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PROGRAM SUMMARY

Title of program: CLMINT
Catalogue number: ACCM

Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this issue)

Computer: Burroughs 7700 at Eindhoven University of Tech-
nology, Eindhoven, The Netherlands; CDC 175 /100 at Utrecht
University, Utrecht, The Netherlands

Programming language used: FORTRAN 77

Operating system: MCP (Burroughs); NOS/BE (CDC)
Peripherals used: line printer, card reader

No. of lines in the combined program and test deck: 1544
No. of bits in a word: 52 (Burroughs); 60 (CDC)

Keywords: atomic, nuclear, heavy ions, scattering, matrix ele-
ments, inelastic collisions, WKB method, Coulomb wave func-
tion

Nature of the physical problem

Solution of the radial Schridinger equation for inelastic colli-
sions between charged particles requires matrix elements of
electric multipole operators in the region of large r values.
These matrix elements are in general integrals over a finite
interval [R,, R,] of a product of Coulomb wave functions and
a factor r~*~1 [1,2). Especially in the case of heavy ion
collisions at high energy, these are very cumbersome integrals
because the integrand is a rapidly oscillating function with a

wavelength much smaller than the integration interval. When
we choose R, = oo, the convergence of the integral is very slow.

Method of solution

If we split up the integrand into a rapidly and slowly varying
function of the integration variable r, it is possible to construct
an asymptotic series for the integral with the fast oscillating
integrand. The remaining integral is easily obtained by Gaus-
sian quadrature. Because we are integrating over large r values
(compared to the classical turning points), it is possible to use
the familiar WKB-approximation of Coulomb wave functions
in the step-by-step integration. The subroutine has been set up
to achieve a relative accuracy of 10~7.

Restriction on the complexity of the problem

The subroutine has only been tested for significant /, n and &
values i.e. 0 </ <2000, 0 <% <1000, 0 < k <50. The interval
[R,, R,] can be any part of [0, c0). When R; does not exceed
the lowest turning point (especially R, = 0), only the integrals
with the regular Coulomb wave functions F;(7, p) are reliable.
Furthermore the case A = 0 is not included.

Typical running time

The running time depends strongly on the parameters and the
lower limit R;. When R, lies in the asymptotic region, as in
practical applications, the running time will in general be a
fraction of a second but for smaller R, values it increases rather
rapidly.
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LONG WRITE-UP

1. Introduction

In the description of inelastic atomic and nuclear scattering of charged particles, the radial Schréodinger
equation can be written as a set of coupled integral equations. The partial wave radial functions are
decomposed into two linearly independent homogeneous solutions of the differential equations, with more
or less slowly varying amplitudes [1]. In the integration region of large r values, only the multiple Coulomb
interaction will survive and the homogeneous solutions can be written in terms of Coulomb wave functions.
In solving the integral equations on an interval [ R, R,] in this region, only radial matrix elements with the
general form

1,<,N— X(n,kr)Y(n kr) S (1)

occur. Here X,(n, kr) and Y,.(7, k'r) denote Coulomb wave functions and A corresponds to the electric
multipole moment. The quantum numbers of orbital angular momenta / and /” refer to the entrance and
exist channels, respectively. A similar convention applies to the wave number of relative motion k and to
the Sommerfeld parameter 7. The integrals are also of interest in DWBA calculations where R, =0 and
R, = o0 [2].
In the next sections we consider the integrals (1) with the following limitations on the parameters,
7,7, k, k’ real and positive,
L not negative integer, 2)
A positive integer,
[R,, R,] partof [0, ).

The Coulomb wave function X;(7, kr) is a solution of the differential equation

2
d_+l_2_n_1(1+1)
dp2 P 2

X,(n,p)=0, (3)

where p = kr. Since there are only two linearly independent solutions, it is sufficient to evaluate the
integrals only for the standard real-valued Coulomb wave functions F,(n, p) and G,(, p). They behave
asymptotically as [3]

E(n.p) ~ sin(p — 1 log(2p) +0,(n) ~In/2), G/(n,p) ol cos(p — 7 log(2p) +0,(n) — In/2),
(4)
where the Coulomb phase shift is given by
o(n)=arg ['(/+1+iq). (5)
Eq. (3) has a turning point r;, according to
krp=m+ \/7'—2"'—1(“'—1) , (6)

and also r; for the primed parameters in (1). These turning points separate two regions of interest. The
behaviour of the Coulomb wave function is monotonic at r < r;. but oscillatory at r > r.
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We are mainly interested in the asymptotic region r, < r < oo, where r, is considerably greater than both
the turning points. In this region the integrals are hard to evaluate by standard numerical integration
procedures for several reasons.

1) The Coulomb wave functions are calculated by Ricatti expansion or by a continued fraction, both at
/=0, after which the actual F,(n, p), G,(9, p) and derivatives are obtained by recursion [4,5]. These
routines are rather time consuming when applied to evaluate the integrals I/} by numerical quadrature.

