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Abstract

It is shown that the type structure of �nite-type functionals associated to a combinatory alge-
bra of partial functions from IN to IN (in the same way as the type structure of the countable
functionals is associated to the partial combinatory algebra of total functions from IN to IN),
is isomorphic to the type structure generated by object N (the 
at domain on the natural
numbers) in Ehrhard's category of \dI-domains with coherence", or his \hypercoherences".

AMS Subject Classi�cation: Primary 03D65, 68Q55 Secondary 03B40, 03B70, 03D45, 06B35

Introduction

PCF , \G�odel's T with unlimited recursion", was de�ned in Plotkin's paper [16]. It is a simply
typed �-calculus with a type o for integers and constants for basic arithmetical operations, de�-
nition by cases and �xed point recursion. More importantly, there is a special reduction relation
attached to it which ensures (by Plotkin's \Activity Lemma") that all PCF -de�nable higher-type
functionals have a sequential, i.e. non-parallel evaluation strategy. In view of this, the obvious
model of Scott domains is not faithful, since it contains parallel functions. A search began for
\fully abstract" domain-theoretic models for PCF .

A proliferation of ever more complicated theories of domains saw the light, inducing the father
of domain theory, Dana Scott, to lament that \there are too many proposed categories of domains
and [: : : ] their study has become too arcane" ([17]), a judgement with which it is hard to disagree.

Although most interest in the semantics of PCF was shown by computer scientists, it became
clear that there is an important overlap with higher-type recursion theory as it was recognized (I
believe, initially by Robin Gandy, whose insights were transmitted by Martin Hyland and partially
laid down in the paper [9]) that Kleene's late attempts ([10, 11, 12, 13]) to formalize the notion
of a recursive functional of higher type, had much in common with the \full abstraction problem"
for PCF . As far as I am aware however, the exact relationship between Kleene's work and the
work on PCF still remains to be clari�ed.

An important model of Kleene's axioms is provided by the so-called \continuous (or countable)
functionals" (see, e.g., [15]). They arise, in a standard way, as the type structure coming from
the partial combinatory algebra of \Kleene's function realizability" (introduced in [14]). This is a
partial combinatory algebra structure on the set of functions from IN to IN.

A surprising result of this paper is, that a natural generalization of function realizability to
partial functions from IN to IN (yielding a total combinatory algebra), gives a type structure
of higher-type functionals which coincides with the relevant part of Ehrhard and Bucciarelli's
\dI-domains with coherence" ([3, 4, 2]).

�Research supported by the Dutch National Research Foundation NWO

1



This could be interesting for a number of reasons. First, it provides another handle on
Ehrhard's work, which is complicated and rather heavily loaded with de�nitions; however, the
fact that dI-domains with coherence have a completely independent generation process (which
process is well known in logic), seems to me to enhance their naturalness as a mathematical struc-
ture. Of course, the result in this paper calls for comparison with the result in [3], viz. that
dI-domains with coherence are the extensional collapse of another domain-theoretic structure, se-
quential structures and sequential algorithms. My result is essentially di�erent in that it relates
the dI-domains with coherence to something which is de�ned independently of any domain the-
ory. But it might be conjectured that the sequential algorithms, or the part of it that is relevant
to PCF , can be obtained as a kind of intensional type structure on the combinatory algebra
considered here.

Secondly, it shows that Ehrhard's \strongly stable" model of PCF lives inside a realizability
topos where its domain structure is intrinsic. This should be of interest to Synthetic Domain
Theory ([7]).

Thirdly it raises the question whether maybe more models of PCF (including the fully abstract
game models of [9] and [1])can be induced in this way by combinatory algebras.

Finally I should admit to an oversight: one of the stumbling blocks for me in carrying out the
analysis reported in this paper, was my initial failure to recognize the importance of the stable
order (an error which is almost incomprehensible in view of the fact that the game-theoretic 
avour
of it was directly inspired by [9], who mention that their structure is dI-domain-enriched). Now
I am convinced that no useful attempt at unifying domain theory (as proposed in [17]) can leave
stable domains out of consideration.

1 Sequential Functions

We are interested in the following game between partial functions �, � : IN ! IN. � asks,
successively, values of � at given arguments; the game has no outcome if � is unde�ned at one of
these numbers, or if � has no further move; but � may also decide, at some point, that now it has
su�cient information about �, and outputs not a question, but an answer.

