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Using a model kinetic equation the properties of very short wavelength sound modes in fluids are studied over a wide 
range of wavenumbers and densities. The main features, in particular propagation gaps at high densities, agree with those 
found in real fluids and molecular dynamics simulations. 

Using a kinetic theory for hard sphere fluids, it has 
been predicted [ 1 ] that the dynamic structure factor 
S(k,  6o) can be described as a function of frequency ~o 
in terms of  three extended hydrodynamic modes, a 
heat and two sound modes, for wavenumbers k far 
exceeding the hydrodynamic regime, i.e. for k o  >> 1, 
where cr is the diameter of  the hard spheres and ko <~ 1 
is representative of  the hydrodynamic  region [ 1 ], Such 
a description has been validated by neutron scattering 
experiments on liquid argon at a number of  pressures 
[2] as well as by molecular dynamics (MD) calcula- 
tions on dense hard sphere [3] and Lennard-Jones- 
like fluids [4] up to ko  ~ 15. A more detailed discus- 
sion of  the extended heat mode and in particular its 
relevance for the width and height of  neutron spectra 
was given recently [5]. Here we present new results 
for the extended sound modes together with results 
for those kinetic modes that are needed to understand 
the rather complicated behavior of  the sound modes 
as a function of  the number density n. 

The starting point is an approximate linear kinetic 
operator  L(k) ,  that determines the time evolution of  
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small disturbances from equilibrium as well as all the 
equilibrium time correlation functions of a hard sphere 
fluid. This, so-called, generalized Enskog operator 
L(k)  is the sum of  a free streaming, a collision and a 
mean field term 

L(k)  = - i k  "o + ng (o )A  k + nA k . (1) 

Here k is a wave vector, o the velocity, g(o)  the radial 
distribution function of  two hard spheres at contact;  
A k a binary collision term, while A k contains the static 
structure factor S(k).  For explicit expressions of  the 
operators A k and A k ,  which act on functions of  o, we 
refer to elsewhere [1,5]. L(k )  is applied through a 
spectral decomposit ion in eigenmodes, 

L(k)  = ~ I'I 'j(k, o) ) z j ( k ) (~ j (k ,  o)1, (2) 
J 

where the z / ( k )  are in general complex eigenvalues of  
L(k )  and qz/and qsj denote the corresponding right 
and left eigenfunctions respectively. The bracket no- 
tation in eq. (2) refers to the inner product  

= ( f ' h )  = Jdl~  ~o(o)f*(o)h(o), ( f [h )  
, . J  
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where the equilibrium distribution function ~p(v) = 
(/3M/2n)3/Zexp(-/3Mv2/2), with M the mass of  a hard 
sphere,/3 = (k B T ) -  1, where k B is the Boltzmann con- 
stant and T the temperature. As pointed out before, 
S(k, co) can be expressed directly in terms of  L(k) or 
in its spectral decomposition as an infinite sum of 
lorentzians 

S(k, co)= 7r-lS(k) Re([ico - L ( k ) ] - 1 )  

= r r - l s ( k )  ~ .  Aj(k )  
i ~ -  zj(k) '  (3) 

where 

A~.(k) = <~,j(k, ,,)><*;(k, o)>. 

The A/and z/(/" = +) for the sound modes appear in 
complex conjugate pairs for almost all k values. 

For the following it is relevant to remark that (a) 
the collision term ng(o)A k in eq. (1) is of  order tE 1 
for all k, depends on k only through the parameter 
ku and approaches for ko > 2n the limit ng(cr)A~, 
(b) the importance of  the - i k "  o and nA k terms in 
eq. (1) relative to the collision term is given by the 
parameter kl E and (c) nA k is in addition characterized 
by the strength of  the mean field 1 1/S(k), which 
varies on the scale ko and approaches zero when ka  
> 27r for all densities. Here t E and l E are the mean 
free time and path respectively with o/I E = (~r/2)l/2 × 
tG/t E = v ~ n n o 3 g ( a )  and t o = (/3M)l/2a/2. In addi- 
tion to L(k) we have to consider the operator [ 1 ] 
LS(k) = - i k - o  + ng(a)A=, which governs the time 
evolution of the self-correlation functions in the fluid. 
For, L(k)  tends to LS(k) for ko > 27r, since then 
A k ~ A= and A k ~ A = = 0. Therefore each eigen- 
mode of  L(k) approaches an eigenmode of  L S(k) and 
in particular each z](k) tends to one of  the eigenvalues 
z](k ) of LS(k) for kcr > 27r. For k -+ O, A k ~ 0 and the 
eigenvalues o f  L(k) and LS(k) tend to ng(a) times 
those of  the Boltzmann collision operator A 0 and the 
collision operator of  the Rayleigh model [6] Am re- 
spectively, for both of  which all eigenvalues are real, 
<~ 0 and independent of  the density, so that zj(O) and 
z/.S(0) depend on the density through ng(o), i.e. tE 1. 

