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We study multisoliton solutions of the Korteweg-de Vries equation in the case of a nonzero reflection coefficient. An 
explicit phase shift formula is derived that clearly displays the nature of the interaction of each soliton with the other ones 
and with the dispersive wavetrain. In particular, this formula shows that each soliton experiences in addition to the ordinary 
N-soliton phase shift an extra phase shift to the left caused by the collision with the dispersive wavetrain. 

1. Introduction. We consider the Kor t eweg-de  

Vries (KdV) equation u t - -  6uu x + Uxx x = 0 with ar- 
bitrary initial conditions u(x, O) = Uo(X ), which are 
sufficiently smooth  and decay sufficiently rapidly for 
Ix I ~ oo for the whole of  the inverse scattering method 
to work and to guarantee certain regularity properties 
of  the scattering data, to be stated further on. The 
long time behaviour of  the solution u(x, t) of  the KdV 
problem has been discussed by numerous authors. The 
general picture is, that as t ~ +~o the solution decom- 
poses into N solitons moving to the right and a disper- 
sive wavetrain moving to the left. As t ~ _oo the ar- 
rangement is reversed. The emergence of  the N soli- 
tons as t ~ +oo for rather arbitrary classes of  initial 
conditions was demonstrated rigorously in ref. [ 1 ] (see 
also the discussion in ref. [2]). Earlier - but less de- 
tailed and not widely known - results in that direc- 
tion were given in ref. [3]. Further extensions of  the 
asymptotic  analysis and improvements of  results were 
recently presented in ref. [4]. In the literature many 
at tempts  were made to calculate the phase shifts of  
the solitons as they interact both with the other soli- 
tons and with the dispersive wavetrain. Many incorrect 
results were given (cf. refs. [3,5]), until finally the 
question was settled by Ablowitz and Kodama [6], 
who presented a correct phase shift formula. 

¢' The contents of this paper were presented in the form of a 
talk and a poster at the Scott Russell Centenary Conference, 
Edinburgh, 1982. 
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In this paper we rederive this phase shift formula, 
starting from our asymptotic analysis of  the solution 
given in ref. [4]. We next show how a simple substitu- 
tion produces a more transparent formula that clearly 
displays the nature of  the interaction of  each soliton 
with the other ones and with the dispersive wavetrain. 
From our phase shift formula it is evident, that each 
soliton experiences, in addition to the ordinary N- 
soliton phase shift, an extra phase shift to the left, the 
so-called continuous phase shift, caused by the colli- 
sion with the dispersive wavetrain. Thus, the presence 
of  reflection causes a delay in the soliton motion.  

The composit ion of  this paper is as follows. In sec- 
tion 2 we briefly discuss the left and right scattering 
data associated with Uo(X ) and show how the left scat- 
tering data can be expressed in terms of  the right scat- 
tering data in a convenient way. In section 3 we recall 
a result known from ref. [4], concerning the asymp- 
totic behaviour of  u(x, t) as t -'- +oo. By a symmetry  
argument we derive from this result the asymptotic 
behaviour of  u(x, t) as t ~ _,,o. Next, in section 4, the 
two asymptotic results are combined to give the 
Ab lowi t z -Kodama  phase shift formula. The represen- 
tation of  the left normalization coefficient in terms of  
the right scattering data, which was obtained in sec- 
tion 2, then enables us to write the phase shift formula 
in a more transparent form. Finally, as an exercise, we 
calculate in section 5 the continuous phase shifts aris- 
ing from a sech 2 initial function. 
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2. Scattering data and their properties. For Im k 
/> 0 we introduce the Jost functions 6r(X, k) and 
qJQ(x, k), two special solutions of  the Schr6dinger 
equation 

d /xx+[k  2 - u 0 ( x ) ] ~ = 0 ,  _ o o < x < o o ,  (1) 

determined by 

q/r(X, k) = e - i kXR(x ,  k ) ,  

lim R ( x , k ) - - 1 ,  lim R x ( x , k ) = O ,  (2a) 
g ~ - - ~  g ~ - - ~  

%(x,  ~) : e~kx L(x, k) , 

lim" L(x, k) = 1 , lira Lx(x  , k)  = O. (2b) 
X ~ + c a  X ~ + o D  

We set 

if r_(k)  = 1 - - ~  uO(Y)R(y,  k) dy ,  
- - o o  

k E C+\{0} ,  (3a) 

,y 
r+(k) = ~ e - 2 ~ Y u o ( Y ) R ( y ,  k)  d y ,  

_ a o  

k • R \ ( 0 } ,  (3b) 

, f  l+(k) = I - ~-~ uO(Y)L(.v, k) d y ,  
- - o o  

k ~ ~+\{0}, (3c) 