Formally, we de�ne:

De�nition 1.1 A sequence u = hu0; : : : ; un�1i (coded as a natural number) is called a dialogue
between � and � if for all i with 0 � i < n� 1, writing u<i for hu0; : : : ; ui�1i, there is j such that

�(u<i) = 2j and �(j) = ui

We say that the application �j� is de�ned with value n, or �j� = n, if there is a dialogue u between
� and � such that

�(u) = 2n+ 1

Of course, we read u<0 as the empty sequence. Note, that dialogues are unique: given � and �,
there is a unique (�nite or in�nite) dialogue between � and �.

Let B be the set of all partial functions from IN to IN; then every � 2 B determines a partial
function F� from B to IN by

F�(�) = n i� �j� = n

Giving B the topology with as subbase the collection of all

Up = f�j p � �g

for p �nite, and N? = IN[f?g the topology which is discrete on IN and has N? as only neighbor-
hood of ?, every F�, considered as total function B ! N?, is continuous; but clearly, not every
continuous F : B ! N? is of the form F�.

Examples The functions:
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i) F (�) =

�
0 if � 6= ;
? else

ii) F (�) =

�
0 if

P
x2dom(�);x�1�(x) � 1

? else

iii) F (�) =

8<
:

1 if
P

x2dom(�);x�1�(x) � 1

0 if �(0) = �(1) = 0
? else

are all continuous, but not given as F�.

In order to study the set of functions B ! N? that are given by some � 2 B, it is useful to consider
two partial orders on this set: the pointwise order is de�ned by: F �pw G i� for all � 2 B and all
n 2 IN: if F (�) = n then G(�) = n.

The stable order is de�ned by: F �s G i� for all �; � 2 B: if � � � then F (�) = n if and only
if F (�) = G(�) = n. Clearly, since F and G are continuous, F �s G implies F �pw G.

Every continuous F : B ! N? has a unique base, that is a minimal set B of �nite functions
such that for all � and all n: F (�) = n i� there is a p 2 B such that p � �.

De�nition 1.2 A sequential tree is a tree T of �nite functions (ordered by �, so the root is the
empty function) such that for each p 2 T there is n 2 IN such that all immediate successors q of
p in T have dom(q) = dom(p) [ fng.

Clearly:

Proposition 1.3 A function F : B ! N? is of the form F� for some � 2 B, i� its base is the
set of leaves of a sequential tree.

With any F� therefore we can associate a sequential tree with set of leaves B, and a function
v : B ! IN. Conversely every such pair (B; v) de�nes a function F which is given as F� for some
(non-unique) �. We call the pair (B; v) the trace of F . This is in harmony with usage in the
literature of this term, cf. [5].

When is a base B of a continuous function the set of leaves of a sequential tree? Answer:

Proposition 1.4 B is the set of leaves of a sequential tree if and only if for each nonempty �nite
subset B0 of B we have: if p �

T
B0 then either B0 = fpg or

T
q2B0 dom(q n p) 6= ;.

This proposition doesn't seem very informative, but yields at once:

Corollary 1.5 Let (Bij i 2 I) be a directed system of sets of �nite functions such that each Bi is
the set of leaves of a sequential tree. Then

S
i2I Bi is the set of leaves of a sequential tree.

From now on, we shall call functions F : B ! N? which are given as F�, sequential functions.
Let F;G be two sequential functions, with traces (BF ; vF ) and (BG; vG).

Proposition 1.6 i) F �pw G i� for every p 2 BF there is q 2 BG with q � p and vG(q) =
vF (p);

ii) F �s G i� BF � BG and vF and vG coincide on BF ;

iii) � � � implies F� �s F�

De�nition 1.7 In a partially ordered set (D;�) we say that d is the least upper bound (or lub,
or join, or supremum) of A � D if d is least such that 8a 2 A:a � d. Write d =

W
A.

We say A is bounded if it has an upper bound in D.
We say that d 2 D is compact if for every directed I � D, if d �

W
I then 9i 2 I:d � i.

D is called !-algebraic if the set of compact elements of D is countable and for each d 2 D,
the set fk 2 Dj k compact^ k � dg is directed and has d as least upper bound.
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D has the I-property if for every compact k 2 D, fd 2 Dj d � kg is �nite.
D is distributive if (x_x0)^ y = (x^y)_ (x0^ y) whenever these lubs exist (x_x0 =

W
fx; x0g

and x ^ x0 =
W
fyj y � x and y � x0g).

D is a dI-domain if it has least upper bounds of directed subsets and of bounded subsets, is
distributive and !-algebraic, and has the I-property.

The conclusion is:

Proposition 1.8 The set of sequential functions B ! N?, with the stable order, is a dI-domain.

