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Abstract. Markov chain Monte Carlo (MCMC) is a popular class of algorithms to sample from a
complex distribution. A key issue in the design of MCMC algorithms is to improve the proposal mech-
anism and the mixing behaviour. This has led some authors to propose the use of a population of
MCMC chains, while others go even further by integrating techniques from evolutionary computation
(EC) into the MCMC framework. This merging of MCMC and EC leads to a class of algorithms,
we call Evolutionary Markov Chain Monte Carlo (EMCMC). In this paper we first survey existing
EMCMC algorithms and categorise them in two classes: family-competitive EMCMC and population-
driven EMCMC. Next, we introduce the Elitist Coupled Acceptance rule and the Fitness Ordered Tem-
pering algorithm.

1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms provide a framework for sampling from complicated tar-
get distributions that cannot be sampled with simpler, distribution specific, methods. MCMC algorithms
are applied in many fields, and their use in Machine Learning has recently been advocated in [1]. Usu-
ally, MCMC uses a single chain which runs for a long time. However, to improve the convergence rate,
there are some MCMC variants that work with a population of MCMCs. The use of a population makes
these algorithms somewhat similar to Evolutionary Algorithms (EA). Indeed some authors have proposed
algorithms that integrate techniques from the EC field into the MCMC framework. Here we survey these
EMCMC algorithms and classify them into two basic categories: family-competitive EMCMC algorithms
that operate through an acceptance rule at the family level, and population-driven EMCMC algorithms that
operate through a population-driven, adaptive proposal distribution. One property of EMCMC algorithms
is that they are not necessarily a set of parallel MCMC chains, but that they are a single MCMC at the pop-
ulation level. Besides surveying existing EMCMC algorithms we also propose two alternative techniques:
the Elitist Coupled Acceptance (ECA) rule and the Fitness Ordered Tempering (FOT) algorithm.

The paper is organised as follows. Section 2 discusses basic concepts and algorithms from MCMC.
Section 3 describes parallel MCMC algorithms, while Section 4 surveys EMCMC algorithms. We introduce
the ECA and FOT techniques in Section 5, and report some experimental results in Section 6.

2 The Markov Chain Monte Carlo framework

MCMC is a general framework to generate samples Xt from a probability distribution P (·) while ex-
ploring its search space Ω(X) using a Markov chain. MCMC does not sample directly from P (·) but

only requires that the density P (X) can be evaluated within a multiplicative constant P (X) = P ′(X)
Z ,

where Z is a normalisation constant and P ′(·) is the unnormalised target distribution. A Markov chain
is a discrete-time stochastic process {X0, X1, . . .} with the property that the state Xt given all previous
values {X0, X1, . . . , Xt−1} only depends on Xt−1: P (Xt | X0, X1, . . . , Xt−1) = P (Xt | Xt−1). We call
P (· | ·) the transition matrix of the Markov chain. P (· | ·) is a stationary - this is, independent of time t
- transition matrix with the following properties: (i) all the entries are non-negative, and (ii) the sum of
the entries in a row is 1. We assume that P (·) > 0. MCMC converges, in infinite time, to the probability
distribution P (·), thus it samples with higher probability from more important states of P (·). An finite
state MCMC which has an irreducible and aperiodic stationary transition matrix converges to a unique
stationary distribution [1]. A MCMC chain is irreducible if, and only if, every state of the MCMC chain



can be reached from every other state in several steps. A MCMC is aperiodic if, and only if, there exists no
cycles to be trapped into. A sufficient, but not necessary, condition to ensure that P (·) is the stationary dis-
tribution is that MCMC satisfies the detailed balance condition [1]. A MCMC satisfies the detailed balance
condition if, and only if, the probability to move from X t to XNEW multiplied by the probability to be in
Xt is equal to the probability to move from XNEW to Xt multiplied by the probability to be in XNEW :
P (XNEW | Xt) · P (Xt) = P (Xt | XNEW ) · P (XNEW ).

