2 T , whose
role is now taken by the mixed externality (e1; e2) de�ned above.

Lemma 3.3.2 The function b : R� �R� ! R has the following properties:

b(�; �) is continuous,

b(�; �) is a�ne for every � 2 R�.

Proof. Since R� is semimetrizable (Proposition 3.2.1), sequential arguments su�ce. Let
(�k; �k) converge narrowly to (�1; �1) in R� �R�. De�ne a function g : T � N̂� S ! f0;+1g by

g(t; k; s) :=

�
� ~Ut(s; e(�k)) if s 2 St,
+1 otherwise.
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Here N̂ := N [ f1g (Alexandrov compacti�cation). By Assumptions 2.2, 2.5 and Lemma 3.3.1 it
follows that g(t; �; �) is lower semicontinuous on N̂ � S for every t 2 T . Also, g is T � B(N̂ � S)-
measurable. To see this, note �rst that, by the discrete nature of N̂, this claim amounts to the
T �B(S)-measurability of g(�; k; �) for every k 2 N̂. The latter follows directly from Assumptions 2.2
and 2.5: for any � 2 R the set of all (t; s) 2 T � S with g(t; k; s) � � equals the set of all
(t; s) 2 D with ~U (t; s; e(�k)) � ��. These two properties of g imply that g is a normal integrand
on T � (N̂ � S); by Theorem 2.2(a) of Balder (1988) it then follows that the integral functional Ig
is lower semicontinuous on R

N̂�S . Now by Theorem 2.5 of Balder (1988) the sequence of tensor
products (�k 
 �k) in RN̂�S converges narrowly to �1 
 �1. Combining the above, we �nd that
lim supk b(�k; �k) = � lim infk Ig(�k 
 �k) � �Ig(�1 
 �1) = b(�1; �1). Therefore, b is upper
semicontinuous. Lower semicontinuity of b follows immediately by repeating the above argument
for ~U replaced by � ~U . Finally, the a�nity of b(�; �) is trivial. Q.E.D.

Next, we let F : R� ! 2R� be the multifunction de�ned by

F (�) := f� 2 R� : �(t)(A(t; e(�))) = 1 for a.e. t in T g:

Lemma 3.3.3 (i) For every g 2 GC the functional � 7! sup�2F (�) Ig(�) from R� into R is contin-
uous.

(ii) The function a : R� ! R, de�ned by

a(�) := sup
�2F (�)

b(�; �);

is continuous; in fact, one has

a(�) =

Z
T

sup
s2At(e(�))

~Ut(s; e(�))�(dt);

where the function � 7! sups2At(e(�))
~Ut(s; e(�)) is continuous for every t 2 T .

Proof. (i) By what are essentially measurable selection arguments it follows that

sup
�2F (�)

Ig(�) =

Z
T

sup
s2At(e(�))

g(t; s)�(dt);

and that t 7! sups2At(e(�)) g(t; s) is integrable; e.g., see Proposition 3 of Balder (1991) or Theo-
rem 3 of Balder (1996a). Also, for every t 2 T the function � 7! sups2At(e(�)) g(t; s) is continuous
by Lemma 3.3.1, Assumptions 2.2, 2.4 and Berge's theorem (Aubin (1993), p. 391, Khan (1985),
Theorem 2.2). Hence, the desired narrow continuity of sup�2F (�) Ig(�) follows by the dominated
convergence theorem, in view of the fact that sequential arguments su�ce (Proposition 3.2.1).

(ii) By the same measurable selection arguments as used in the proof of part (i), we obtain

a(�) =

Z
T

sup
s2At(e(�))

~Ut(s; bar �)�(dt);

and after that the reasoning continues just as in the proof of part (i), since it is easy to prove, �a
la Berge, that for each t in T the function � 7! sups2At(e(�))

~Ut(s; e(�)) is continuous, in view of
Lemma 3.3.1 and Assumptions 2.2, 2.4 and 2.5. Q.E.D.

Proof of Theorem 3.3.1. We apply Corollary 3.1.1 to E :=MS , C := R� and F , a and b as
introduced in the lemmasabove. Then the conditions of Corollary 3.1.1 hold by Proposition 3.2.1 and
Lemmas 3.3.2, 3.3.3. Hence, there exists a mixed action pro�le �� 2 R� such that ��(t)(At(e(��))) =
1 for a.e. t and Z

T

[

Z
St

~Ut(s; e(�
�))��(t)(ds)]�(dt) =

Z
T

sup
s2At(e(��))

~Ut(s; e(�
�))�(dt);
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which gives immediately that

��(t)(argmaxs2At(e(��))
~Ut(s; e(�

�))) = 1 for a.e. t in T .

By monotonicity of the arctangent function this proves that �� is the desired mixed equilibrium
pro�le for �. Q.E.D.