1} l_ (k) = ~ e2ikYuoO,)L(y,  k) d y ,  
_ c a  

k G R\{O}. (3d) 

Note that r_(k)  = l+(k), whereas r+(k) = - l _ ( - k ) .  It 
is well known [2], that r_(k)  is analytic on C+ with 
at most finitely many zeros, all simple and on the 
imaginary axis. Let us denote them by iKm, m = 1,2,  
.... N and order 

K 1 > K 2 ~> ... > K N > 0 . (4) 

Bearing in mind that ff~(x, iKm) and ¢/r(X, iKm) are 
both real valued and square integrable, we introduce 

C r = F / @ ' i rm) d , (5a) 
--oo 

the right normalization coefficients, 

C~m = ~2(X, iKm) dx , (5b) 

the left normalization coefficients. 
Furthermore, we introduce the following quantities 

for k E R\ (0} 

a r = r 2 1 , (6a) 

the right transmission coefficient, 

a~ = I f  I , (6b) 

the left transmission coefficient, 

b r = r+r21 , (6c) 

the right reflection coefficient, 

b ~ = l_ l~- 1 , (6d) 

the left reflection coefficient. 
Assuming that Uo(X ) decays sufficiently rapidly 

(see ref. [2]) we can extend a r, a n, b r, b~ in a natural 
way to continuous functions on all of  R. We shall call 

r ) the the aggregate of  quantities {ar(k), br(k), K m, e m 
right scattering data of  the potential u 0. Similarly we 
refer to {a~(k), b~(k), K m, e~}  as the left scattering 
data associated with u 0. We claim that a n, b~ and e m 
can be expressed in terms of the right scattering data 
in the following way 

ar(k) 
ae(k) = ar (k) ,  b~(k ) -  - ar (_k)  b r ( - k ) ,  (7a) 

, Q - ( c r ) - 1 2 K m e X p ( ~  ; l ° g ( 1 - l b r ( k ) 1 2 ) d k )  

m 

N 
× I-I I Km +Kp . (7b) 

p=l K m -- Kp I 
pe  rn 

Indeed, the relations (a) are obvious. To derive (7b) 
we combine certain familiar facts from refs. [2,7]. 
Firstly, from ref. [2], p. 110 we know 

~r(X, iKm) = Otmdd~(x , i~:m) , with o~ m E R\{O}. (8) 

Hence, by (5) 

r = iamlc~m . (9) C m 

Next, by ref. [2], (4.3.18) one has 

388 



Volume I02A, number 9 PHYSICS LETTERS 11 June 1984 

dr = 1 ( ~b2(x, iKm) dx 
- ~  k=iKm iam L 

= (iam)-  1 ( C~m )  - 2.  (10) 

Eliminating a m from (9) and (10) we find 

Cmcrnddk I r ~ - -  = 1 .  ( 1 1 )  N 
I Ik=i~ m 

Lastly, from ref. [7], p. 154 we obtain the representa- m=l 
tion 

( 1  f l ° g ( l - l b r ( ~ ) 1 2 )  dco) where 
r_(k) = exp ~-~ k - co + 1 

- ~  X m = 2K m N 
X l-I k-iKp k + i r p '  I m k > O .  (12) 

p=l 

Consequently 

~ k [ k = i r m  

_ 1 ( ~ m j l ° g ( 1 - 1 b r ( k ) 1 2 )  ) 
2K m exp . . . . . .  lr k 2 + K 2 dk 

N Km _Kpl  
X p=ll"I K---~-'~p ' (13) 

p~= m 

where we have used that br(k ) = b r ( - k  ). Combining 
(11) and (13) we arrive at the desired formula (7b). 

3. Forward and backward asymptotics. Once the 
right scattering data of  Uo(X ) are known, the solution 
u(x, t) of  the forward KdV problem 

u t - -  6uu x + Uxx x = 0 ,  t > 0 ,  

u(x ,0 )  = Uo(X), (14) 

can in principle be computed by the inverse scattering 
method [2]. Concerning the asymptotic behaviour of  
the solution we have obtained the following result in 
ref. [4]: 

Lemma 1. There is an integer n + 1> 2, such that 
br(k ) is of  class C 3n÷ -4 (R)  and all derivatives b~J)(k), 
j = 0, 1 ..... 3n + - 4 satisfy 

b~n(k) = O(k-×-÷), k -,-+~o, (15) 

where X2 = 1 and ×o = 0 for p = 3, 4 . . . . .  Put 

A(p)=~ '  - 1 / 2 ( 3 p - 5 + × 0 ) ,  p = 2 , 3 ,  .... (16) 

Then for any choice o f  the constant 0 ~< 8 < A(n +) 
one has 

lim sup I u(x, t) 
t~** x;~_t 8 I 

+ - 4K2mt)l) = 0 {-2K 2 sech 2 [Km(X - X m 

(17) 