2) In many scattering cases, for instance nuclear collisions with medium weight and heavy ions, the
integrand of (1) is oscillatory while the integration has to be performed over several hundred or even
many thousands of wavelengths and so a step-by-step integration method is practically not feasible.

3) The integral over the last interval, where R, = o0, is extremely slowly convergent.

The fundamental concept for the solution of these problems is the elimination of the short wavelength part
of the integrand in the asymptotic region by asymptotic expansion of I}, according to Bellings method
[6]. Some other subjects (WKB method, Gaussian quadrature) have to be investigated to make it possible to
construct a subroutine, which is able to calculate the integrals (1) in the general case (2).

It is well known that Coulomb wave functions with different / values are connected by several recursion
relations. This of course implies recursion relations between integrals I} with different /, /’ and A values
[7-9). The-utility of the subroutine CLMINT is to generate the initial values for a recursion scheme. In the
case R, =0, R, = oo, the integrals I}’ can be expressed in elementary functions which are much easier to
obtain by other methods [7,10].

2. WKB-approximation of Coulomb wave functions

In this section we discuss the approximation of Coulomb wave functions by WKB functions in the
asymptotic region [11-15]. The accuracy of the common first order WKB solution is not sufficient for our
purposes, so we have to investigate a more general iteration scheme.

The regular and irregular Coulomb wave functions F;(1, p), G,(n, p) satisfy the differential equation

(d—2+k(p)2)u(p)=0, k(P)=\ﬁ—27n—£(l:Tl)’ (7)

dp?

and behave asymptotically as (4). We consider the solutions at p < p < oo where the runing point p is
defined by

pr=n+yp+I(I+1). (8)

Introducing the phase—amplitude representation

u =a(1,n) sin = d 9
(e) 0] #(p), ¢(p) f&(p) P, &)

in eq. (7), yields a differential equation for the amplitude £(p).

s(p)2=k<p)2+s(p)‘”§%s(p)“”. (10)

A solution of (10) leads to a Coulomb wave function, but the correct choice of a(/, ), and the integration
constant in the phase ¢(p), must ensure that this solution coincides with F,(n, p) or G,(n, p).
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Now we presuppose the WKB approximation
d? -
6(e)" " 3 8() ™= ko’ (11)

which can be shown to be equivalent to the statement that the change of £(p) over one wavelength
2@ /k(p) is much smaller than §(p) itself. Assuming this, eq. (10) may be solved by iteration,

2
&) =1, £n(p)=\/k(p)2+£n_1(p)1/2d—dp;$n_1(p)”/2, n=1,2,.... (12)

From eq. (7) it is clear that k(p) =1+ O(p~ ') for large p, so £,(p)=1+ O(p ) for every n. Substituting
this in (9) and comparing the result with the asymptotic expansion (4), gives us the only possible choice of
a(l, n) = 1. Furthermore we see that k(p{) =0, so condition (11) might only hold for p > p. For large p,
the left side of (11) vanishes, while the right side approaches one, so the best fit will be obtained in this
region.

The only possible distinction between the approximation of F,(n, p) and G,(7, p) is the integration
constant in the phase of (9), but from (4) we see that they must differ by m/2. We choose the
approximation of F,(7, p) and G,(7, p) to be

() =4,(0) 7 sing,(p), g(n,p)=£,(p) """ cos ¢,(p), (13)
where '
8.(p) = [£,(p)dp (14)

and the integration constant is determined by the condition

¢n(p)p~wp—nlog(2p)+01(n)—l'rr/2- (15)

—

The first order WKB solutions are immediately found:

él(P)=k(p)=%\/pz—2np—l(1+ 1),

¢:1(p) = [k(p)dp=1(p) =mlog(p —n +1(p)) +n +0,(n) ~In/2

no+1(/+1) — arctan| — 32—
+yI(1+1) {arctan(—————T(p)m) arcta (\/I(T*-T))}, (16)

where we used the abbreviation
m(p)=pk(p) (17)

and the term in curly brackets will be defined to vanish for /= 0. The second order WKB solutions are
somewhat more complicated. From (12) we have

d2

k(p) 4 0(p70).  (18)
-dp

£,(p)= k(p)\/l + k(p)‘“;—;k(p)“” =k(p)+1k(p)” "
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The next iteration, £;(p), leads to @(p~°) corrections to £,(p) so we can omit &(p~°) in (18). Substituting
the expression for k(p) yields the second order approximation for the amplitude:

1 3(1+1) 5 [gp+ i+ D]?
£(p)=&(p) +— 3{211+ ( )+3 : : (19)
47(p) P p7(p)
The phase ¢,(p) is obtained by integrating (18):
_ 1 2 @y
$:(p) =8:1(p) +5 [k(p) g (e) " ae
=¢,( )_lw_l _d_k( )“1/2 2d (20)
1 p 4 T(p)3 2 dp Y P,
where the last step is a partial integration. The integral in (20) is evaluated as follows:
d ~=12]? 1 (oo + 1(1+ 1)]?
f[ dpk(p) ] dp= 4f o dp
_Yarpdp 1 de 1, 2(dp
=75 +omi(1+1) f Rt prS
1 i) 'r—p}
-+ 1+ — 1=0),
el (1=9
_mp+I(I+1) 7 {n—p+1}+i
= 127° 2(p+1(+1)) 7 4r
—+ arctan EL-I—(-H—U —arctan(—n—) (/#0)
4/1(1+1) 11+ 1) 11+ 1) '
(21)

where the integration constant is chosen in such a way that this integral vanishes for p — co. Substituting

this result in (2) gives the final expression for ¢,(p):

3
2p

_”2"} (1=0),

n

1 T—p
'r—'r[log(p—n+'r)+n+oo('n)+127{1+ ——
1
—r—-nlog(p—n+'r)+11+o,(n)—l‘rr/2—a—

é,(p) = _np+[(l+l){ _ 72 }
2413 112+l(1+1)

— 1 no+I1({+1)

+{yl(l+1) + ——— ) { arctan| ———

{H ) 8\/1(1_+1)}_{ (n/l(l+l)

From eq. (13) we have

F1(n, ) + 88 (m, 0)’ = 1/£,(p)

24(n* + I(1+1))

—ar —n__ )

) ctan(m)} ({1=0)
(22)
(23)
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and on differentiating eq. (13) we obtain the derivatives

d
a%_f/‘"’(n, p)=¢,(p)g " (m, p) =317 (m, p)&?'(n)a;&n(p),

d d (24)
d—pg,‘"’(n, p)=—£,(p)f " (n,0)— 38" (m, p)£;’(p)d—p£n(p),
from which we have the Wronskian relation
d d
() L _f(m L _
8; (n,p)dpf/ (. 0)—f; (n,p)dpgl (n,0)=1. (25)

We calculate the derivatives (24) starting from £,(p), £,"(n, p), g'(n, p) and £/(p), where the latter is
given explicitly by

d no+1(1+1)
aphlp) =T, (26)
d 1 I(1+1)) | 1 |3(n—0p) 3(1+1) 5 [we+1(1+ D))?
3252(”)‘57{"+T}+47[ e

’%[ D S D g e ) (TZ+2p(p—n))}H (27)

which simplifies considerably for /= 0.

Now we have to discuss the accuracy which can be achieved in the approximation of Coulomb wave
functions and their derivatives by the expressions above. In the whole treatment of the WKB approxima-
tion, there are two p-values of interest i.e. p = p; and p = co, so we consider the accuracy as a function of 7,
/ and p/p+. In table 1 of the test run output we have printed out some first- and second-order WKB
functions and the corresponding Coulomb wave functions. From many test runs, we draw the following
conclusions:

1) The second order WKB functions are always more accurate than the corresponding first order
approximations, while the calculation times are almost equal.

2) Averaged over a large range of parameters / and n and over many p-values, the calculation of a WKB
function is a factor of about 70 faster compared with the calculation of a Coulomb wave function.

3) For given /, n and p, the accuracies of the regular and irregular WKB functions and also of the
derivatives are of the same order.

4) The condition

p/pr>1.5+160/q (28)

indicates the region where an accuracy of seven figures or more is obtained by second order WKB
approximation. In general we can state that the accuracy increases with p, / and 7.

3. Asymptotic expansion of I’

In this section we will elaborate the idea of Belling [6] to expand I} into an asymptotic series in the
lower integration limit R,, but we taken R, = oo. Belling uses first order WKB functions to approximate
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the integrand, but we will start from the exact Coulomb wave functions, which can be calculated very
accurately by methods presented in ref. [4] or [5].
Instead of (13) we put

F(n.p)=£(p) *sing(p), G/, p)=£(p) " cos ¢(p) (29)
which can be considered to define the amplitude

£(p)=1/[F(n, )+ G/(n, )] (30)
and also sin ¢(p) and cos ¢(p). By (14) we have the important relation

d¢(p)/dp=%£(p)- (31)

Now introduce three new functions of /, 0, k, I, o', k’, A and r by
f(r)y=1/rYe(kr)é(k'r), (32)

0%(r)=o(kr) Lo (k'r), (33)

where the bar in £ and ¢ denotes that these are functions of the primed parameters /', %' and k’. To
calculate the integr:ls (1), it is sufficient to know the following real valued integrals:

191 = ["F(n, ke ) Fo (o, Kr) Sz = [77(r) sin ¢ sin 3dr =3(g5 (R) = g3 (R)),

192= [F(n, kr)Gp (. k'r) m—f f(r) sin ¢ cos gdr=3(g7" (R) + 87 (R)),

(34)
193 = 76,0, k)G (o, K'r) <z = [ *1(r) cos 6 cos Bar =1(g3 (R) + g3 (R)),
194 = 76,0, kr) o (o, k'r) s = [ *1(r) cos & sin 37 =31 (R) = g7 (R)),
inwhich
gli(R)=f:f(r) sin §*(r)dr, gzi(R)=j:°f(r) cos 8*(r)dr. (35)

Notice that the integrands are well-known functions and that it is not necessary to determine the phases ¢
and ¢, but only sin(¢ + ¢) and cos(¢ + ¢) which is easily done with some trigonometric formulae.
We split up the integrals g*(R) as follows:

gE(R)=P*(R)sin0*(R)+Q*(R)cos§*(R), i=1,2. (36)
In equating (35) and (36), we are able to solve for the eight unknown functions P,(R), Q*(R). To this

end we differentiate both expressions for g (R) with respect to R, which yields four sets of two coupled
first order differential equations.

B x*(R)QF(R)+1(R)=0, &L 4y x(R)PE(R) =0, (37)
sz sz

L4 x=(R)PE(R)+f(R)=0, T2 —x*(R)QF(R)=0, (38)
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where we used the notation

+(R)— Hi(R) kE(kr) + k'E(K'r). (39)
Egs. (37) and (38) have to be solved with the boundary conditions
lim P*(R)=0, Rlim QFf(R)=0, i=1,2. (40)
R— oo — o0

By choosing
P*(R)=Q3(R), Qf(R)=-Py*(R), (41)

the sets (37) and (38) become identical, so it suffices to solve (38) and we can suppress the subscripts.
To solve (38) we substitute the series expansion

PE(R)=AF(R)+ A5 (R)+A4F(R)+ ..., Q¥(R)=A{(R)+AF(R)+AX(R)+ ..., (42)
which yields the recursive expression for the successive terms,
R) ( 1)m+1
4z (R)= - TR 4= 44z (R), m>1. 1

Using the first order WKB approximatlons ¢,(p) and ¢,(p), we obtain from (33)

0*(R)= (k£ k’)R—nlog(2kR) F v log(2k'R) —(I+!")n/2+0,(n) t 0, (7) +O(R™'). (44)
Remembering that in actual problems nk equals 7'k’, we suppose n =7" whenever k = k’. With eq. (44)
inserted in eq. (39) we can distinguish three characteristic cases:

a)xT(R)=kz+k’+0O(R™"),

b) x (R)=0(R™?), k=4, (45)

c)x (R)=0, k=k"and!=1".

Substituting this first order expansion in (43) shows that

A, (R)=0(R™"1™m),

46
A (R)y=0(R™*1'"m), whenk=+k’, (46)

and we have a series with descending powers of R, which is expected to converge for sufficiently large R.
From (45) we see that when k = k’ the series (42) with x~(R) might diverge at large R (or is not even
defined) because the powers of R are ascending with increasing m, so this case has to be treated in another
way. We will come to this later in this paper.

The numerical evaluation of the successive terms of (43) is rather cumbersome because of the
appearance of the derivative of the previous term. To solve this problem, we set up an iteration scheme,
which was proposed by Belling. To this end we make the substitution

-f(R) _ B (R)
AZ(R)= ~ 47
(®) x*(R) (Rx*(R)) “)
and try to calculate 8,3 (R). With (43) we find the relation for B,5(R) to be
Bsf(R) =1,
BE(R)=TE(R)BEL(R)+ ()" 'Ry BE1(R),

(48)
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where
wm*(R)=(—1)”’“{1—m+Rx;mdiR(;(—£—m)} (49)

is a known function of the parameters and R. Henceforth we leave out the superscript on 83(R) and
¥ *(R). From (45), (46) and (47) we have 8,,(R)= 0(1), so for sufficiently large R this B8, tends to a
constant and the derivative in (48) will vanish. As a zéroth order approximation for 8,, we have

Béo)= 1, B’E'O)__: \I,mB'S‘Oll (50)
which can be calculated successively. From this we make an approximation for the derivatives of the B,’s

BY =0, BY =¥, B+ VB, (51
and with these a first order approximation for the 8,’s

BV=1, BV=¥, B8P, +(~1)""'RBY . (52)

To increase the accuracy we make another iteration:

B =0, B = 0, B+ 2HLBY, + EIED 2
Bé])’ — O, B’il)’ - ‘Pmﬁrstllll + ‘I,r:uﬁysll—)-l + ( _ 1)m+1 { B(Ol'l + RB,S)-)-/] , (54)
BP=1. AP =162, +(~1)"REY,, 9

in which B will be the final approximation of 8,. Writing out explicitly the 82 with m=0, 1, 2, 3 and
comparing with the exact formula (48) will show that the approximation of 8, by 82 is exact up to m = 3.
That is to say, the first approximated term is 4 f(R).

