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We consider a trapped unbalanced Fermi gas at nonzero temperatures where the superfluid Sarma phase
is stable. We determine, in particular, the phase boundaries between the superfluid, normal, and phase-
separated regions of the trapped unbalanced Fermi mixture. We show that the physics of the Sarma phase
is sufficient to understand the recent observations of Zwierlein et al. [Science 311, 492 (2006); Nature
(London) 442, 54 (2006)] and indicate how the apparent contradictions between this experiment and the
experiment of Partridge et al. [Science 311, 503 (2006)] may be resolved.
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Introduction.—In the past two years, impressive experi-
mental progress has been made in the field of ultracold
Fermi gases, in part due to the possibility to tune the
interatomic interaction strength by means of a Feshbach
resonance. This has led to the study of the crossover
between the Bose-Einstein condensation of diatomic mole-
cules and the Bose-Einstein condensation of atomic
Cooper pairs, the so-called BEC-BCS crossover [1–3].
Most recently, two experimental groups have gone even a
step further by obtaining also full control over the polar-
ization of the Fermi mixture. This has allowed for the study
of degenerate Fermi gases with imbalanced spin popula-
tions, which is a topic of great interest in many areas of
physics ranging from condensed-matter physics to nuclear
and astroparticle physics. These pioneering experiments by
Zwierlein et al. [4,5] and Partridge et al. [6] induced a
flurry of theoretical activity [7–21].

The 6Li experiments of Zwierlein et al. and Partridge
et al. both revealed that superfluidity in an ultracold Fermi
gas is maintained upon going to an unequal mixture of two
spin states. However, rather contradictory results are ob-
tained by both experimental groups for the behavior of the
Fermi mixture as a function of the population imbalance.
Zwierlein et al. observe a phase transition between the
superfluid phase and the normal phase at a high critical
polarization of about 70%, whereas Partridge et al. seem to
observe a transition between two different superfluid
phases at a low critical polarization of about 10%. One
important aim of the present Letter is, therefore, to propose
a single theoretical picture in which the qualitative differ-
ences in the observations by the two experimental groups
can be understood as two different sides of the same coin.
Based on this picture, we also make a detailed quantitative
comparison with the experiments of Zwierlein et al.

The main results of our mean-field calculations are
presented in Fig. 1. Here we show the universal phase
diagram of a trapped Fermi gas in the unitarity limit as a
function of temperature and polarization. This phase dia-
gram is universal in the sense that it does not depend on the
total number of fermions or the trap geometry. Note that in
determining the phase diagram we have neglected fluctua-

tions, which are known to be quantitatively important in
the unitarity limit. However, fluctuations are not expected
to alter the topology of the phase diagram in this case.
Figure 1 reveals that there is a tricritical point in the
trapped Fermi mixture, which is well known for the homo-
geneous case [20,22,23] but has, to the best of our knowl-
edge, not been studied yet for the harmonically trapped
situation. In the normal phase, the gas is in its normal state
throughout the trap. In the Sarma phase, the Fermi gas has
a shell structure, in which the core of the trapped gas is
superfluid, whereas the outer region is normal. Further-
more, the normal-to-superfluid transition as a function of
the position in the trap is of second order. Since the
superfluid order parameter � vanishes continuously at
the transition, we have for nonzero polarizations always a
region in the trap where j�j is so small that it results in a
gapless superfluid with negative quasiparticle excitation

 

FIG. 1. Universal phase diagram of a trapped unbalanced
Fermi gas in the unitarity limit. The polarization P is given by
�N� � N��=�N� � N��, where N� designates the number of
fermions in each hyperfine state of the Fermi mixture. The
temperature T is scaled with the critical temperature Tc of the
balanced Fermi gas. The solid horizontal line gives the tempera-
ture that is used for the comparison with the experiments of
Zwierlein et al. presented in Figs. 2 and 3. The points a, b, and c
correspond to the polarizations used in the density profiles of
Figs. 2(a)–2(c).
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energies, as first studied by Sarma [22]. Since j�j increases
towards the center of the trap, it is also possible for small
polarizations and low temperatures that the superfluid be-
comes gapped in the center of the trap. This leads to a
gapped BCS superfluid core with a gapless Sarma super-
fluid and normal shell surrounding it [24]. Finally, in the
phase-separated region of the phase diagram, the superfluid
core and the normal shell of the gas are separated by a first-
order transition as a function of position, which implies
that � goes discontinuously to zero at a certain equipoten-
tial surface in the trap.