Metropolis-Hastings algorithms. Many MCMC algorithms are Metropolis-Hastings (MH) algorithms [10,
20]. Since we cannot sample directly from P (·), MH algorithms consider a simpler distribution S(· | ·),
called the proposal distribution for sampling the next state of a MCMC chain. S(XNEW | Xt) generates
the candidate state XNEW from the current state Xt, and the new state XNEW is accepted with probability:

A(XNEW | Xt) = min (1,
P ′(XNEW ) · S(Xt | XNEW )

P ′(Xt) · S(XNEW | Xt)
)

If the candidate state is accepted the next state becomes Xt+1 = XNEW . Otherwise, Xt+1 = Xt. The
transition probability for arriving in XNEW when the current state is Xt is T (XNEW | Xt) = S(XNEW |
Xt) · A(XNEW | Xt), if XNEW �= Xt, and T (Xt | Xt) = 1 − ∑

Y,Y �=Xt
S(Y | Xt) · A(Y | Xt),

otherwise.
The pseudo-code for the MH algorithm is:

Metropolis − Hastings()
1 Initialise X0; t ← 0
2 while true
3 do Sample XNEW from S(· | Xt)
4 if Uniform sampling(0, 1) ≤ A(XNEW | Xt)
5 then Xt+1 ← XNEW

6 else Xt+1 ← Xt

7 t ← t + 1

A MH algorithm is aperiodic, since the chain can remain in the same state with a probability greater
than 0, and by construction it satisfies the detailed balance condition. If, in addition, the chain is irre-
ducible, then it converges to the stationary distribution P (·). The rate of convergence depends on the
relationship between the proposal distribution and the target distribution: the closer the proposal distri-
bution is to the stationary distribution, the faster the chain converges. Two popular Metropolis-Hastings
algorithms are the Metropolis algorithm and the independence sampler. For the Metropolis algorithm, the
proposal distribution is symmetrical S(XNEW | Xt) = S(Xt | XNEW ) and the acceptance rule be-

comes A(XNEW | Xt) = min (1, P ′(XNEW )
P ′(Xt)

). Because it accepts the candidate states often - and thus
the state space is well sampled - the Metropolis rule generally performs well. The proposal distribution of
the independence sampler does not depend on the current state S(X NEW | Xt) = S(XNEW ). The inde-
pendence sample’s acceptance probability can be written as A(XNEW | Xt) = min (1, w(XNEW )

w(Xt)
), where

w(·) = P ′(·)
S(·) . Candidate states with low w(XNEW ) are rarely accepted, while states with high w(XNEW )

are very often accepted, and the process could get stuck for a long time in states with very high w(X).
Obviously, the choice of w(·) greatly influences the convergence rate.

Simulated annealing (SA). SA is a minor modification of a single chain MH algorithm used for
optimisation. Instead of sampling from the entire distribution P (·), SA samples at step t from P ′

t (·) =
P ′(·) 1

Temp[t] , where Temp[t] decreases according to a cooling scheduler to 0. With Temp[·] close to ∞,
the chain accepts almost any candidate state according to MH acceptance rule A, whereas, when Temp[·]
is close to 0, the chain rejects almost all states that have lower fitness than the current one. Note that, for
constant temperature Temp[t], SA is a MCMC which converges to the distribution P t(·). However, every
time the SA chain is cooled, the transition matrix is changed and the detailed balance is not satisfied. Yet,
in infinite time, SA converges to the optimum and, more general, if Temp[i] decreases to 1 SA converges
to the stationary distribution P (·). SA is a non-homogeneous MCMC which converges to a given stationary
distribution. The time to convergence depends on the cooling schedule. In practice, a fast cooling schedule
is preferred to a slower one, increasing the risk of poor performance.