Moreover, the set of sequential functions B ! N? is atomic, which means that every element
is the supremum of the atoms below it (an atom is a non-bottom element which has no non-
bottom elements stricly below it). Atomic dI-domains are known in the literature as qualitative
domains([5]).

2 A type structure of sequential functionals

In this section we restrict ourselves to the following types: o is a type; if � is a type, then �!o is
a type.

To every such type we assign a set O� of sequential functionals of type �, and to any f 2 O�

a nonempty set Ass(f) � B, the set of associates of f . The de�nition is:

Oo = N?; Ass(n) = f�j�(0) = ng and Ass(?) = f�j 0 62 dom(�)g. O�!o consists of those
functions f : O ! N? such that there is a � 2 B such that for all x 2 O� and all � 2 Ass(x),
�j� = n if and only if f(x) = n, and Ass(f) is the set of � satisfying this condition. We write
Ass(�) for the set of associates of elements of O�.

By an easy induction on �, if � 2 Ass(�) there is a unique f 2 O� with � 2 Ass(f); this f
is denoted by [�] (strictly speaking, [�] depends on the type, but there will never be ambiguity).
We write � � �0 if [�] = [�0], for �; �0 2 Ass(�).

Again, on O� one can de�ne the pointwise and stable orders: on N?, we have ? � n for all n,
and that is all for both orders; on O�!o, f �pw g i� for all x 2 O� , fx = n implies gx = n; and
f �s g i� for all x �s y 2 O� , fx = n, gx = fy = n.

We extend the notation �s to associates and say: � �s � if [�] �s [�]. In general on associates,
�s can at most be a preorder. Whether �s is re
exive or not is equivalent to whether elements of
O�!o are monotone w.r.t. �s. Associates are, of course, also ordered by inclusion, so the question
arises what the relation between these orders is. These matters will be resolved by the following
theorem.

Some more terminology: elements x; y of O� are called compatible if they have a common
upper bound w.r.t. �s. Similar for associates.

Theorem 2.1 i) If � = �!o and f 2 O� then f is monotone w.r.t. the stable order on O� .
In particular, �s is a partial order on O�;

ii) If 
 2 Ass(�) and q � 
 is �nite, there is an element ��(q) of Ass(�) with the properties:

a) q � ��(q);

b) ��(q) �s 

0 whenever 
0 2 Ass(�) and q � 
0;

c) if ��(q) �s 

0 for 
0 2 Ass(�), there is a �nite q0 � 
0 such that ��(q) �s ��(q0);

d) [��(q)] is a compact element of O� .

iii) For �; � 2 Ass(�), � � � implies � �s �, and f �s g in O� implies that for every � 2 Ass(g)
there is � 2 Ass(f) with � � �;

iv) If x; y 2 O� are compatible then their meet x^ y exists;

4



v) If � = �!o, f 2 O� , then f preserves meets of compatible elements: for x; y 2 O� compati-
ble, f(x ^ y) = n i� fx = fy = n.

Proof. The proof is somewhat involved; it is a simultaneous induction on the type �.
For � = o, the �rst part of i) is vacuous and it's clear that �s is a partial order on Oo; ii) take

�o(q) = q; the rest is left to the reader; iii) and iv) are obvious, and v) is vacuous.
Now let � = �!o.

i). If f 2 O� and x �s y in O� then since f has an associate 
 and, by the induction hypothesis of
iii), every associate � of y contains an associate � of x, fx = n, 
j� = n) 
j� = n, fy = n.
So, f is monotone and f �s f ; clearly then, �s is a partial order on O�.

ii). Let q be �nite such that q � 
 for some 
 2 Ass(�). There is a �nite set E of �nite functions
p such that p � � for some � 2 Ass(� ), and qjp is de�ned. If E = ;, we simply put ��(q) = q; in
that case it's clear that q itself is an associate of the function �x:?. Assume now that E 6= ;; let
E0 = fp1; : : : ; png � E be such that for each p 2 E there is a unique pi 2 E0 with �� (pi) �s �� (p).
For a �nite function r we put

�r = f� 2 Ass(� )j r � � and for some i; �� (pi) �s �g

De�ne � = ��(q) as follows:

�(u) =

8>>>>>>>>>><
>>>>>>>>>>:

q(u) if u 2 dom(q)
unde�ned if u is not a dialogue between � and

some �nite function r, or if �r = ;
2k + 1 if there is a 
 2 Ass(�) with q � 
; 
jr = k and

there is r0 � r and i with �� (pi) �s �� (r0)
2l for l = min(

T
�2�r

dom(� n q)) else, ifT
�2�r

dom(� n q) 6= ;
unde�ned else

First, let us remark that the case �r 6= ;;
T
�2�r

dom(� n r) = ; can only apply if �r = frg since
if q � 
 2 Ass(�), 
j� is de�ned for all � 2 �r (by induction hypothesis i), since 
jpi is de�ned,
hence 
j�� (pi) is de�ned).