The eigenmodes of  L(k) and LS(k) are determined 
by approximating A k in a Bhatnagar Cross-Krook- 
like fashion using 11 of  a complete set (~/.) of  ortho- 
normal polynomia in o, that can be labeled with the 
"quantum numbers" j  = (r, l, m). These polynomia 

are in general given by N r lvlLff+l/2)(/3Mv2 /2) YI (m) 
w (I+I/2) ' • " (U/O), here the L r are associated Laguerre poly- 

nomia with normalization constants Nr, l and the Yt m) 
are spherical harmonics with the z-axis taken in the 
k-direction. For the eigenmodes of  L(k) and LS(k), 
m is an exact quantum number that vanishes for the 
heat and sound modes. The 11 polynomials used to 
represent A k are given elsewhere, as is the method 
[1,5] to determine the six lowest eigenmodes of  L(k) 
and LS(k) with m = 0. For all k, these eigenmodes of  
L(k) and LS(k) can be divided into (extended) hy- 
drodynamic modes,with eigenvalues that go to zero 
for k ~ 0 and kinetic modes with eigenvalues that ap- 
proach non-zero negative values for k ~ 0. For LS(k), 
these are the self-diffusion mode (j  = D) and five 
kinetic modes, while for L(k) they are the heat (] = h), 
two sound (] = -+) and three kinetic modes, one of 
which is real and is connected with the heat mode, 
while the other two are complex conjugate for almost 
all k values and are connected with the sound modes. 
Results have been obtained for k up to ko = 60 and 
reduced densities Vo/V= no3/x/"2from 0.1 to 0.7 
where V 0 is the volume of  close packing of  the hard 
sphere fluid. 

We find in our calculation that of the I 1 orthonor- 
real polynomia ¢/, those most important for the lowest 
six eigenmodes of  L(k) and LS(k) with rn = 0 have 
quantum numbers (r, l) equal to (0,0); (0,1); (1,0); 
(1,1); (2,0) and (0,2) for j  = 1, ..., 6 respectively and 
are given by tp 1 = 1, ~2 =(/3M)l/2vz, ~°3 = (/3 My2 - 3)/ 
~ ,  ~o 4 = (/3M/lO)l/2vz(/3Mo 2 - 5), tp 5 = 
V'-~[(/3Mv2) 2 - 10/3Mo 2 + 15]/60 and tp6 = 

V~/3M(v 2 - 302)/6. In this connection, we note that 
for k = 0, ¢1, '" ,  ~P6 include the exact zero eigenfunc- 
tions of  L(0) (]  = 1,2,3) and LS(0) ( j  = 1). Since in 
addition to m also l is a good quantum number for 
L(0) and LS(0), the polynomia ~0/-with j = 4,5,6 and 
those with j = 2, ..., 6 represent very good approxima- 
tions to the lowest kinetic eigenfunctions of  L(0) and 
LS(0) respectively. Although for k 4: 0, l is no longer 
a good quantum number, the ~p/with j = 1, ..., 6 are 
still dominant in the six lowest eigenmodes of L(k) 
and LS(k) as long as kl E < 1. For larger values of  k, 
¢] with]  > 6 are increasingly needed for a satisfactory 
representation, however we shall still continue to use 
j = 1, ..., 6 as labels of  the eigenmodes. 