3 Parallel MCMC algorithms

MCMC algorithms are usually applied in a sequential way. A single chain is run for a long time until
it converges to the stationary distribution P (·). The states visited during the initial phase of the run are
considered to be unreliable and further ignored. For reasons of computational efficiency this burn-in phase
should be as short as possible. MCMCs with a short burn-in phase are said to mix well (note that this
is unrelated to the mixing of building blocks in the EC literature). There exist various variations on the
standard MCMC algorithm to speed up this mixing process. In this paper we are particularly interested in
techniques that use multiple chains in parallel as opposed to a single chain.

Multiple independent chains (MIC). The most straightforward technique to make use of multiple
chains is simply to run N independent MCMCs in parallel. The chains are started at different initial states
and their output is observed at the same time. It is hoped that this way a more reliable sampling of the
target distribution P (·) is obtained. It is important to note that no information exchange between the chains
is taking place. Recommendations in the literature are conflicting regarding the efficiency of parallel in-
dependent chains. Yet there are at least theoretical advantages of multiple independent chains MCMC for
establishing its convergence to P (·) [7].

Parallel tempering (PT). Parallel tempering [6] is a parallel MCMC with N chains each having a
different stationary distribution P ′

i (·) = P ′(·) 1
Temp[i] , i = 1, . . . , N . The temperatures have an increas-

ing magnitude Temp[1] < . . . < Temp[N ] with Temp[1] = 1. The stationary distribution of the low-
est temperature chain is therefore equal to the target distribution, or P ′

1(·) = P ′(·). The temperatures
Temp[i], (2 ≤ i ≤ N) are given a constant value, typically according to a geometrically increasing series.
Note that this is similar to the temperature values proposed by the cooling scheduler of simulated anneal-
ing, though for SA the different temperatures are generated sequentially in time, while for PT the different
temperatures are generated in space - this is, the population - and remain unchanged during the run.

The candidate states are generated using mutation and accepted with the standard Metropolis-Hasting
acceptance rule. Chains in PT exchange information by swapping states. Two chains i and j interact by
trying to exchange their current states Xt[i] and Xt[j] using the swapping acceptance rule:

AS(Xt[i], Xt[j]) = min (1,
P ′

i (Xt[j]) · P ′
j(Xt[i])

P ′
i (Xt[i]) · P ′

j(Xt[j])
· S(X ′

t | X ′′
t )

S(X ′′
t | X ′

t)
)

where X ′
t = (. . . , Xt[i], . . . , Xt[j], . . .) and X ′′

t = (. . . , Xt[j], . . . , Xt[i], . . .). Note that AS is a MH
acceptance rule, satisfying the detailed balance condition. AS accepts with probability 1 an exchange of
states if the more important state is inserted into the chain with the lower temperature. To increase the
acceptance rate the two chains usually have adjacent temperatures (|i− j| = 1). Heuristically, PT improves
mixing: better states of a warmer chain can be inserted in a colder chain that is mixing slower.

Parallel sintering (PS). Parallel sintering [12] can be viewed as a generalisation of parallel tempering
where the proposal distributions of each chain in the population is a member of some family of distribu-
tions {Pi(·) | i = 1, . . . , N} defined over spaces of different dimensions (resolutions), that are related
to the target distribution by the highest dimensional distribution (or largest resolution) P 1(·) = P (·). As
in PT parallel sintering exchanges information between adjacent chains by exchanging states through the
swapping acceptance rule. Here too the idea is to increase the mixing of the slowly mixing highest dimen-
sional chain towards the target distribution by inserting states of the lower dimensional - and faster mixing
- chains in the population. Parallel sintering is a multiple chain MCMC version of the single chain MCMC
called simulated sintering [16].

4 Evolutionary MCMC algorithms

In the previous section, we have outlined parallel MCMCs. In the following we survey existing EMCMC
algorithms, and distinguish between two categories: family-competitive EMCMC and population-driven
EMCMC.