The calculation of 8% by (50)—(55) is not trivial because of the appearance of ¥,X(R) and derivatives
for every m. Introducing the functions ¥, *(R)

3 m xt f

YE(R)=(-1) \Ir,,,i(R)=m—1+R{mxi —7}, (56)
we see that

¥ (R)=a(R)+me*(R) (57)
which has only a linear dependence on m. With (57) we also have

d -, , 4 ,

—¥*(R)=a'(R) +me*(R), (58)

dR

d2 = r”

dRz‘I'mi(R)=a"(R)+mei(R) , (59)

but a(R), € *(R) and derivatives are constants at a given set of parameters and at a given R. To calculate
these, we first define a new function

¥(R) =§(kR) = [ Fi(n, kR)* + G,(n, kR)]| ' (60)

and also ¥(R) for the primed parameters. With this notation we have

x*(R)=ky(R) £ kK'¥(R), f(R)=R(v(R)¥(R))™"" (61)
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From (60) we have the derivative
d 4 4
B/(n, k, R) =35 v(R)= —2v(R)*(FF' + GG"), (62)

where F’ is a shorthand notation for d F,(n, kR)/dR, etc. The Coulomb wave function routines from refs.
[4], [5] also return the derivatives with respect to p = kR. With the differential equation (3) we can calculate
the derivatives of any order. With the next sequence of formulae we are able to construct an expression for
¥ £(R). The idea is that every newly introduced function is calculated in this sequence.

H,(n, k, R)=B,(n, k, R)/v(R), (63)
A*(R)=x*'/x*=[kB,(n, k, R) £k'B.(w, k', R)] /x*(R), (64)
f(R)/f(R)==(A+1)/R+3}(H,(n, k, R) + H.(«/, k', R)), (65)
TE(R)=m+X+R{mAd*(R)+1(H,(n, k, R)+ H.(v, k', R))}. (66)

In the same way we can proceed to calculate the first and second derivatives of (66). This is straightfor-
ward, but for reference purposes we write down the sequence which leads to the derivatives needed:

C,(n, k, R) = B(n,k R)=2y(R)|H?(n, k, R) =y(R)(FF" + F*+ GG” + G|,  (67)
Di(n. ks R)= g Hilno ko R) = L) 2,k ), (63)
1*(R)=[kc,(n, k, R)+k'C/(n, k', R)} /x*(R), (69)
d + + +

iR (R)=I*(R)-A*(R), (70)
d

—¥, (R)=3{H,(n, k, R)+ H.(«, k', R)+ R(D;(n, k, R) + D, (v, k', R))}

+m{4*(R)+R(I*(R)~4*(R)")}, (71)

dR

d
Ji(n, &, R)— C/("I,k R)

= C/("l; k9 R)Hl(n’ k’ R) +2Y(R){2H/("I, ka R)DI("’, k, R)
—B/(n, k, R)(FF” + F* + GG"'G")
—y(R)(FF" +3F'F"+GG" +3G'G")}, (72)

d
E/(n, k, R) =gz Di(n, k, R)

{Ji(n, k&, R)=C/(n, k, R)H,(n, k, R)} =2H,(n, k, R)D;(n, k, R),  (73)

(R)
K*(R)=[kJ(n, k, R) £ k. (o, k', R)] /x*(R), (74)
SI*(R)=K*(R) ~4*(R)I*(R), (75)

dRzif*(R) Dy(n, k, R)+ Dy (7, k', R) +1R(E/(n, k, R) + E,(n, k', R))

+m{R(K*(R)—A*(R)I*(R)) +2(1*(R) - 4*(R)")(1-RA*(R))}. (76)
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After the analytical treatment we wrote a numerical procedure in order to calculate the If» by
asymptotic expansion. The next consideration was how to investigate the convergence of the asymptotic
series and how to check on the accuracy to which the I/» could be approximated by the method of
calculation, described in this section. To this end we remark that there exist many recursion relations
between the integrals with different /, /” and A values [7-9]. We choose the following one:

k(U AA+3WI+2 4

I™ . 4k
(I+2)(21+3) 42,0410

’ 2 2 , , ’
L kU SN IER T 10— K e, < X (1 kR Yo (o, KR)
(1+1)(21+3) SRR (e | i RM! '
(77)

We can calculate the four integrals by the asymptotic expansion and substitute them in the left-hand side
of (77). This result is compared with the right-hand side of (77). The analytical development, however, is
separated into a x " (R) and a x (R) part and it would be interesting to check on these independently.
With eq. (34) it is easy to see that there is a recursion relation between the integrals g *(R), similar to (77),
but with a different right-hand side.