We first discuss the results for LS(k). The reduced 
eigenvalues z~(k)t E as functions of kl E are indepen- 
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Fig. 1. Reduced six lowest eigenvalues z;(k)t  E of LS(k) as 
funct ions  o f  kl E. Positive values refer to absolute values of  
imaginary parts and negative values to real parts. The diffu- 
sion mode eigenvalue z 1 (k) and ze(k) are real for all k. 

dent of  the density and shown in fig. 1, using the la- 
beling described above. For k = 0, the z/S(0)tE are: 0; 
--0.596; - -0.624;--0.899;--0.944 and -0 .961 for/' = 
1 .... 6 respectively. The eigenvalues z ] (k)  = z~(k)  and 
zS6(k) are real up to kl E = 10 at least. However, zS2(k) 
and zS3(k) are almost degenerate and real only up to 
kl E = 0.055; for larger k they become complex conju- 
gate, with the corresponding eigenfunctions approxi- 
mately given by tp2 + ~P3, at least for kl E < 1. Similarly 
zS4(k) and zSs(k) are almost degenerate, real only up to 
kl E = 0.032 and complex conjugate for larger k, with 
corresponding eigenfunctions approximately given by 
¢4  + ~5 fo r  k l  E < 1. In  gene ra l ,  fo r  k l  E > 1, t h e  z l ( k  ) 
show a linear behavior as a function of  k. 

We next discuss the results for the six lowest eigen- 
modes of  L(k), which for large k, approach correspond- 
ing modes of  LS(k). The reduced eigenvalues z/(k) t  o 
as functions of  ko are shown in fig. 2 for various re- 
duced densities Vo/V. In order to facilitate the con- 
version of  ko into kl E we place arrows in our figures 
that point to that value of ka where kl E = 1 (cf. fig. 2). 
For k = 0 and all densities the lowest eigenvalue of  

20J~ (o) ~ . (b) .... 

-20 " " -  2" 

t , j~ (e) ..j~/ 

. . . . . . . . .  i l  i 

( c )  J 
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k~ k~ k~ k~ 

Fig. 2. Reduced six lowest eigenvalues zj (k) t o of  L(k) as funct ion of  ko for reduced densities V 0 /V = 0.10(a); 0.25 (b); 0.40(c); 
0.45(d);  0.525(e);  0 .55(0 ;  0.625(g) and0 .70(h ) .  Positive values refer to absolute values o f  imaginary parts and negative values to 
real parts o f  the  sound ( / =  2,3; fat solid line) and kinetic sound (] = 4,5; solid line) mode  eigenvalues. The heat  (/' = 1 ; -  - - )  and 
kinetic heat  (./= 6; . . . .  ) mode  eigenvalues are real for all k. The arrows point  to where kl E = 1. The dash-dotted curves refer to 
imaginary parts of  the eigenvalues o f  LS(k) (cf. fig. 1). 
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L(0), zj(O) = 0 and is degenerate f o r / =  1,2,3, while 
z/(0)t  E = 0.494; -0 .505 ;  -0 .750  for/" = 4,5,6. For 
small increasing k 4 :0  and all densities, the three eigen- 
modes that develop from the threefold degenerate zero 
eigenvalue are the usual three hydrodynamic modes: 
the heat mode with eigenvalue Zh(k ) = - a E k 2  and 
the two sound modes with eigenvalues z+_(k) = +- ick - 
PE k2, where aE and PE are the Enskog values of the 
heat and sound damping coefficients respectively and 
c is the adiabatic sound velocity. For later we remark 
that z h and z_+ are continuous functions of  the den- 
sity. To these three eigenvalues correspond three eigen- 
functions that are linear combinations of  ¢1, ~°2 and 
~03, where tpl dominates the heat mode, while tp2 and 
~03 dominate the two sound modes [ 1 ]. We shall label 
for all k the extended heat mode - i.e. the hydro- 
dynamic heat mode and its continuous extension to 
larger values of  k - by 1 and correspondingly the two 
extended sound modes by 2,3. For all densities the 
eigenvalues z4(k ) and zs(k), corresponding to what 
we shall call "kinetic sound modes", are almost de- 
generate, become complex when ko exceeds approxi- 
mately 0.01, after which they are each others' com- 
plex conjugate, z 1 (k) and the eigenvalue z4(k ) of the 
"kinetic heat mode",  remain real for all k-values (cf. 
fig. 2) and approach zSl(k) and zS4(k) respectively. 