Table 1. Comparison of the presented EMCMC algorithms

algorithm perturbation op. communication type EMCMC optim. / sampl.(distrib.)
EMC mut, recomb AC , AS fam-comp

QN
i=1 P ′

i (·)
MRGA mut, recomb AC , AS fam-comp

QN
i=1 P ′

i (·)
popSA Boltzmann trials fam-comp maxim
PRSA mut, recomb AC fam-comp maxim
mparSA mut, neigh. recomb neighbours fam comp maxim
popMCMC mut S(· | ·) pop-driven

QN
i=1 P ′(·)

eMCMC mut, recomb recomb, S(· | ·) pop-driven maxim
ECA mut, recomb ECA fam-comp

QN
i=1 R′(·)

Family-competitive EMCMC algorithms let two chains from the population exchange information to
sample two new states. This interaction can be implemented by the proposal mechanism and/or by the
acceptance rule. Recombining the states of the two chains is an example of the former approach, while in
the latter two states are selected from the two proposed states and their ’parent’ states. We call any MH
acceptance rule which selects two states from the family of four states a coupled acceptance rule. Note that
in this view parallel tempering (and parallel sintering) belong to the class of family-competitive EMCMC
algorithms. Family-competitive EMCMC algorithms correspond to family-competitive EAs where two
individuals create offspring by mutation and recombination, and selection takes places at this family level -
examples are the elitist recombination GA [25], the deterministic crowding GA [18], the genetic invariance
GA [5].

Population-driven EMCMC algorithms adapt their proposal distribution according to the entire, current
population of states. The adaptation is such that the algorithm maintains a single MCMC at the population
level - this is, a MCMC whose states are populations. Population-driven EMCMC algorithms correspond
to the probabilistic model-building evolutionary algorithms in the sense that new solutions are proposed
on the basis of information taken from the entire, current population. In the probabilistic model-building
evolutionary algorithms a distribution is learned from the current population, and offspring is generated by
sampling from this distribution [22].

Table 1 compares the EMCMC algorithms surveyed here according to their perturbation operators,
their methods of the communication between chains, their EMCMC category, and their use as a sampler or
optimiser. Call Xt = (Xt[1], . . . , Xt[N ]) the population at time t of N states (or individuals) X t[·]. To each
individual X [·] we associate a fitness function f : Ω(X [·]) → IR, where X [·] samples from P ′(X [·]) =
g(f(X [·])) (g is a monotonic function, g : IR → IR+ \ {0}). Here, we consider an individual X [·] as a
string of l characters X [·][1]X [·][2] . . .X [·][l]. We use X [·][·]a to denote the a−th value Ω(X [·][·]), the
set of all possible values of X [·][·]. We call X [·][j]a an allele of X [·][j]. The position of X [·][j] in X [·] is
called the locus of X [·][j]. X ′

t, X ′′
t are two intermediate populations.

We present below the pseudo-code for a general framework EMCMC algorithm which contains both
EMCMC categories.

EMCMC()
1 Initialise X0[i], i = 1, . . . , N ; t ← 0
2 Calculate S(· | ·)
3 while true
4 do Sample X′

t from S(· | Xt)
5 Recombine states from X′

t obtaining X ′′
t according to S(· | ·)

6 Accept states from X′′
t given Xt according to an acceptance rule obtaining Xt+1

7 Recalculate S(· | ·)
8 t ← t + 1

Evolutionary Monte Carlo (EMC). Liang and Wong [14], [15] propose the evolutionary Monte Carlo
algorithm, which incorporates recombination into the parallel tempering (PT) algorithm to speed up the
search and preserve good building blocks of the current states of the chains. Like PT, EMC has a population
of MCMC chains with constant and (geometrically) increasing temperatures. Chains interact through the



swapping acceptance rule AS that attempts to exchange states between chains with adjacent temperature.
This way, the good individuals sampled in the warmer chain are transfered to a colder chain where they
may be preserved longer. The lowest temperature chain Temp[1] = 1 converges to the target distribution
P (·), where P ′

i (·) = exp (−f(X[i])
1 ).

