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We give a systematic derivation of the Fokker-Planck equation for the joint probability density of the position and the 
ray vector of rays propagating in a gyrotropic medium with random inhomogeneities. The results are a generalization of pre- 
ceding work for the case of an isotropic medium. 

In our previous publication [ 1 ] it was shown that 
the process of  ray scattering in random media can be 
regarded as approximately markovian, in which the 
role o f  time is played by the path length traversed by  
the ray. We answered the question about the F o k k e r -  
Planck equation (FPE) describing the ray dispersion 
in isotropic media with random inhomogeneities. 

In this letter we extend our preceding results to a 
random gyrotropic medium in the presence of  a con- 
stant magnetic field. The picture of  ray propagation in 
a gyrotropic medium becomes much more involved. 
We have to distinguish the ray vector S ( IS I  = 1), 
which coincides with the direction of  the time-average 
Poynting vector, from the normal vector N (INI = 1) 
perpendicular to the wave front. In the general case 
the directions o f  S and N are different [ 2 - 4 ] .  More- 
over the refractive indices/1 = ~(r ,  S )and  n = n(r,  S)  
along the directions of  S and N respectively are func- 
tions not only o f  the posit ion r but also for the direc- 
t ion of  the ray S. 

We begin our derivation of  the FPE with the Hamil- 
ton equations of  geometrical optics [2] 

dr(o) /do  = S ,  dp(o ) /da  = VrU, (1) 

where the independent variable o is the path length of  
the ray and according to ref. [2] 

p(r, S)  : n N  : u S  + VsU - S(SVsla)  . (2) 

i Permanent address: Moscow Factory-Institute attached to 
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Substituting (2) into the second equation of  (1) and 
transforming it, we rewrite the initial equations in the 
more convenient form 

dr(o) /da  : S ,  

d S ( a ) / d a  : [la SVsl~] 1 (VrU _ S(SVrlI)  

- SVr(Vsl~ ) + S[SVr(SVs t l ) ]  ) =-l~(r, S)  . (3) 

We restrict ourselves to the case 

u ( r , S ) = l a o ( r , S ) + ~ l a l ( r , S ) ,  (/.tl(r,  S ) )  = 0 , 

with sure part/~0 and zero average of  the random in- 
homogeneities. Here a is the small dimensionless param- 
eter determining the size of  the fluctuation of  the pro- 
cess under consideration. 

In what follows we make use of  the notat ion adopted 
in refs. [ 1,5]. For brevity we introduce the six-vector 
u = (r, S} and divide the r.h.s, of  (3) into the sure part 

F 0 = {S, fl0) : (S, (/.l 0 - SVs/a0) l[VrU 0 - S ( S V r I ,  to) 

- SVr(Vsl~o) + S ( S V  r (SVsN0))] ) ,  (4) 

and the fluctuating part F 1 = (0, Pt }, whose explicit  
form will be defined below. Then the system (3) can 
be rewritten in the universal form of  stochastic non- 
linear differential equations as 

du (e ) /do  = Fo(U ) + u F  1 ( u ) ,  ( F l (u)  ) = O. 
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Applying a simple device for reducing the nonlin- 
ear problem to the linear case developed in ref. [5] 
one can obtain the stochastic Liouville equation for 
the probability density P(u,  o) = P(r,  S, o) that, after 
having propagated over a distance a, the ray has ar- 
rived in the point r with direction S 

aP(u,  0)/30 = - V [ F 0  (u) + ~F 1 (u)]P(u,  o ) .  (5) 

Here V is used for the operator that differentiates 
everything that comes after it with respect to u. 

Following ref. [5] we expand the r.h.s, of  (5) in 
successive powers of  a new dimensionless parameter 
6r c "~ 1, where e = max@l, 62) , 

61 = a (#  0 -- SVfl,/0)-i Vr/l 1 , 

62 = Or(/20 -- SVs/-t0) -1 Vr(SVs/.tl) , (6) 

and r c is the spatial correlation radius of  the inhomo- 
geneities in question. Disregarding in the expansion 
terms of order e 3 we obtain 

313rF a = 313ri,  313SF a = 313S i + oalar  i 

( i= 1,2, 3) .  (9) 

It should be stressed that the different directions 
of  S inside the inhomogeneities define the different un- 
perturbed paths. Hence we do not ignore the deviation 
of  the actual ray from the unperturbed one and we 
have no restrictions with regard to the angle of  scatter- 
ing. 