Figure 1 allows for a natural explanation of the qualita-
tive differences in the observations by the two experimen-
tal groups. More precisely, we will argue in the second part
of this Letter that the experiments of Zwierlein et al. have
observed the transition from the normal phase to the Sarma
phase, implying that these experiments have been per-
formed above the temperature of the tricritical point.
Moreover, we suggest that the experiments of Partridge
et al. have been performed in the temperature regime
below the tricritical point, since these experiments appear
to see the transition between a non-phase-separated and a
phase-separated superfluid phase. Note that this explana-
tion is fundamentally different from the proposal of
Machida et al., who obtain a different phase diagram by
considering the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase, which has a spatially varying superfluid order pa-
rameter, rather than phase separation [16]. As a result, they
obtain a Lifshitz point instead of a tricritical point. They
argue that both experimental groups operate beneath this
Lifshitz point, making it difficult to explain the qualitative
differences observed by both groups. Moreover, there is
presently no experimental indication for the presence of
the FFLO phase. Finally, we stress that the local-density
approximation that was used to obtain the phase diagram in
Fig. 1 is not sufficiently accurate to describe all aspects of
the experiments of Partridge et al. [12,13,15]. For this
reason, we consider here from now on only the experiment
of Zwierlein et al., where a quantitative comparison with
our theory turns out to be possible.

Universal phase diagram.—To obtain the phase diagram
in Fig. 1, we use the mean-field theory for the Sarma phase
in the local-density approximation as described by
Houbiers et al. [25]. There the mean-field theory was
applied to superfluid 6Li in the BCS limit. Here we incor-
porated the relevant physics of the unitarity limit by using a
generalization of the approach put forward by Fregoso and
Baym [26]. As a result, we end up with the following
thermodynamic potential:
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where the atomic dispersion is �k � @
2k2=2m, with m

the fermionic mass, � is the BCS order parameter,
� � � denotes the two hyperfine states of the Fermi mix-
ture, N� is the number of atoms in each hyperfine state,
and � � 1=kBT. Moreover, the average renormalized
chemical potential �0 is given by �0 � ��0� ��0��=2,
and the dispersions @!k;� of the Bogoliubov quasiparticles
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where V is the volume of the mixture and N�@!k;�� �
1=�exp��@!k;�� � 1� are the Fermi distributions for the
Bogoliubov quasiparticles. The BCS coherence factors
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2 and jvkj
2 are determined by the relations jukj

2 �
�1� ��k ��0�=@!k�=2 and jukj

2 � jvkj
2 � 1.

The renormalized chemical potentials are given by
�0� � �� � @��, where �� are the chemical potentials
and the self-energies are approximated at unitarity by

 @�� �
3�2

@
2

m
��� �BCS�

��������������������������
@

2

m
1� �BCS

2�0

s
n��: (3)

This expression can be understood as follows. Since the
average kinetic energy of the atoms involved in the inter-
action is given by 2�0, the effective interaction strength
between the atoms is expected to be proportional to
1=

��������
2�0

p
[26]. To understand also the proportionality con-

stant, we make use of the fact that, in the case of equal
density and at zero temperature, Eq. (2) results in �0� �
�1� �BCS��F, where we introduced the Fermi energy �F
of a balanced Fermi gas, and we also recall that in the BCS
theory �BCS ’ �0:48 [13]. Substituting this result for �0�
into Eq. (3), we obtain for the chemical potential �� �
�0� � @�� � �1� ���F, which agrees with the exact re-
sult from Monte Carlo calculations for � ’ �0:59 [27,28].

Taking the derivative of the thermodynamic potential
with respect to �	 and equating it to zero gives us the BCS
gap equation
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Note that in deriving this gap equation we did not differ-
entiate the last term in the right-hand side of Eq. (1).
Differentiating also this term results in fluctuation correc-
tions to the mean-field theory, on which we comment at the
end of this Letter.

The above theory is valid for a homogenous Fermi
mixture in the unitarity limit. To account for the presence
of an axially symmetric trapping potential V�x� �
m�!?r2 �!zz2�=2, we use the local-density approxima-
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tion. This means that the theory is locally homogeneous
with a spatially varying chemical potential. As a result, the
local renormalized chemical potential is given by�0��x� �
�� � V�x� � @���x�. For a balanced Fermi gas at zero
temperature, we thus have �� � V�x� � �1� ���F�x�,
and therefore we retrieve, as desired, the exact density
profile in this case. Note that in the outer region of the
gas cloud the renormalized chemical potentials become
negative, so that 2�0�x� in Eq. (3) is no longer a good
measure for the average kinetic energy of the interacting
fermions. Therefore, we then take 3kBT instead of 2�0 as
an appropriate measure for the kinetic energy.

We are now in the position to explain how we obtain the
phase diagram in Fig. 1. We first determine the line be-
tween the normal and the two superfluid phases. This is
achieved by solving the BCS gap equation in the center of
the trap and finding the temperature at which the BCS
order parameter vanishes. Inspection of the thermody-
namic potential reveals that the vanishing of the order
parameter can occur continuously or discontinuously, i.e.,
by a second-order or a first-order phase transition. If the
transition is of first (second) order, we go from the normal
to the phase-separated (Sarma) phase. At the tricritical
point, these two different kinds of transitions merge.

So far, we looked only at the center of the trap, but the
tricritical condition can also be satisfied at a certain equi-
potential surface outside the center of the trap. This gives
us a point on the Sarma-to-phase-separation line. To see
this, consider a point on this line and raise the temperature
slightly. This changes the tricritical transition outside the
center of the trap into a second-order transition slightly
closer to the center of the trap, which means that the gas is
in the Sarma phase. In a similar way, a slightly lower
temperature leads to a first-order transition as a function
of position in the trap, i.e., to the phase-separated phase.