The approach of  the pairs of  complex sound mode 
eigenvalues z2, z 3 and z4, z 5 for large k to pairs o f z  s 
eigenvalues depends in a complicated way on the den- 
sity. For sufficiently large densities, Vo/V>~ 0.43, the 
pairs of  eigenvalues z2, z 3 and z4, z 5 approach the 
pairs z~, z~ and z~, z~ respectively (cf. figs. 2d-h) .  
For smaller densities 0.25 ~< Vo/V< 0.43, the pair 
z2, z 3 approaches z,], z~, while the pair z4, z 5 ap- 

s s (cf. figs 2b, c). For still lower densi- proaches z2, z 3 
ties, the general behavior is not clear, but at Vo/V = 
0.1, for instance, the pair z2, z 3 approaches a pair of  

s while kinetic modes of  LS(k) even higher than z~, z5, 
s s (cf. fig. 2a). the pair z4, z 5 again approaches z4, z 5 

As a result, although for small fixed k, the sound 
mode eigenvalues z2, z 3 are continuous functions of 
the density, for ko >1 1.67 they jump discontinously 
from values near one zS-pair to those near another z s- 
pair (compare e.g. fig. 2c with fig. 2d) as a function 
of  the density. For VO/V < 0.43, the I Ira z i I of the 
kinetic sound m o d e s / =  4,5 lie below that of  the (nor- 
real) sound modes]  = 2,3 and exhibit a minimum at 
ka ~ 6 (cf. fig. 2). Related to this complicated be- 

havior of  the sound modes for large k, there is also an 
interesting behavior as a function of  density at inter- 
mediate values of  k. In order to discuss this, we intro- 
duce the sound frequency COs(k ) = lira z2,3(k)l and 
the sound damping zs(k ) = Re z2,3(k ). While for all 
densities and small ko ~< 1, a hydrodynamic behavior 
with cos(k)= ck and zs(k ) = -PEk2  obtains, for ko > 1 
cos(k) and zs(k ) start to oscillate around the imaginary 
and real parts of those eigenvalues of  LS(k) to which 
they approach (cf. figs. 1,2). 

For Vo/V <~ 0.52 the sound modes are always propa- 
gating, i.e. cos(k) > 0 for all k, exhibiting a distinct 
Landau-like minimum around ko ~ 6 (cf. fig. 2d) that 
decreases with decreasing density. However, for 0.52 ~< 
VO/V <~ 0.54 the sound modes show a propagation gap 
around ko ~ 6 i.e. a region where cos(k) = 0 and the 
modes do not propagate. In such a region there are 
two purely damped modes with different damping 
coefficients Re z2(k ) 4= Re z3(k ) (cf. fig. 2e). For 
0.54 ~< VO/V <<, 0.69 there are two gaps around ka ~ 6 
separated by a small intermediate k-region where the 
modes propagate again (cf. fig. 2f, g), while for 0.69 
<~ Vo/V<, 0.70 a third gap appears at ko ~ 11 (cf. 
fig. 2h). We note that at Vo/V= 0.7 also the kinetic 
sound modes z4, z 6 exhibit a propagation gap at ka  ~ 6 
and that propagation gaps persist to the highest den- 
sities considered. Thus except at ko ~< 1, in the hydro- 
dynamic region, the behavior of  the sound modes as a 
function of  k is qualitatively quite different for various 
density regimes. In addition, sharp irregularities in 
z2,3(k ) appear when they are very close to z4,5(k), 
e.g. at ko = 1.67 in figs. 2c and d, to z6(k), e.g. at ko = 
10.5 in fig. 2g or to even higher modes, e.g. at ka = 6.9 
in fig. 2b. 

The appearance of  a propagation gap at high den- 
sities and around ka ~ 6 is due to the decreasing im- 
portance of  the free streaming term - i k "  o relative to 
the other two terms on the right-hand side of  eq. (1) 
for increasing densities. This can qualitatively be un- 
derstood as follows. We first note that the eigenmodes 
of  L(k) are also eigenmodes of  the infinite matrix 
Lj, l(k ) = (~; L(k )~Ol). The simplest approximation to 
Lj, I which still contains one heat and two sound modes 
is the matrix L/, l with 1 --.<j, l ~< 3. Using eq. (1) and 
re]. [1] one easily finds that L t l(k) = L1,3(k ) = 
L 3,1 (k) = 0, L 2,1 (k) = - i  kl E t~'l'(rr/8) 1/2, L 1,2 (k) = 