The candidate states are generated in two different ways and accepted by two different rules. With prob-
ability qm each chain in the population generates a new state by mutation and accepts it with the standard
Metropolis-Hastings acceptance rule. With probability 1 − qm new states are generated by recombination
of two states from different chains, and the offspring states are accepted with the coupled acceptance rule:

AC((XNEW [i], XNEW [j]) | (Xt[i], Xt[j])) =

min (1,
P ′

i (XNEW [i]) · P ′
j(XNEW [j])

P ′
i (Xt[i]) · P ′

j(Xt[j])
· S(X ′

t | X ′
NEW )

S(X ′
NEW | X ′

t)
),

with X ′
t = (. . . , Xt[i], . . . , Xt[j], . . .), X ′

NEW = (. . . , XNEW [i], . . . , XNEW [j], . . .).
Note that when qm = 1 EMC reduces to PT. Liang and Wong discussed experimental results for

a model selection problem, a time series change-point identification problem, and for a protein folding
problem. These experiments showed the effectiveness of EMC as compared to PT.

Multi-resolution Genetic Algorithm-style MCMC (MRGA). Holloman, Lee and Higdon [12] also
proposed to integrate recombination in their multi-resolution parallel sintering algorithm. MRGA runs sev-
eral chains for each resolution, sampling from the distribution at that resolution. Each individual has: (i) a
variable size part, which represents information specific to its resolution, updated with a MCMC and (ii)
a fixed dimensional (e.g. lowest dimension) vector with common interpretability used to move between
chains (e.g. for image processing this could be the mean of neighbourhood cells). MRGA samples at the
individual level using mutation, while it samples at the population level using recombination between the
fixed dimensionality vector of two chains of the same or different resolutions. Both new individuals are ac-
cepted/rejected using the swapping acceptance rule AS , which, in this case is equivalent with the coupled
acceptance rule AC . Like in parallel sintering, to improve mixing, chains of different resolutions period-
ically fully exchange the fixed dimensionality vectors using the swapping acceptance rule A S . MRGA
proposes with probability pswap a full exchange, or with probability 1 − pswap a crossover exchange.

Population MCMC (popMCMC). Laskey and Myers [13] introduced popMCMC where a population
of MCMC chains exchange information through a population-based, adaptive proposal distribution. As
before the Boltzmann distribution is used: P ′(Xt[·]) = exp−f(Xt[·]),where f is a fitness function. Each
generation a locus Xt[i][j] is randomly picked to be mutated. An allele X t[i][j]g on the j-th locus of the
candidate individual XNEW [i] is generated using a distribution α̂ija = N(Xt[i][j]

a)+1
N+|Ω(X[·][·])| , where N(Xt[i][j]a)

is the number of individuals that have the allele X t[i][j]a on the j-th locus and |Ω(X [·][·])| is the total
number of alleles. XNEW [i] is accepted using the MH acceptance rule A(XNEW [i] | Xt[i]).

Since the proposal distribution depends on the current population, the transition matrix of a single
individual is not stationary, yet the transition matrix of the whole population is stationary. Whenever good
individuals from the population have a specific allele on a certain locus, new individuals will have with high
probability the same allele on the same locus. Since popMCMC is a population of independently sampling
MCMC chains, the allele remains in the population for a while. It is interesting to observe the similarity
between popMCMC and univariate EDAs [22] in generating the candidate individuals from the structure
of the current population. PopMCMC converges to the stationary distribution of N independently sampled
points from P (·). The authors show experimentally that popMCMC finds highly likely Bayesian network
structures faster than multiple independent MCMC chains.