In table 2 of the test run output an example is given of a test run, made in this way. The order of
printout is g, (R), g7 (R), g5 (R), g, (R). From many test runs we can summarize some conclusions:

{ 1 U+ +1

, - }Il(i‘%,/'ﬂ
" +1 (l+l)(l+2)

1. The series (42) with x*(R) always converges for large R, but even for R just above the turning point.

2. The series with x ~(R) converges when |k — k’|R is sufficiently large. This is clear from (47), where the
denominator is a power of Rx™ = (k — k") R. In some applications this gives rise to a severe problem,
because |k — k’|R is of the order 107 1-10~*, so the x ~-series will diverge. Remeber that the x ~-series is
not defined when k = k’.

3. At a given integration limit R and parameters k, n, /, k', v, I, A, the x " -series is always more accurate
than the x ™ -series, when both converge. The x ™ -series also uses much more terms, as will be apparent.

4. The striking feature of this routine is the convergence and the accuracy of the x " -series. This series is
connected with the ™ -integrals (see (35)) which are the constituent parts of I}, responsible for the fast
oscillatory behaviour of the integrand. We only need to consider further the 8~ -integrals, which will be
done in the next section.

4. Determination of § ~-integrals by Gaussian quadrature

In the previous section, we have pointed out how 6~ -integrals can be evaluated, whenever |k — k’| is not
too small. Now we investigate the complementary problem, where &k and &’ are equal or almost equal. We
will consider the integrals

gr =/R2f(r) sin 0~ (r)dr, g5 =fR2f(r) cos §(r)dr. (78)
R, R,
The functions f(r) and 8~ () behave as
£(r) = rfﬂ (1 +0(})), 80-(r)=(k—k')r+ ... (rlarge), (79)

so the integrand is oscillatory with a wavelength 2« /|k — k’| but when k£ = k’ the 6 (r) tends to a constant
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and there is no oscillation at all. Since we assume |k — k’| sufficiently small, the integrand of g;” is a smooth
function of r and we can use a simple Gaussian quadrature formula

20
b.
[3()dy=1(b-a) T weo(n)+8, 0<m<1,
a i=1 (80)
yi=3(b—a)x;+3(b+a), —-1<x, <l
The abscissas x; and the weight factor w, are tabulated in ref. [3]. The absolute error § is given by
41 4
- 20!
8=%¢(M)(§), a<t<b, (81)
41(40!)
§=B(b—a)"e“O(£), B=1573x10""% (82)
Now we try to choose a step size b — a in such a way that some relative error, 1079, will not be exceeded.
At first we assume |k — k’| small, and to be more precise
b-—a<2un/lk—k’| (83)

so the factors sin 87 (r) and cos 8~ (r) will behave smoothly on [a, b] and are almost constant. In the
calculation of the step size, we can replace them by 1, as long as (83) holds. Furthermore, we assume r
sufficiently large, so we can approximate f(r) by r~*~!. From (82) we then have

Co(A+40) (b—a\*' 1 (A+40) (b N\
Suppose we have integrated up to r = a. We then want to calculate a step size b — g, to integrate over the
subsequent interval b — a.

If we put
b=pa (p>1), (85)
we have for the relative error ¢ in the next interval
b dy (A + 40)! a_p
= -1)" ——= 86
€ 8/ay"+1 <B(A—l)' (p ) p}\_l ( )

Remark that at this point we have to make the restriction A # 0. With the abbreviation

a(A) = B(A +40)1 /(A —1)! (87)
and with p* > p, we have
e<a(M)p(p-1)*. (88)

If p is near to one (say p < 2) we can omit this factor in (88), but for large p we have p* = p* — 1 and we
can omit p*/( p* — 1) in (86). This increases the exponent in (88) by 1. So, if we want ¢ < 1679, we find

p=1+10"7/a(N). (89)

With (85) we have
b-—a=(p-1)a, (90)
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so with increasing a, the step size increases too. This is especially interesting if we want to integrate up to
infinity. Actual p-values, calculated by (89), are between 2 and 3.

When we want to integrate up to infinity, it is important to choose the step size as large as possible, for
the integrals are very slowly convergent. Because of the factor r~*~!, the contribution to the integrals
descends in every step. If we have integrated step-by-step up to r*, we may already have achieved an
accuracy of say 107°, with s < 4. In that case we may integrate up to R, (eventually R, = c0) with an
accuracy of 1079*°. When we use this value in (89), we come up with a larger p-value. If we have integrated
up to r* we can estimate the remaining part by

fsz(r)sin0_(r)dr=fR sin 8~ ()3 - L < [ LA (- R, (91)
r* * r* r

The integral itself is estimated by
*=fr*f(r) sin 8~ (r)dr, (92)
R, :

so we already have an accuracy of
107 =|(r*=* = R3*) /AT*| (93)

but this is better seen as an upper limit. Instead of 1077 in (89), we use now 10~ 7*%, This can increase p
much, especially when a high accuracy is desired.