Proof of Theorem 2.1. First, we assume in addition validity of Assumption 2.1. Let �� be
the mixed equilibrium pro�le whose existence is ensured by Theorem 3.3.1. Puri�cation by means of
Lyapunov's theorem (apply Lemma 3.4.1 of Balder (1995)) gives existence of a function f� 2 S�(T0)
such that Z

T0

gi(t; f�(t))�(dt) =

Z
T0

[

Z
St

gi(t; s)�
�(t)(ds)]�(dt); i = 1; � � � ;m+ 2;

where gm+j (t; s) := (�1)j ~U(t; s; e(��)), j = 1; 2. The �rst m identities imply e1(��) = d1(f�). De�ne
now f� : T 7! S by setting f�(t) := f�(t) for t 2 T0 and f�(t) := bar ��(t); then f� belongs to S�
by the above, (3.1) and Assumption 2.2. Obviously, e2(��) = d2(f�), whence now e(��) = d(f�). As
a consequence, the �nal two identities above come down to

Z
T0

~U (t; f�(t); d(f
�))�(dt) =

Z
T0

[

Z
St

~U (t; s; e(��))��(t)(ds)]�(dt):

By Theorem 3.3.1 and the identity e(��) = d(f�), the right-hand side equals sups2At(d(f�))
~U (t; s; d(f�)).

This clearly implies

Z
T0

[ sup
s2At(d(f�))

~U (t; s; d(f�))� ~U (t; f�(t); d(f�))]�(dt) = 0;

where the integrand is nonnegative; hence that integrand must be zero a.e. Therefore,

f�(t) 2 argmaxs2At(d(f� ))Ut(s; d(f
�)) for a.e. t in T0.

Finally, Assumptions 2.4 { 2.6 imply that the set argmaxs2At(d(f�))Ut(s; d(f�)) is compact and convex
for every t 2 TnT0. Hence, by combining Theorem 3.3.1, (3.1) and the identity e(��) = d(f�), we
�nd

f�(t) 2 argmaxs2At(d(f�))Ut(s; d(f
�)) for a.e. t in TnT0.

Together with the similar statement above on the part T0, this demonstrates that f� is a pure
equilibrium pro�le for �. In combination with Remark 3.3.2 this �nishes the proof. Q.E.D.

Remark 3.3.1 If the social feasibility aspect of �, caused by the multifunction A, is lifted by setting
At � St, it can easily be seen from the proof of Theorem 3.3.1 that the continuity of Ut required
in Assumption 2.5 can be weakened in the way of Assumptions 2.4 and 2.6 in Balder (1995a): It
is then su�cient to require continuity of Ut(s; �) for every (t; s) 2 D and upper semicontinuity of
Ut(�; �). It can then further be seen that the application of Corollary 3.1.1 simpli�es into a direct
application of Ky Fan's inequality Theorem 3.1.1. In this way, Theorem 3.3.1 can easily be turned
into a generalization of the main mixed equilibrium result in Theorem 2.1 of Balder (1995a), since
the only essential property required of the mixed externality mapping e in the proof of Theorem 3.3.1
is continuity as given by Lemma 3.3.1. The improvement of Theorem 2.1 in Balder (1995a) then
consists of the possibility to work with the externality space ~Y := R� and a mixed externality mapping
~e : R� ! ~Y which is nothing but the identity on R�.

3 It is rather interesting that the power of
Theorem 2.1 is such that, on its own accord, it implies the same improvement of Theorem 2.1 in
Balder (1995a). This can be seen by working out the comments at the end of section 3.2.

3I am indebted to Sylvain Sorin (Paris) for a stimulating question about the possibility to phrase the externality
mapping in this way.
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Remark 3.3.2 (removal of Assumption 2.1) In the proof of Theorem 2.1 we dealt with a func-
tion U : D � Y ! [�1;+1] satisfying Assumption 2.5. Let us de�ne Û : T � S � Y ! [�1;+1]
by Û := U on D � Y and Û := �1 elsewhere. It is clear from Assumptions 2.2 and 2.5 that Û is
T �B(S�Y )-measurable. By Castaing and Valadier (1977), p. 78, there exists a countably generated
sub-�-algebra A of T such that the same Û is also A� B(S � Y )-measurable. Moreover, this result
can be sharpened as follows (see the Appendix of Valadier (1984)): A can be chosen in such a way
that (Tna;A\ Tna; �(� \ Tna)) is nonatomic. Also the graphs of the multifunctions � and A can be
treated in this way, for we can identify those graphs with their indicator functions, and this gives us
two more T �B(S � Y )-measurable functions to which the above result from Castaing and Valadier
(1977) and Valadier (1984) applies. Combining these three countably generated sub-�-algebras we
obtain a single countably generated sub-�-algebra B, with respect to which the measurability require-
ments of Assumptions 2.2, 2.4, 2.5 continue to hold. Then all assumptions needed for Theorem 2.1
continue to hold a fortiori if we replace S� by its subset consisting of all B-measurable pure action
pro�les. This shows that without loss of generality (T; T ; �) can be supposed to be separable. Also,
since S is metrizable Suslin when equipped with dS (and a fortiori separable metric), it follows from a
well-known modi�cation argument involving \step functions" (Dellacherie and Meyer (1975), The-
orem I.17), and completion (Dellacherie and Meyer (1975), Remark II.32), that we may assume
without loss of generality that (T; T ; �) is a complete measure space. Indeed, in a �rst stage all
measurability properties continue to hold a fortiori with respect to the �-completion T� of T . There-
after, once the equilibrium pro�le has been found to exist in the larger setup, the results cited above
allow the construction of a modi�cation which only involves changes on null sets, is measurable with
respect to the original �-algebra T and still obeys the requirements for an equilibrium for �. In sum,
the preceding observations show that Assumption 2.1 can always be made to hold by restriction from
the outset to the completion of a suitable sub-�-algebra of T .