Bearing in mind (9) one can transform (7) into the 
usual form of the FPE (sum convention applied) 

3P(u,  o) _ 3 
aa 3~ { [F°v(u) + G(u)] } P("' o) 

32 
+ 21 3u__~_uu.{C~u(u)P(u ' o)} 

0 ' , # - -  1 ,2 ..... 6 ) ,  (10) 

where Fov(U ) is given by (4) and the coefficients in the 
diffusion and convection terms are 

3e(u, o)_ v t [-F° (~) 
3o 

+ o~ 2 f d (u - ° )  

0 

d(u) \ u x <FI(u)V_oFI(. o)>  do)e(, o). (7) 

The six-vector u - a  is defined for fixed o by means 
of  a mapping from the initial u(0) into u(o)  with in- 
verse (u°)  - °  = u. The operator V_ o denotes differen- 
tiation with respect to u - ° .  The first and the last terms 
in the integrand (7) are the jacobian determinants of  
the mapping. To determine this mapping one should 
solve the unperturbed equations (3), whose solution 
is a very complicated problem in the general case. 

To proceed further we introduce the new limita- 
tions 

rc(/X 0 - -Sg , /a0) - i  Vr/a 0 "~ 1 , 

re(/10 - SV,/~0)-I Vr(SVflaO) ~ 1 . (8) 

Physically this means that we consider the unper- 
turbed trajectories inside the inhomogeneities as 
straight lines. Under the conditions (8) one can obtain 
for o G r  c 

u - ° =  {r -oS,  S), 

d ( u - a ) / d ( u )  = d(u)/d(u - ° )  = 1 , 

7 
Cvu(u ) = 2 J ( F l v ( U ) F l u ( U - °  , a)) da , 

0 

Cu(u) = ( [ 3 F l u ( U ) / 3 u u ] F l u ( U - ° ,  a)) d o .  (11) 
0 

Here the explicit form of the six-vectors F 1 = {0, P l )  
and F 1 = ( dill, II 1 } can be defined with the use of  
(3), (8) and (9) by 

Pl = (/'tO -- SVsb~0) -1 {VrUl - S ( S V r l l l )  - SVr(VsUl) 

+ S [SVr(SVsla 1 )1 }.  (12) 

According to ref. [5] the basic assumption of  our der- 
ivation is 

<Flv(U)Flu(U-° ,  o ) > ~ 0  for o >  r c , 

and similary for higher cumulants. 
Taking into account (4), our main result (10) in the 

original representation is 

- ~ i  { [F0 ,i+ 3 + Ci+ 3 ] P) 

+ 1  3 2 1 3 2 
2 ~ (Ci+3'~P} -t 2 a s p s j  (C/+3,]+3P} 

(i, j --- 1, 2, 3 ) .  (13) 
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In an isotropic medium, when S = N and the refrac- 
tive index depends only on the position of  the ray, i.e. 
# = n = n(r), the expressions (4) and (12) reduce to 

F 0 = (N, n 6 1 [Vrn 0 _ U(NVrno)  ] }, 

31 = n~- 1 [Vrn 1 _ N(NVrn 1 )] . (14) 

Substituting (14) into (11) we come to the conclu- 
sion that the equations (10) and (13) coincide with 
analogous ones obtained in ref. [1]. 

We evaluate the condit ion for the applicabili ty of  
the FPE by analogy with ref. [ 1 ]. Defining the scale on 
which u varies by ~ = e -1 (6) we subdivide the path 
length in intervals Act such that  

z~L >>Aa >>r e. (15) 

These inequalities permit us to consider the process 
of  ray scattering as (approximately)  markovian on the 
coarse-grained level determined by Act [1,5]. 

The application of  the FPE (10) in a random gyro- 
tropic medium is justified under the conditions (8) 
and (15). If  the sure part of  the refractive index does 
not depend on the position of  the ray, it is sufficient 
to bear in mind condit ion (15) alone. 

In some applications of  ray propagation in a gyro- 
tropic medium one can be interested in the FPE for 
the probabil i ty density P(r, N, o) instead of  the 
P(r, S, o) considered. The solution of  this problem 
will be given in ref. [6]. 

The author is indebted to Professor N.G. van Kampen 
for stimulating discussion and helpful comments on 
the manuscript. 
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