L2 l(k)/S(k)' L2 2(k) = - d 2  (k)tE*' L3 3(k) =1 
-~J3(k)tE and L2,3(k) = L3,2(k ) = -ijT(k)tE , with 

123 



Volume 103A, number 3 PHYSICS LETTERS 25 June 1984 

d2(k ) = 211 - ]o (ko)  + 2J2(ko)]/3 , 43(k ) = 211 - 
]0(ko)]/3 and f ( k )  = (Tr/12) 1/2 [klE + %/-~j 1 (ko)]. 
The factor klE/S(k ) in L1,2(k ) is due to the terms 
- i k "  and nA k in L(k), the factors kl E in all remain- 
ing Lj, l are due to the free streaming term - ik • i) alone 
and the constant terms and the spherical Bessel func- 
tionsJl(kO ) are due to ng(cr)A k in L(k). We then find 
that the eigenmodes of L/, l with j, 1 ~< 3 approximate 
well the heat and sound modes of  the full kinetic 
operator L(k) as long as kl E < 1, since the heat and 
sound mode eigenfunctions are dominated by ~Pl, ¢2, 
tp3 for kl E < 1. Also, we find that indeed only for 
VO/V ~ 0.52 propagation gaps in Cos(k ) appear. This 
is illustrated in fig. 3 for Vo/V = 0.70 where one ob- 
serves, in particular, the appearance of  two gaps around 
ko ~ 6, just as in fig. 2h. 

Physically the appearance and disappearance of  
propagation gaps is due to a competition between 
elasticity and dissipation in the fluid. This can be 
seen already by an even further simplification of  the 
model discussed above, i.e. by considering L£I with 
2 <~j, l ~< 3 only. Multiplying tp2 and ¢3 with a non- 
equilibrium distribution function corresponding to a 
small disturbance from ~o(v) that spatially varies as 
exp(ik" r) and integrating over o gives for the normal- 
ized amplitudes u(k, t) of the macroscopic velocity 
and e(k, t) of the macroscopic energy the coupled 
equations 

a {u(k,t)~: l_/-d2(k) i f(k) ~{u(k,t)~ (4) 
a-[~e(k, t)] t E \ if(k) -d3(k ) ] \ e (k ,  t)]" 

i m ~ A  Z j, i i , , i , i 1 , , r I ~ ' t ~ ~ / g ~ ' ~  

v ~ _ / . ~  ~ " ~  ~ " ~  ~ ~ 

- 2 0 t  J , k L , 1 - 
o I0 20 

ko- 

Fig. 3. Reduced eigenvalues z j ( k ) t  o of the matrix L: l with 
1 <~L1 ~< 3 at Vo/V  = 0.70. Positive and negative rattles refer 
to imaginary and real parts respectively of the sound ( - - )  and 
heat ( -  - )  mode eigenvalues. The arrow points to where 
kl E = 1. 

Clearly, while d2,3(k )/> 0 are damping (dissipative) 
terms, f (k )  is an elastic (restoring force) term. The 
character of the normal solutions of  eq. (4), i.e. of  
the sound modes, is determined by the eigenvalues 

z2,3(k)tE 

= ½(d2 + d3 _+ [(d2 d3)2 _ (2f)2] 1/2) (5) 

of  the matrix in eq. (4). Noting that d 2 - d 3 = 4/2(ko)/3 
while f ~  kl E + X/-2-fl (ko) one sees immediately that 
for ko "~ 1, i.e. in the hydrodynamic regime, always 
propagation occurs since then d 2 - d  3 ,~ 2 f  as/l(kO ) 

(ko) l. For ko >~ 1 the character of  z2. 3 is determined 
by the sign o fd  2 - d  3 - 2 fo r  equivalently h(ko) - klE, 
where h(ko) = (32/9701/2/2(ko) - w/2fl(kO). To de- 
termine this as a function of  density we have plotted 
in fig. 4 h(kcr) and kl E = (cr//E)-i ko as functions of 
ko. Then, when h(ko) <k l  E or oil E < 16 (i.e. Vo/V 
< 0.59), d 2 - d 3 < 2f, z2, 3 are complex and propaga- 
tion of  sound always occurs, while for o/l E ~ 16 (i.e. 
VO/V >~ 0.59) a propagation gap exists around the first 
maximum of h(ko) at ko = 5. The figure also illus- 
trates that a second gap can appear around ko = 11.6 
where h(ko) has its second maximum. Since, however, 
h(ko) <~ 0 for k -~ 0 and h(ko) -+ 0 for k -+ ~ propa- 
gation will prevail at small as well as at large k, so that 
the number of  gaps is limited. 