A second remark is, that if 
jr = k for 
 2 Ass(�) with q � 
, and r0 � r is such that �� (pi) �s

�� (r0), we must already have that �� (pi) �s �� (r); because in that case, by induction hypothesis
ii), �� (pi) and �� (r) are compatible and 
j�� (pi) = 
j�� (r) = k; by induction hypothesis there
is an associate " of their meet, with " � �� (pi), and 
j" = k; but then, pi � " (because qjpi = k,
q � 
 and pi � �� (pi)); hence �� (pi) �s " and so, �� (pi) �s �� (r).

Therefore, �j� = k if and only if there is r � �, r �nite, and i with qjpi = k and �� (pi) �s �� (r)
(note, that in a dialogue u between 
 and r, if 
(u) = 2l and l 62 dom(r), l 2

T
�2�r

dom(� n r)
will always hold, so in a continuing dialogue between � and �, these questions will ultimately be
posed). Now if �j� = k and � � �0, there is r � � with �� (pi) �s �� (r) �s �

0 hence by induction
hypothesis there is r0 � �0 with �� (pi) �s (r0); so �j�0 = k. This proves that � 2 Ass(�).

Suppose q � 
, 
 2 Ass(�). Let x �s y 2 O� . By induction hypothesis iii) there are associates
� � � of x; y respectively. If �j� = 
j� = k let q1 � �, q2 � � �nite with �jq1 = 
jq2 = k. Since
�� (pi) �s �� (q1 [ q2) for some i, we have that �j� = k; so, � �s 
.

We still have to prove that if � �s 
 2 Ass(�), there is a �nite part r of 
 such that � �s ��(r).
For this, it is su�cient to note that for 
 2 Ass(�) the following two conditions are equivalent:

a) � �s 


b) for all i, 
j�� (pi) = qjpi, and if p is such that �� (p) is compatible with �� (pi) and 
jp = 
jpi,
then �� (pi) �s �� (p).

For a))b), that 
j�� (pi) = qjpi is clear, and if �� (p) is compatible with �� (pi), and x their meet
in O� , and �� (pi) 6�s �� (p), then x is strictly below [�� (pi)], and [�](x) is unde�ned but [
](x) is
de�ned (induction hypothesis!); contradiction with � �s 
.
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For b))a), if (using induction hypothesis) � � � are in Ass(� ) and �j� = 
j� = k, there are
�nite r1 � �, r2 � � with �jr1 = 
jr2. Then there is i with �� (pi) �s �� (r1), and �� (r1) and
�� (r2) are compatible since � � �. By b), �� (pi) �s �� (r2), so �j� = k. The other implication is
left to the reader.

Now if � �s 
 2 Ass(�) there is a �nite r � 
 such that for all i, rj�� (pi) = qjpi. Since the
second condition of b) clearly remains true if we replace 
 by something �s 
, we have � �s ��(r).

By a similar argument, left to the reader, [��(q)] is compact in O�.

iii). If �; � 2 Ass(�) with � � �, and x �s y 2 O� then by induction hypothesis every associate
� of y contains an associate � of x, hence, [�](x) = n i� �j� = n i� �j� = �j� = n i� [�](y) =
[�](x) = n; so � �s �.

Now let f �s g 2 O� and � 2 Ass(g). We de�ne � � � by stipulating that u 2 dom(�) i� the
following hold:

a) u is a dialogue between � and some �nite function q;

b) there is 
 2 Ass(� ) with q � 
 and f([
]) 6= ?;

c) if �(u) = 2k + 1 then we must have: for all 
 2 Ass(� ), if q � 
 then f([
]) = k.