Evolutionary MCMC (eMCMC). Zhang and Cho [27] proposed the eMCMC algorithm which is
designed to find the optimum of a distribution by generating L samples from a population of N MCMC
chains and then selecting the best N states of them (L > N). The initial population is sampled according
to a prior Gaussian distribution. Each generation, each chain from the current population generates several
new candidate individuals using mutation and recombination which are accepted according to a Metropolis
acceptance rule A(· | ·). The best N individuals from the L individuals are then selected for the next



generation. Their posterior distribution - estimated with a Gaussian distribution model - represents the
proposal distribution S(· | ·) for the next generation. We observe that eMCMC is also related with EDA [22]
since the candidate individuals are generated from S(· | ·) which is adapted each generation. The eMCMC
algorithm is an EMCMC algorithm which samples using mutation and recombination and where S(· | ·)
is adapted each generation to sample from promising regions of the target distribution. Experimentally,
eMCMC outperformed single chain MCMC and the standard GA for a system identification task.

Population-based simulated annealing (popSA). Goldberg [8] proposed a population-based simu-
lated annealing algorithm which creates a Boltzmann distribution over the population. Instead of MH
acceptance rule, it uses the logistic acceptance rule which has the probability to accept a candidate in-
dividual: 1/(1 + exp f(Xt[·])−f(XNEW [·])

Temp[t] ), where Temp[t] is the temperature for generation t. When
Temp[t] is constant, the unnormalised stationary distribution of this algorithm is the Boltzmann distri-
bution P ′

t (Xt[·]) = exp f(Xt[·])
Temp[t] , where f is the fitness function. Each individual Xt[i] from the current

population chooses two other individuals from the population for coupling: one X t[j] has a fitness value
different from Xt[i] by a threshold θ and one Xt[k] has a fitness value different from Xt[i] or from both
Xt[i] and Xt[j] by a threshold θ. An anti-acceptance competition is held between X t[j] and Xt[k], where

Xt[j] is accepted with probability 1/(1 + exp
f(Xt[j]) − f(Xt[k])

Temp[t]
). The primary acceptance competition

is held between the winner of the first competition X t[jk] and Xt[i], where Xt[i] is accepted with proba-

bility 1/(1 + exp
f(Xt[jk]) − f(Xt[i])

Temp[t]
). The competitions are chosen to avoid the danger that copies of

an individual are taking over the population. The anti-acceptance rule prefers poorer individuals, whereas
the primary acceptance rule prefers the better individuals. This way, the population equivalent is created to
generate a neighbour of the population at random.

Parallel recombinative simulated annealing (PRSA). Mahfoud and Goldberg [19] proposed a population-
based simulated annealing algorithm which also made use of recombination. All individuals from the pop-
ulation have the same temperature which decreases every generation according to a cooling schedule. New
individuals are generated using mutation and one point recombination between two individuals X t[i] and
Xt[j]. PRSA uses the logistic acceptance rule to accept a candidate individual. Two possible competitions
are considered: single acceptance/rejection holds two competitions between a parent vs. the child formed
from its own right-end and the other parent left-end, or double acceptance/rejection holds one competition
between both parents vs. both children using the coupled acceptance rule:

AC((XNEW [i], XNEW [j]) | (Xt[i], Xt[j])) =

min (1, 1/(1 + exp
f(Xt[i]) + f(Xt[j]) − f(XNEW [i]) − f(XNEW [j])

Temp[t]
))

Massively parallel simulated annealing (mparSA). Rudolph [23] introduced the massively paral-
lel simulated annealing algorithm. He experimentally achieved fast convergence to the optimum with
a population of independent SA chains. Like SA, mparSA uses the Boltzmann function P ′

t (Xt[·]) =
exp (− f(Xt[·])

Temp[t] ), where f is a fitness function and Temp[t] is the temperature for all individuals from
the t-th generation. The algorithm associates the population with a connected graph. Each node has an
individual which communicates with the individuals in the neighbouring nodes in the graph. For each
chain, each step, the current state Xt[i] is recombined with a neighbour and the result is mutated several
times obtaining new neighbours. The best candidate individual X NEW [i] is then selected and is accepted
with the MH acceptance rule A(XNEW [i] | Xt[i]). The temperature is decreased each step according
to a SA cooling scheduler. Rudolph pointed out that the conflicting goals of fast convergence and global
convergence to the optimum can be satisfied with an adaptive proposal distribution, whereas it cannot
with a fixed proposal distribution. As in Evolutionary Strategies, mparSA uses a non-fixed proposal dis-
tribution St(· | ·) which is adapted each generation with a lognormally distributed random variable α t:
St(· | Xt[i]) = αtSt−1(· | Xt[i]).