The method discussed in the preceding remark comes from Balder (1995b), where K-convergence
for Young measures, an intrinsically sequential, nontopological mode of convergence, which consti-
tutes a sharpening of sequential narrow convergence, is studied extensively.

Remark 3.3.3 The above remark can also be used to justify a gap in the proof of Lemma 4.2(i),
p. 92, of Balder (1995a), where the dominated convergence theorem is invoked in a context with
generalized sequences. The \free" introduction of the separability Assumption 2.1, discussed in the
preceding remark, guarantees semimetrizability of R�. Hence, sequential arguments can indeed be
used in p. 92 of Balder (1995a), which justi�es the use of the dominated convergence theorem there.

4 Comments on related non-ordered preference models

A considerable part of the literature on continuum games is devoted to existence results for models
with non-ordered preferences; e.g., see Kim, Prikry and Yannelis (1989), Khan (1985), Khan and
Papageorgiou (1987a,b), Khan and Vohra (1984), Yannelis (1987,1991). These are presented as
continuum analogues of the seminal existence results by Gale and Mas-Colell (1974) and Shafer and
Sonnenschein (1975), which have a �nite set of players. However, as was recently demonstrated
in Balder (1996c), all such continuum analogies su�er from a serious inconsistency: Under weak
versions of the usual open lower section condition for the (strict) preference multifunction P and the
usual nonre
exivity condition for P (these conditions stem from Gale and Mas-Colell (1974) and
Shafer and Sonnenschein (1975)), the preference multifunction P can essentially only have empty
values on the nonatomic part of the measure space of players.

Here we shall demonstrate such inconsistency by an argument that is quite di�erent from the
proof given in Balder (1996c). Moreover, the present exposition carries a little further (see Re-
mark 2.1), since we continue to use the feeble topology on S�. In contrast to Balder (1996c), the
present argument is based on a denseness result that is very closely related to the puri�cation by
nonatomicity used in the proof of Theorem 2.1. We continue to work under the Assumptions 2.1
and 2.2, but, just as in Remark 3.3.2, one can show that Assumption 2.1 may be removed.
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Theorem 4.1 (inconsistency result) Suppose that (T; T ; �) is nonatomic. 4 Let P : T � S� !
2S be a multifunction with measurable graph such that

P (t; f) � St for every (t; f) 2 T � S�;

for every t 2 T

Ot := f(s; f) 2 S � S� : s 2 P (t; f)g is an open subset of St � S� (open lower section condition)

and for every f 2 S�
f(t) 62 P (t; f) for a.e. t in T (nonre
exivity) :

Then for every f 2 S�
P (t; f) = ; for a.e. t in T .

Proof. Assume that we had some f 2 S� for which P (t; f) 6= ; for all t in some set C with
�(C) > 0. Then by the von Neumann-Aumann measurable selection theorem there would exist a
measurable function �f : C ! S such that �f (t) 2 P (t; f) � St for a.e. t in C. Outside C, we simply
set �f := f . For arbitrary � 2 (0; 1], de�ne �� 2 R� by ��(t) := �� �f (t)+(1��)�f (t). By Corollary 3
of Balder (1984), a denseness result that is an immediate spino� of Lemma 3.4.1 of Balder (1995a),
the puri�cation result used earlier, there exists a sequence (fn) in S� such that (�fn ) narrowly
converges to ��. Hence, (fn) converges feebly to f1 := bar �� = � �f + (1��)f (Proposition 3.2.2).
By the same lower semicontinuity argument as used in the proof of Lemma 3.3.2, it follows that
lim infn

R
T
`(t; n; fn(t))�(dt) �

R
T
[
R
S
`(t;1; s)��(t)(ds)]�(dt), where `(t; n; s) := 0 if (s; fn) 62 Ot

and := +1 otherwise. By the nonre
exivity condition, the left-hand side of the above inequality
equals zero, and this implies ��(t)(StnP (t; bar ��)) = 1 for a.e. t in T . In turn, this implies
�f (t) 2 StnP (t; bar ��) for a.e. t in T (note that �f (t) is in the support of ��(t)), which amounts to
( �f (t); � �f + (1 � �)f) belonging to the complement of the open set Ot. By letting � go to zero, it
follows that the complement of Ot contains ( �f (t); f) for a.e. t in T , and in particular of course for
a.e. t in C. This contradicts the de�nition of the selection �f . Q.E.D.
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