Comparison with experiment.—We now compare our
theory with the experiments of Zwierlein et al. First, we
show in Fig. 2 three typical density profiles of the gas: two
in the superfluid Sarma phase and one in the normal phase.

Using different methods, similar density profiles have re-
cently also been obtained by Yi and Duan [11] and Chien
et al. [19]. The most striking feature in the density profiles
is the ‘‘bulge’’ in the minority and majority profiles in the
Sarma phase. This bulge is a direct consequence of the
presence of the condensate of Cooper pairs and was indeed
one of the most important findings of the experiment. It
shows that for an unbalanced unitarity gas, in contrast to an
unbalanced Fermi gas in the BCS limit [25], the conden-
sate of Cooper pairs has a very strong effect on the atomic
density profiles. In the normal phase, the attractive effects
of the self-energies given in Eq. (3) also slightly increase
the central densities of the two species. However, this
occurs always in a smooth featureless manner, whereas
in the experiments of Zwierlein et al. a distinct feature is
seen in the majority density profile at the edge of the
minority cloud. This may be due to the fact that our
mean-field-like self-energies are intended to exactly incor-
porate the � parameter of the balanced unitarity gas but
only approximately account for the strong correlations in
the normal phase of the unbalanced unitarity gas. Another
explanation could be that in the experiment the density
profiles are determined after an expansion. This affects, in
particular, the majority density profile, since the outside of
the majority cloud expands ballistically, whereas the inner
part inside the minority cloud expands hydrodynamically
and thus faster than the outer part. The expansion is there-
fore not determined by a single scale factor, and this may
lead to a pileup of atoms in the transition region.

Besides the above qualitative comparison, we can also
make a quantitative comparison with the experiment of
Zwierlein et al. by determining the radial size of the
Cooper-pair condensate and the radial sizes of the minority
and majority gas clouds. The radial size of the Cooper-pair
condensate follows directly from the point where ��x� �
0, but the determination of the minority and majority radii
is somewhat more complicated, because we are working at
a nonzero temperature and the density profiles always have
a Gaussian tail. For simplicity, we determine these radial
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FIG. 2. Typical density profiles for trapped unbalanced Fermi gas above the tricritical point. The axial and radial directions of the
trap are scaled in such a manner that the trap becomes effectively isotropic with a frequency! � �!2

?!z�
1=3 and a size l � �@=m!�1=2.

The temperature and the polarizations used for the three panels are indicated in Fig. 1. The total number of atoms is N � 1:4
 107.
The dashed lines in (c) show the ideal gas results.

PRL 97, 210402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 NOVEMBER 2006

210402-3



sizes by the conditions �0��x� � 0, which give the correct
results at T � 0 but underestimate the radial size of the
density profiles at nonzero temperatures. The results of this
procedure together with the experimental data are shown in
Fig. 3. In general, the agreement with experiment is very
good, which confirms our picture that the experiment is
operating above the tricritical point. As expected, at small
polarizations the radial size of the majority cloud agrees
best with the experimental data obtained by assuming a
hydrodynamic expansion, whereas for large polarizations
our results approach the experimental data obtained by
assuming a ballistic expansion.

Discussion.—The main remaining problem of our the-
ory is the high absolute value of the temperatures above the
tricritical point. The calculated temperatures are typically a
factor of 5 higher than what is found in the experiments. An
important consequence of the high temperature is that at
the Sarma-to-normal transition the densities of the two
spin states are not equal in the center of the trap, in contrast
to what is found in experiments. The high absolute value
of the temperature is the result of neglecting fluctuations
that substantially shift down the tricritical temperature.
Including fluctuations in the case of a balanced Fermi
gas reduces the critical temperature in the unitarity limit
by a factor of 3, and fluctuations are expected to be even
more important in the unbalanced case. One reason for the
latter is that the Sarma phase is a gapless superfluid,
whereas the BCS phase at P � 0 has a gap. However,
theoretically, the study of fluctuation effects is rather chal-
lenging for an unbalanced Fermi mixture at unitarity, since
the usual Nozières–Schmitt-Rink approach [3] has some
unphysical features in this case [20]. Therefore, we are

developing a more advanced theory including fluctuations.
This will determine the location of the tricritical point
more accurately but, as mentioned previously, is not ex-
pected to alter the topology of the phase diagram.
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FIG. 3 (color online). The radial size R of the Cooper-pair
condensate (solid line), and the minority (dashed line) and
majority (dotted-dashed line) gas clouds as a function of polar-
ization for the temperature shown in Fig. 1. All radial sizes are
scaled with the radial Thomas-Fermi radius of the balanced
Fermi gas RTF. Also shown are the experimental data of
Zwierlein et al. [5]. For the radial size of the majority cloud,
the black points assume a hydrodynamic expansion, whereas the
gray points assume a ballistic expansion.
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