Fto l -,./=l 
tog L~ p= I \ Kp + K i n ]  1' 

(18) 

Let us now consider the backward KdV problem, 
starting from the same initial function u0(x ), i.e. 

u t - 6 u u  x + u x x  x = O ,  t < O ,  

u(x, O) = Uo(X). (19) 

Clearly, if u(x, t) satisfies (19), then w(x, t) = u(-x ,  
- t )  satisfies 

w t - 6ww x + Wxx x = 0 ,  t > 0 ,  

w(x,  o) = u o ( - x )  , (20) 

so that w(x, t) satisfies the forward KdV problem with 
initial function Uo(-X ). To solve (19) it is therefore 
sufficient to determine the right scattering data associ- 
ated with Uo(-X ) and apply the inverse scattering meth- 
od to (20). However, it is readily verified that the right 
scattering data associated with Uo(-X) are equal to the 
left scattering data associated with Uo(X), which were 
studied in the previous section. Thus, to find the 
asymptotic behaviour of the solution u(x, t) of  (19) 
for t ~ - ~  we merely apply lemma 1 to problem (20) 
and perform the transcription u(x, t) = w( -x ,  - t ) .  
This yields (in the notation introduced in lemma 1): 

Lemma 2. Assume that: There is an integer n -  /> 2 
such that b~ E C 3n- -4(R)  and all derivatives b~/)(k), 
j = 0, 1 ..... 3 n -  - 4 satisfy 

b~i)(k) = O(k -× . - ) ,  k - , -+~.  (21) 

Then for any choice of  the constant 0 ~< fi < A(n - )  
one has 
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lim sup [u(x,t) 
t~-** X,~ltl 6 J 

N 
- ~ (-2K 2 sech2[rm(X - x m - 4 r2 t ) ] ) ]  = 0 ,  

m=l (22) 

where 

_ 1 C[C~m]2mrIl(Kp-Km)21 (23) 
Xm 2rm log L 2 7 m  p=l Kp YK m " 

PHYSICS LETTERS 

m-I  
I S s ,d =Km p = l  

Note that b e and b r may be quite different in nature, 
which affects the convergence results (17) and (22). 
For instance, if u0(x ) has support on a left half-line, 
then (17) will hold for values of 6 close to ~ whereas 
(22) may only be true for 6 close to 0. 

4. An explicit phase shift formula. Let us assume 
that b r and b~ satisfy the conditions (15) and (21). 
Then the convergence results (17) and (22) display 
clearly how the solution u(x, t) of the KdV equation 
evolving from u(x, O) = Uo(X ) splits up into N solitons 
as t --* _+oo. In particular, we find for the ruth soliton 
the following phase shift 

Sm = x ~  - x;~ 

1 . [ ' [ C m C m ~  ' . (24) 
-2KmlOgL\ 2Km I p = l  ~'Krn +Kp' 

This formula was first derived by Ablowitz and Segur 
[8] for the N = 1 case and by Ablowitz and Kodama 
[6] for the N > 1 case (see also the discussion in ref. 
[91). 

It is a remarkable fact that the formulas (23) and 
(24) become more transparent if one inserts the rep- 
resentation (7b). Summarizing, this leads to 

m-I 
. 1 [-[cr] 2-] 1 [Kp -K in \  

Xm=2"~m l°gL2- -m 3 +--tOm p=l ~ l ° g t ~ ) ' ( 2 5 a )  

N [r m --Kp\ 1 rlc [21 + ±  
Xm = ~ log L 2"~--m J Km p=m+l 

1 ;  log(l --[br(k)12)dk,  (25b) 
k 2 + K 2 

S m = Sdm + S c , (26a) 

11 June 1984 

/Kp --gin 

N 
/K m - ~ p \  1 ~ l o g | _ _ - + _ _ | ,  (26b) 

gm p=m+l \Km Kp! 

1 ; log(1-  Ibr(k)l 2) 
S c = k~ * K2 m Ok. (26c) 

In Sdm we recognize the pure N-soliton phase shift 
(caused by pairwise interaction of the ruth soliton 
with the other ones). The quantity S c (which is 
negative for nonzero br) can be seen as the shift 
caused by the interaction of the ruth soliton with the 
dispersive wavetrain. Note that the phase shift S m is 
completely determined by the bound states Kp and 
the right reflection coefficient b r. For nonzero b r we 
obviously have 

0 > $7 )" S~ > ... )" S~t. (27) 

Thus, the collision with the dispersive wavetrain 
causes a delay in the motion of the solitons and the 
effect is most heavily felt by the smallest one, corre- 
sponding to ~N. Using the formula (see ref. [9]) 

f Uo(X ) dx = --7r2 log(l - [br(k) 12) dk 
--~ 0 N 

--4 ~ •p, (28) 
p = l  

we obtain for the continuous phase shift S c the fol- 
lowing estimate in terms of the initial function Uo(X ) 
and the bound states Kp: 