We note that, unlike in the case of  the heat ]node 
discussed in a previous article [5], the behavior of  
the sound modes derived from L(k) (cf. fig. 2) ap- 
pears to be very insensitive to the static structure fac- 
tor S(k). For, setting S(k) = 1 in L(k), hardly changes 

I I 

h / 1 ~ ' ~  ~ ~ 
/ / 1 t . 

- , 4  

0 5 I0 
ko- 

Fig. 4. The solid line represents h(ko) = (32/9rc)l12]2(ko) - 
x/~jl (ka) and the dashed lines kl E at Vo/V = 0.45, 0.59 and 
0.70, from top to bottom respectively, as functions o f k o .  
For kl E < h(rra) gaps are present in the sound dispersion 
curves given by eq. (5). 
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these sound dispersion curves. Furthermore,  the ap- 
proximation given by eq. (5) leads to similar disper- 
sion curves, including propagation gaps, while S(k) 
does not appear in this approximation at all. Also, the 
usual linearized Navier-Stokes  equations, which do 
contain the competi t ion between elastic and dissipa- 
tive forces but not S(k), exhibit for certain values of  
the thermodynamic and transport coefficients a sound 
dispersion curve with a propagation gap not unlike 
that sketched in fig. 3 [7]. These results would sug- 
gest that the absence of  propagation gaps in the second 
dispersion curves of  glasses [8] and regular solids [9] 
is due to the fact that,  in general, dissipative forces 
are smaller and elastic forces are at least of  the order 
of  magnitude of those in dense fluids. 

We conclude with a number of  consequences of  the 
behavior of  the sound modes on the neutron spectra 
of  fluids. (1) As discussed before [I]  the existence of  
sound modes in a hard sphere fluid can not be deduced 
simply from the existence of  visible (Brillouin-like) 
side peaks in S(k, w). In fact we find that visible side 
peaks in S(k, co) are absent for ko >~ 0.5 but that S(k, ~o) 
is still well represented by one heat and two sound 

• . . 1 

modes up to kl E ~ 1. For this region, 1 e. g ~< ko < O/lE, 
which covers at high densities most of  the neutron 
scattering region, i.e. 1 ~< ko <~ 20, a study of  w2S(k, w) 
is more appropriate to reveal properties of  the sound 
modes. For still larger values of  k, i.e. 1 ~< kl E ~ 2 all 
the six modes (i.e. three extended hydrodynamic and 
three kinetic modes) discussed here are needed to de- 
scribe S(k, w) satisfactorily. (2) The propagation gap 
predicted for the hard sphere fluid has first been ob- 
served in real fluids like liquid Ar and liquid Ne, by 
an analysis of  S(k, ~o) in terms of  three Lorentz lines 
[cf. eq. (3)] [2]. In addition they are found in MD 
simulations of  dense Lennard-Jones-like fluids [4]. 
(3) We note that for VO/V ~ 0.45, a reduced density 
that corresponds to that of  liquid helium at low tem- 
peratures, the behavior of  the sound modes of a clas- 
sical hard sphere gas and liquid He are very similar 

[ 10]. For,  both have a Landau-like sound dispersion 
curve, a nearby kinetic sound mode, which both have 
oscillating widths on the scale ko, just like in fig. 2d. 
(4) One could wonder to what extent  the appearence 
of  a propagation gap is not only unique but also uni- 
versal in dense fluids. To investigate this one might 
study whether a Landau-like dispersion curve (as in 
fig. 2d) would appear in liquid Ar at lower densities, 
or whether a propagation gap (as in fig. 2g) in the 
dispersion curve would appear in liquid helium at 
higher densities (and temperatures) than considered 
so far. (5) Since the propagation gap and the de 
Gennes minimum at high densities both occur near 
ko = 6, a sharpening in addition to a narrowing of  
S(k, ~o) as a function of  co could be expected for these 
values of  k. 
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