Then for 
 2 Ass(� ), the implication �j
 = k ) f([
]) = k clearly follows. For the converse, if
f([
]) = k then certainly �j
 = k so �jq = k for �nite q � 
. The only way that �j
 = k can fail
to hold is that there is another 
0 2 Ass(� ) with q � 
0, and f([
0]) 6= k. Then f([
0]) = ? since
f �s g. For �� (q) from induction hypothesis ii) however, we have �j�� (q) = k because q � �� (q),
and f([�� (q)]) = ? by i), since �� (q) �s 


0. But also �� (q) �s 
, and we obtain a contradiction
with f �s g.

iv) and v) are now easy: if x; y are compatible with upper bound z, let 
 2 Ass(z) and pick
associates �; � for x; y with �; � � 
. Then � \ � is an associate of x ^ y, and such meets are
clearly respected by any f 2 O�!o.

From this theorem we shall obtain a series of corollaries, which culminates in the theorem that every
O� is a qualitative domain, and that every f 2 O�!o is a so-called stable function (theorem 2.8).

Corollary 2.2 Let � = �!o. Then to any f 2 O� an associate �f can be assigned in such a
way, that f �s g if and only if F�f �s F�g as sequential functions: B ! N?.

Proof. De�ne �f by:

�f (u) =

8>>>><
>>>>:

unde�ned if u is not a dialogue between �f and some
�nite function q, or if there is no 
 2 Ass(� ) \ Uq
for which f([
]) 6= ?;

2k + 1 if f([
]) = k for all 
 2 Ass(� ) \Uq ;
2k for k = min(

T
fdom(
 n q)j 
 2 Ass(� ) \ Uq; f([
]) 6= ?g), else

If � 2 Ass(f), u a dialogue between � and q, and p a �nite part of some 
 2 Ass(� )\Uq such that
f([
]) 6= ?, then if �(u) = 2l, either l 2 dom(p) or

l 2
\
fdom(
0 n p)j 
0 2 Ass(� ) \ Up; f([


0]) 6= ?g

Therefore, if f([
]) = k then �f j
 = k. The converse is obvious, so �f 2 Ass(f).
Now suppose f �s g in O� and � � � in B. De�nitely if �f j� = k then �g j� = �f j� = k;

conversely if �g j� = �f j� = k there are q1; q2 �nite, q1 � �, q2 � � such that f is constant k on
Ass(� ) \ Uq1 and g is constant k on Ass(� ) \ Uq2 (and the sets Ass(� ) \ Uqi are nonempty).

Then f([�� (q1 [ q2)]) = g([�� (q2)]) = k hence by f �s g, f([�� (q2)]) = k hence f is constant
on Ass(� ) \ Uq2 , hence �f j� = k.

This shows that f �s g implies F�f �s F�g as sequential functions; conversely, since for x �s y

in O� there are associates � � � of x; y respectively, we have

fy = gx = k , F�f j� = F�g j� = k, F�f j� = k , fx = k
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Corollary 2.3 O� has directed joins for all �, and they are preserved by any f 2 O�!o.

Proof. The �rst statement is a straightforward combination of the previous corollary and the
theorem that the set of sequential functions has directed joins. To see that they are respected by
f 2 O�!o, suppose I � O� directed, 
 2 Ass(

W
I), f(

W
I) = k. There is q � 
 �nite such that

f([��(q)]) = k; since [��(q)] is compact there is i 2 I with f(i) = k.

Corollary 2.4 O� has joins of bounded subsets.

Proof. Let A � O� have upper bound z with associate 
; pick for each a 2 A an associate 
a � 
.
We may assume that each 
a is only de�ned on dialogues. Then

S
(f
aj a 2 Ag) 2 Ass(�) and is

an associate of the pointwise join of A.

Corollary 2.5 If A � O� is nonempty and bounded, then
V
A exists and is preserved by any

f 2 O�!o.

Proof. That
V
A exists follows from the previous corollary. But, in the notation of that proof,T

f
aj a 2 Ag is an associate of
V
A. If �j
a = k for all a, then �j

T
a2A 
a = k. So f(

V
A) = k i�

for all a 2 A, f(a) = k.

Corollary 2.6 O� is distributive.

Proof. To show that (x _ x0) ^ y � (x ^ y) _ (x0 ^ y) (the other inequality always holds), we
may assume that x _ x0 and y are compatible (otherwise we replace y by (x _ x0) ^ y); then the
statement follows from ordinary distributivity of \ over [.

Corollary 2.7 O� has the I-property.

Proof. For � = o this is trivial, and for � = �!o, �rst since for every x 2 O�, x =
W
f[��(q)]j q �


g for any 
 2 Ass(x) and this join is directed, every compact element c of O� is less than some
��(q). For ��(q) there is a �nite set fp1; : : : png such that if ��(q)j� = k then �� (pi) �s � for
some i. So if c([�]) = k then by c �s [��(q)] we have c([�� (pi)]) = k. So c determines a subset of
fp1; : : : ; png on which it is de�ned. Hence c = ��(q0) for some q0, and there are only �nitely many
elements of O� below [��(q)].