In increasing the step size it might occur that condition (83) is not fulfilled anymore. In that case we
choose

b—a=2n/lk—k’| (94)

in all the remaining intervals and integrate with a 20-point formula. In this way we come up with the
desired accuracy of 107, for it is the limiting case of the estimation made above. If we integrate however
over many wavelengths, the contributions of the wavelengths at large r values are calculated much too
accurately for the same reason as above. We now cannot increase the step size as in the previous case and
so we choose the complementary solution and decrease the order of the Gaussian formula to a 10-point or
a 5-point formula. This subject will not be treated in detail, because it is along the same lines as the
estimation above.

Up to here we have considered the integration over the asymptotic region and its peculiarities. To
complete the integration procedure we extend the allowed R;-values to R, = 0.

We start the integration in general with a 20-point Gaussian quadrature in R, until the 8 *-mtegrals can
be calculated by asymptotic expansion. Additionally, the §~ -integrals are evaluated by the method of this
section, where wee use WKB functions wherever possible. If R, is less than both turning points, only 7{}1
will be reliable.

S. Notes on the program

The subroutine CLMINT calculates the integrals I{’, as defined in (34). The calling sequence is CALL
CLMINT(DR1, DR2, DETAI, DK1, L1, DETA2, DK2, L2, LAMBDA, DCLM, CONV, IACC). Here the
convention is made that a D as a first figure indicates DOUBLE PRECISION type. The arguments in the
call have the following meaning

DR1, DR2 Lower and upper integration limits. If DR2 is less than DR1, the upper limit will
be assumed infinite.
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DETAL...LAMBDA Parameters.

DCLM The integrals are returned in array DCLM(4).

CONV Logical variable. If CONV = FALSE. after return, then there is an illegal parame-
ter in the call or something went wrong in the calculation.

IACC Integer chosen from O or 1. For general purposes one takes IACC =0, but on

putting IACC = 1, the accuracy will increase somewhat.

The subroutine uses the routines BELLIN, GAUSS, INTEGR, COULOM, STEED, RICCAT, WKB
and DPHASE. These subroutines use two COMMON blocks, named XX and YY. The subroutine
COULOM can be used independently and is a modified version of the routines from refs. [4,5]. The calling
sequence is CALL COULOM(DRHO, DETA, L, DF, DFP, DG, DGP, CONV) and it generates the
Coulomb wave functions. Here DF = F,(n, p), DFP = d F,(n, p)/dp, etc. Also here the logical CONV
indicates the convergence of the routine. Two other routines are included, that is WKB1 and WKB2, which
calculate the first and second order WKB functions and derivatives by the method of section 2.

A test deck is included which prints Coulomb wave functions and the corresponding WKB approxima-
tions. The second test deck makes the check on BELLIN with the aid of a recursion relation as was
discussed in section 3.

6. Discussion

In developing the routine, we always kept in mind that it should work best for large r values. That is why
WKB functions are matched to the Coulomb wave functions at p = co and is the reason for making the
asymptotic expansion around infinity. Also the Gaussian formulae are chosen so as to produce the
maximum interval length at infinity. In this asymptotic region, the routine is fast and accurate, compared
to any step-by-step method. It will be clear that this is the most interesting region with respect to
applications in nuclear physics, because at the lower r values there is still a nuclear potential and the
homogeneous solutions are not Coulomb wave functions. There is also the interesting feature that the
routine works best for heavy ions with high energy, for then n and k are large and |k — k’| is very small.
Because of the large k and k’, the x* series will converge rapidly, and already in the very neighbourhood of
the turning point. It is just with these parameters that a numerical quadrature will fail because of the
immense number of steps. When |k — k’| is small, the 8 integrals have a slowly-oscillating integrand is and
the intervals of the Gaussian quadrature can be very large. In the case of 3 Kr +2*®U the wavelength of the
0~ integrand is of the order of 10? fm and we can integrate from the turning point (= 10 fm for / = 0) up
to r =2000 in eight steps. When we consider atomic collisions, the level distances are not very small
compared to the kinetic energy of the colliding particles and |k — k’| is sufficiently large to enable both the
x* and the x~ series to converge. The most difficult application is in light ion reactions for then the x~
series just diverges but |k — k’| is rather large, so we have to integrate the §~ integrals with 20 points per
wavelength, which is severely time consuming, if we want to integrate up to infinity. In this case it is better
to use R, = 3000 instead of R, = co and approximate the integral up to infinity by the one obtained with
R, = 3000. The accuracy will then be less than 7D but the calculation time will remain reasonable.