N 

ISCl ~< 2K 2 _ u0(x ) dx +4 p=l ~ Kp . (29) 

In estimating the size of S c one has to distinguish two 
cases, the "generic case" and the "exceptional case" 
(see refs. [7,10]). In the generic case, the Jost func- 

I 
tions ~br(X, 0) and ~bu(x, 0) are linearly independent, 
whereas in the exceptional case they are not. In the 
exceptional case one has 

B = sup [bt(k)l < 1 , 
kER 

(30) 

whence 
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ISCl ~< - (112rm)  log(1 - B 2 ) .  (31) Kp= 1 + ? , - p ,  p = l , 2  ... .  , N .  (36) 

In the generic case there is an o~ 4 :0  with 

br(k ) = - 1  + c t k + o ( k ) ,  as k ~ 0 ,  (32) 

so that in the integral defining S c the contribution of 
k -- 0 becomes important.  In particular, fixing Ibrh we 
find for K m ,1, 0 

S c ~ (1/2~: m) log(l - [b r(0)t 2) ,  (33 a) 

in the exceptional case, 

S c ~ (1/•m)log ~m , (33b) 

in the generic case. 
Clearly, in general the sizes of S c and Sam are in- 

comparable. On the other hand one can easily con- 
struct examples in which one of  the two dominates. 
For instance, consider a generic case with two bound 
states K I and K 2 = ~-K 1. 

Then, for fixed Ibrl, the discrete phase shifts Sam 
dominate for ~ 1 -* +~,  whereas the continuous phase 
shifts S c dominate for K 1 J" 0; in the ~ 1 ,1, 0 case the 
familiar picture of  a KdV soliton overtaking a smaller 
one, where the smaller one is shifted to the left and 
the larger to the right, changes, since now both are 
shifted to the left. 

5. An example: the continuous phase shifts arising 
from a sech 2 initial function. To illustrate the previous 
discussion let us compute the continuous phase shifts 
arising from the initial function 

u 0 ( x ) = - ) t  O + l ) s e c h 2 x ,  ) t > O .  (34) 

From ref. [ 11 ] we find 

r (a)  r ( b )  
ar(k) = l-'(c)l-'(a + b - c ) '  

r ( c  - a  - b ) r ( a ) r ( b )  
br (k )  = i '(c - a ) r ( c  - b ) r ( a  + b - c) ' (35a) 

with 

a = l + x - i k ,  b = - X - i k ,  c = l - i k ,  (35b) 

where I" denotes the gamma function (ref. [ 12], p. 
253). Clearly, a r is analytic on C+\{K 1, r2 ,  .--, KN) 
with simple poles at the bound states ~1, ~:2 ..... ~N- 
Here N />  1 is the unique integer such that N - 1 < X 
~< N and the Kp are given by 

Note, that Uo(X ) is reflectionless (i.e. b r =- 0) if and 
only if X = 1,2 ..... in which case N = X. For the other 
values of  X we find that br(0 ) = -1  so that we are in 
the generic case. To compute the continuous phase 
shifts S c we notice that by (35) 

l '(v)F(1 + v) v > 0 .  (37) 
r_(iv) = r ( l  + X + v)P(v - X) '  

On the other hand, by (12) 

r - ( i v ) = e x p ( - - ~ ;  l°g(!-lbr--(k)12)dk)k2 + v2 

N 
x l-I v - K p  v>O. (38) 

p=l V+Kp ' 

Equating both expressions we obtain, after repeated 
use of  the recurrence formula P(z + 1) = zl'(z), the 
following identity 

1 ;  l og ( l -{b r (k ){2  ) 
k 2 + v  2 dk 

- ! log( -p  F ( v ) F ( l + v )  ) 
(I  + v +  X -  N ) F ( v -  X + N)  

= -  log ( I + u + - X - - - ) V ~ v - - ) , + N )  ' (39) 

where B refers to the beta function (ref. [ 12], p. 258). 
Finally, combining (36) and (39), we find that the 
continuous phase shifts S c are given by 

i , [ B ( 2 - m + X , I - m + X )  N)I 
S o -  l + X - m l ° g ~ , B ( 2 - m ÷ 2 X - N , l - m +  

m = 1, 2 ..... N .  (40) 

However, to get an idea of  the magnitude o f S  e it is 
much simpler to employ the estimate (29) which gives 
us immediately 

isCl  ~ < ( X -  X)(1 + X -  A t ) (41) 
(1 + X - m) 2 

I would like to thank F. van der Blij, W. Eckhaus, 
A. van Harten and Y. Kodama for helpful conversa- 
tions. 
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