Let us summarize:

Theorem 2.8 Every O� is a dI-domain, and every f 2 O�!o is a stable function, meaning that
it preserves directed joins and meets of nonempty bounded subsets.

Moreover, from the proof of corollary 2.7 it follows that every O� is atomic, hence a qualitative
domain. Note, that this gives another proof of corollary 2.5, since a stable function between
qualitative domains automatically preserves meets of nonempty bounded subsets.

Now we want to characterize the structure fO� j� a typeg as subcategory of the category of qual-
itative domains and stable functions. Clearly, not every stable function from O� to N? is an
element of O�!o.

Example. Let f1; f2; f3 be the partial functions:

f1(0) = 0 f1(1) = 0
f2(1) = 1 f2(2) = 0

f3(0) = 1 f3(2) = 1

Note that f1; f2; f3 are pairwise incompatible but ff1; f2; f3g is not the set of leaves of a sequential
tree. Considering f1; f2; f3 as elements of Oo!o, there is a stable function � : Oo!o ! Oo with
basis ff1; f2; f3g, but � is not an element of O(o!o)!o.

In the next section we shall see that the sequential functionals as de�ned here, are part of a
structure known in the literature, namely Ehrhard's strongly stable model([3, 4]).
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3 Sequential Functionals and Strong Stability

The de�nitions of dI-domains with coherence, strongly stable functions etc. below, are all due to
Thomas Ehrhard ([3]).

De�nition 3.1 A dI-domain with coherence is a pair D = (D; C(D)) where D is a dI-domain
and C(D) a set of �nite, nonempty subsets of D (called the coherent subsets), satisfying:

i) for every d 2 D, fdg 2 C(D);

ii) if A 2 C(D), B �nite with 8b 2 B9a 2 Ab � a and 8a 2 A9b 2 B b � a, then B 2 C(D);

iii) if E1 � D; : : : ; En � D are directed and such that for all x1 2 E1; : : : ; xn 2 En, fx1; : : : ; xng
2 C(D) then f

W
E1; : : : ;

W
Eng 2 C(D).

From this de�nition it follows immediately that the set C(D) is determined by the set of all
coherent sets of compact elements. Note also that every �nite set that has an upper bound in D,
is coherent.

De�nition 3.2 Let D = (D; C(D)) and E = (E; C(E)) be two dI-domains with coherence. A
continuous function f : D ! E is called strongly stable if for every A 2 C(D), f [A] 2 C(E) and
f(
V
A) =

V
f [A].

Note, that every strongly stable function is stable. Evidently there is a category dIC of dI-
domains with coherence and strongly stable functions, and it is a subcategory of the category
of dI-domains and stable functions. Ehrhard shows that dIC is cartesian closed: the product
D � E is (D � E); C(D � E)) where D � E is the product of dI-domains, and A � D � E is
coherent i� both its projections are coherent. The function space D)E is (D)E; C(D)C))
where D)E is the set of strongly stable functions from D to E (which is a dI-domain, with
the stable order), and ff1; : : : ; fng is coherent i� for every coherent fd1; : : :dmg � D and every
K � f1; : : : ; ng�f1; : : : ;mg such that K projects surjectively onto f1; : : : ; ng and f1; : : : ;mg, one
has that ffi(dj) j (i; j) 2 Kg is coherent in E and

^
ffi(dj) j (i; j) 2 Kg = (

n̂

i=1

fi)(
m̂

j=1

dj)

In dIC we have the object N = (N?; C(N )) where A � N? is coherent if either ? 2 A or A = fng
for some n 2 IN. Using this object N and the cartesian closedness of dIC we have an obvious
interpretation of the types of section 2. We shall show that this interpretation yields exactly the
type structure of sequential functionals from section 2.

To begin with, we have noticed in the previous section that each O� is a qualitative domain,
so a word about continuous functions between qualitative domains is in order; here I restrict to
functions O� ! N?. Every such function f has (and is conversely determined by) its trace (B; v)
where B � O� a set of compact elements b which are minimal w.r.t. the property that f(b) 6= ?,
and v : B ! IN a function. We call B the base of f . In order to check stability-like properties for
f it is the base B that matters (v being redundant), e.g.:

� f is stable if and only if b 6= b0 implies that b and b0 are incompatible, for b; b0 2 B;

� f is strongly stable i� every coherent subset of B is a singleton;

� f : O� ! N? is sequential i� the set

fp �nite j [��(p)] 2 Bg

is the set of leaves of a sequential tree.
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I leave the veri�cation of these facts to the reader.