We recall once more that the evaluation of these integrals by closed expressions or by recursion relations
is always superior to this routine. This routine only provides the I} when there is no other way out. It, for
instance, generates the initial values of a recursion scheme.

Many test runs have been made on the WKB approximation, the asymptotic expansion and the
Gaussian quadrature. The WKB approximations were simply compared with the exact values, generated by
a Coulomb wave function routine. The other routines were first tested by the substitution of I}» in a



H.F. Arnoldus / Multipole matrix elements for inelastic collisions 435

recursion relation as was discussed before. Another method is to evaluate the right hand side of
R, R R,
_ (R, 95
L =l ke (95)

for different R values. This test, however, did not bring any new insight into the accuracy which can be
achieved. As a third test we used the closed expression

k

T2+ 1 +in)| (96)

© dr
fo Fi(n, kr) Fro (7, kr) =

which showed that the integration below the turning point is crucial for the accuracy at large / values
(! =1000). As a final test we compared the results of CLMINT with the integrals obtained from the
program of Samuel and Smilansky [10] in the quadrupole case. These integrals are

f F/(n, kr)F.(7, k'r)d—:, U'=1-2,1,1+2. (97)
0 r

There was a correspondence of 7D and this is just the accuracy claimed by Samuel and Smilansky.
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TEST RUN OUTPUT

Table 1

REGULAR COULOMB WAVE FUNCTION AND WKB APPROXIMATIONS AT 3*TURNINGPOINT

DETA
1

1

1

1

10
10
10
10
100
100
100
100
1000
1000

1000
1000

L

1

10
100
1000
1

10
100
1000
|

10
100
1000
1

10
100
1000

COULOM

.1057887397D+01
.2013681176D+00
.8466177272D+00
.8919967881D+00
. 1056700829D+01
.4408548097D+00
.1001653272D+00
.9889057332D+00
.7157823466D+00
.1106351663D+01
.5441642610D+00
.5518213252D+00
.2059096758D+00
.1093514413D+00
. 1088063909D+01
.1079402300D+01

WKB1

.1060805533D+01
.2002627181D+00
.8465538451D+00
.8920024201D+00
.1056335580D+01
.4399960787D+00
.1000465597D+00
.9889089511D+00
.7158868118D+00
.1106350415D+01
.5440802766D+00
.5518315023D+00
.2058962478D+00
.1093378419D+00
. 1088061443D+01
.1079403739D+01

WKB2

.1057639164D+01
.2013720354D+00
.8466177302D+00
.8919967881D+00
.1056701221D+01
.4408554858D+00
.1001653318D+00
.9889057332D+00
.7157823453D+00
.1106351660D+01
.5441642635D+00
.5518213252D+00
.2059096758D+00
.1093514413D+00
.1088063909D+01
.1079402300D+01
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Table 2

CONVERGENCE AND ACCURACY CHECK OF BELLIN WITH A RECURSION RELATION

AND AS A FUNCTION OF THE LOWER LIMIT R

DETAl = ,18000D+03
DK1 = .40000D+02
Ll = 40
DETA2 = .14400D+03
DK2 = .50000D+02
L2 = 45
LAMBDA = 2
DTURN = 9
R LEFT HAND SIDE RIGHT HAND SIDE REL. DIFF.
54
.5431830995D-05 .5431830995D-05 .13D-10
.4492142174D-05 .4492142542D-05 .82D-07
.4154134779D-05 .4154134780D-05 .27D-10
-.5155800061D-05 -.5155800531D-05 .91D-07
45 ‘
.3948285558D-05 .3948285558D~05 -.36D-12
-.7742652824D~05 -.7742653255D-05 .56D-07
.1134371270D-04 .1134371270D-04 .52D-10
.9182596447D-05 .9182597521D-05 . 12D-06
36
.2332061763D-04 .2332061763D-04 . 16D-09
-.2285451543D~-04 -.2285451429D-04 -.50D-07
-.5956609584D~-05 ~.5956609584D-05 -.57D-10
~.7550075452D-05 -.7550071587D-05 -.51D-06
27
.5339512417D-04 .5339512421D-04 .73D-09
. 1485579010D-04 . 148558021 1D-04 .81D-06
-.2683006289D-04 -.2683006290D-04 . 11D-09
.5788099216D-04 .5788088379D-04 -.19D-05
18
-.2216526523D-03 -.2216526525D-03 .96D-09
-.3328158856D-04 -.3328183167D-04 .73D-05
-.3950380848D-04 -.3950380913D-04 .16D-07
-.2226747172D-03 -.2226718864D-03 -.13D-04

NO CONVERGENCE IN BELLIN

.4677916297D-02 .4668716554D-02 -.20D-02
NO CONVERGENCE IN BELLIN
-.6705181619D-02 -.6705000823D-02 -.27D-04