We now turn to the dI-domainsO�. Even without knowing that the elements of O�!o are strongly
stable functions we can still de�ne a coherence on them as if they were, i.e.:

� A � N? is coherent i� ? 2 A or A = fng for some n 2 IN;

� A � O�!o is coherent i� for each coherent B � O� and each E � A�B such that �1(E) = A

and �2(E) = B, we have that ff(b) j (f; b) 2 Eg is coherent, and, for each n 2 IN, if for all
(f; b) 2 E, f(b) = n then (

V
A)(
V
B) = n.

Note that this de�nition is equivalent to Ehrhard's for function spaces. We shall prove that in
fact, O�!o is the dIC of strongly stable functions from O to N?.

First some simple remarks about associates of type (�!o)!o.

Lemma 3.3 Let 
 2 Ass((�!o)!o). Then there is 
0 � 
 with the property that for every
� 2 Ass(�!o) such that 
0j� is de�ned and every dialogue u between 
0 and �:


0(u<i) is of the form 2v where v = hv0; : : : ; vn�1i is a dialogue between � and some
� 2 Ass(� ) with �j� de�ned, and for every m < n there is j < i with 
0(u<j) = 2v<m

Proof. Since we may assume that � is only de�ned on dialogues between � and some � 2 Ass(� )
with �j� de�ned, 
(hi) must be 2v where v is such a dialogue; let 
0 �rst question � on all
subdialogues of v, etc.

So basically, what 
 2 Ass((�!o)!o) can do when confronted with a hypothetical � 2 Ass(�!o)
is: feed it some �, and see. But since 
 a priori knows nothing about � except for the arguments
at which � wants to know �, the following lemma (which formalizes this idea) should be clear:

Lemma 3.4 Let 
 2 Ass(f), f 2 O(�!o)!o and suppose fc1; : : : ; cng � Base(f). Then one of the
following three possibilities occurs:

i) n = 1;

ii) there is an x 2 O� such that ci(x) 6= ? for all i � n, but there are i; j � n with ci(x) 6= cj(x);

iii) there are �nite functions p1; : : : ; pn, pi � �i 2 Ass(� ), and associates �i of ci, with �ijpi
de�ned but no �i de�ned on a proper subfunction of pi, and a q �

Tn

i=1 pi such thatT
fdom(pi n q)j i � ng = ;.

Proof. Suppose n > 1 and assume 
 satis�es lemma 3.3. Take any �1 2 Ass(c1) and let u be
the dialogue between 
 and �1. There must be a least index i such that for some j 6= 1, for no
�01 � �1 and �j 2 Ass(cj), hu0; : : : ; uii is both a dialogue between 
 and �01, and 
 and �j . Now
pick for each j > 1 an associate �j such that the dialogue between 
 and �j starts with u<i. u<i

may contain already several �nished dialogues between the �'s and some �nite functions p, but at
point i we have 
(u<i) = 2v where v is a dialogue between some p and all �j 's. Pick for each j,
now 1 � j � n, a pj such that �j jpj is de�ned, pj � �j 2 Ass(� ), and v is a dialogue between �j
and pj. Then p �

Tn

j=1 pj.
If �1(v) = 2l then for some j, l cannot be in dom(pj) since otherwise there would be an

associate �0j � �j which also asks l at this point. So then (iii) holds. If �1(v) = 2l + 1 and (iii)

does not hold, then for all j, �j jp is de�ned but the values must be di�erent hence (ii) holds.

Theorem 3.5 For every type � we have:

i) A set fc1; : : : ; cng of compact elements of O� is coherent () n = 1 or there are p1; : : : ; pn
�nite with ci = [��(pi)], and for some q �

Tn

i=1 pi,
T
fdom(pi n q) j 1 � i � ng = ;;

ii) For a continuous function f : O� ! N? we have: f 2 O�!o () f is strongly stable.
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Proof. Induction on �. For � = o the facts are obvious; so let � = �!o. We prove i)(, ii)(,
ii)), i)).

i)(. If n = 1 then fc1; : : : ; cng is coherent by the �rst axiom of coherence. If n > 1, p1; : : : ; pn
�nite with ci = [��(pi)] and q �

Tn

i=1 pi with
T
fdom(pinq) j 1 � i � ng = ;, let fx1; : : : ; xmg be a

coherent set of compact elements of O� andK � f1; : : : ; ng�f1; : : : ;mg which projects surjectively
onto f1; : : : ; ng and f1; : : : ;mg. By induction hypothesis ii) we may assume that all elements of O�

are strongly stable functions from O� to N?; we apply induction hypothesis i) to fx1; : : : ; xmg. If
m = 1 then we must have that either some ci(x1) = ? or fc1(x1); : : : ; cn(x1)g = f[��(q)](x1)g by
the assumption on fc1; : : : ; cng. So this is coherent but also if r1; : : : ; rm �nite with xi = [�� (ri)],
and s �

Tm

j=1 rj with
T
fdom(rj n s) j 1 � j � mg = ; and pijrj is de�ned for (i; j) 2 K, we must

have that qjs is de�ned. This proves that fc1; : : : ; cng is coherent.

ii)( follows from i)( just proved: if f : O� ! N? is strongly stable then no nonempty, �nite,
non-singleton subset of Base(f) can be coherent hence fp �nite j [��(p)] 2 Base(f)g is the set of
leaves of a sequential tree, so f 2 O�!o.

ii)) Let f 2 O�!o and fc1; : : : ; cng � Base(f). Suppose n > 1. Apply lemma 3.4: if case ii)
holds then clearly fc1; : : : ; cng cannot be coherent. So suppose case iii) holds, i.e. there are �nite
functions p1; : : : ; pn, pi � �i 2 Ass(� ) and �i 2 Ass(ci) with �ijpi de�ned, and q �

Tn

i=1 pi withT
fdom(pi n q) j 1 � i � ng = ;. By induction hypothesis i) we have that the set f[�� (pi)] j 1 � i �

ng is coherent; hence if fc1; : : : ; cng were coherent we would already have that �ijq de�ned (verify
that [�� (q)] =

V
f[�� (pi)] j 1 � i � ng), which contradicts the choice of the pi. So fc1; : : : ; cng is

not coherent, hence f is strongly stable.

i)) follows from ii)) just proved: if the conclusion of i)) does not hold for fc1; : : : ; cng then
fc1; : : : ; cng � Base(f) for some f 2 O�!o which by ii)) contradicts coherence of fc1; : : : ; cng.

There is a full sub-ccc of the ccc dIC on objects which are qualitative domains and whose coherence
is generated by coherence on atoms. Ehrhard (l.c.) gives a presentation of this category in
the style of Girard's qualitative domains. He calls the objects hypercoherences. Since N? is
a hypercoherence, it turns out that in fact our whole type structure lands in the category of
hypercoherences.

4 B as a combinatory algebra

For � 2 B and x 2 IN let �x denote the partial function which sends y 2 IN to �(hx; yi) (if this is
de�ned), now h�; �i referring to some (recursive) bijection IN � IN! IN.

De�nition 4.1 Given �; � 2 B let ��� denote the partial function

�x:�xj�

Theorem 4.2 With (�)�(�) as de�ned in 4.1, B is a combinatory algebra.

I record this fact without proof. My own proof was a laborious calculation of the combinators k
and s, which is not very illuminating. Another proof could consist in showing that every recursive
operator fegF1;:::;Fn in n partial oracles is in fact of the form:

fegF1;:::;Fn (x) = y , (� � � (��F1) � � � �Fn)(x) = y

for some �. A third approach would establish a characterization of those functions F : Bn ! B
which are of form F (�1; : : : ; �n) = (� � � (���1) � � � ��n) for some �. This involves some combina-
torics with sequential trees.

Let me just make clear in what way the type structure fO� j� typeg of section 2, and hence
the corresponding part of Ehrhard's Hypercoherences, �ts into the realizability topos generated
by the combinatory algebra B (for realizability toposes consult [8, 6]). Let us call it Eff(B). An
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important subcategory (the subcategory of ::-separated objects) of Eff(B) can be described as
follows:

Let B-Set be the category with objects pairs (X;EX) where X is a set and EX : X ! P(B) a
function. A function f : X ! Y is a morphism from (X;EX) to (Y;EY ) if for some � 2 B:

8x 2 X8� 2 EX(x)��� 2 EY (f(x))

� is said to track f .
The category B-Set is cartesian closed: the function space (Y;EY )(X;EX ) may be rendered as

(Y X ; EX)Y ) where � 2 EX)Y (f) i� � tracks f .
For each type �, (O�;Ass) is an object of B-Set and it is an easy exercise to verify that

(O�!o;Ass) is isomorphic in B-Set to (N?;Ass)(O� ;Ass).
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