Related work. Cercueil and Francois [3] give an overview of literature where EAs are viewed as Monte
Carlo methods which generates sample from a probability distribution defined on the trajectories of their



population. This helps to unify the convergence theories for EAs. For doing that, Cerf [4] has a GA with
the mutation rate related to a temperature, no crossover, and Boltzmann roulette selection. Each generation,
an intermediate population is generated by mutation. The next population is generated from a Boltzmann
distribution constructed from the intermediate population. Lozano and co-authors discuss a hybrid between
the genetic algorithm and simulated annealing based on a probabilistic Boltzmann reduction operator [17].
In a very recent publication Strens proposes an EMCMC algorithm with an ’exclusive-or’ proposal op-
erator [24]. This operator takes one parent and two reference states, and generates an offspring state that
disagrees from its parent in a similar way as the two reference states.

Sequential Monte Carlo (SMC) is a new branch of Monte Carlo simulation, not necessarily a Markov
chain, which uses a population of samples to carry out on-line approximations of a target distribution. SMC
has sampling procedures which are similar to proportional selection in EAs. Bienvenue et al. introduce
niching in some SMC algorithms to maintain diversity in the population [2]. Del Moral [21] study the
convergence of GAs with SMC. Higuchi [11] and Tito, Vellasco and Pacheco [26] proposes GA filter and
Genetic Particle Filter, respectively. They integrate recombination into SMCs [11] to speed up convergence.

5 Elitist coupled acceptance rule and fitness ordered tempering

In the previous section we have surveyed a number of EMCMC algorithms, and discussed some techniques
that showed how multiple MCMC chains could exchange information in order to speed up the convergence
to some target distribution. In the following we introduce the elitist coupled acceptance rule (ECA) and
fitness ordered tempering (FOT), whose main purpose is to converge efficiently to a target distribution that
is biased towards the most likely states (or good solutions).

Fitness ordered tempering (FOT). FOT maintains a population of N chains each having its own
temperature Temp[i]. As in parallel tempering, FOT has a - typically geometrical - increasing series of
temperatures Temp[1] = 1 < . . . < Temp[N ] = Tempmax. The population of N solutions (or states) is
sorted according to their fitness (or probability), and the solution at rank i gets the temperature Temp[i],
where the most fit solution gets Temp[1] = 1, and the worst solution Temp[N ] = Tempmax. Therefore a
solution has lower temperature than any solution worse than itself, unless they are copies of each other. In
case there are multiple copies of the same solution ties within the sorted population are broken randomly,
so each copy gets an adjacent temperature. Copies receive a different temperature to avoid that multiple
copies of good solutions will remain in the population almost indefinitely.

In case there are multiple solutions with the same fitness but who are not copies of each other, the
temperature ladder has to be recomputed so that each unique solution with the same fitness gets the same
temperature. The number of different temperature values Temp[i] at each generation is therefore equal
to the number of solutions with different fitness value, unless they are copies, in which case they also
get a different temperature value. This scheme is necessary to avoid that some solution might get another
temperature in an identically composed population, and ensures that FOT has a homogeneous Markov chain
transition matrix at the population level. Contrary to parallel tempering, here the temperature assignment
depends on the fitness of the solutions relative to the fitness of the other solutions in the current population.
Since we want to remain in the vicinity of good solutions, we prefer to assign the lower temperatures to the
better solutions.

Elitist coupled acceptance rule (ECA). The ECA algorithm applies a coupled Metropolis Hastings
acceptance rule to two solutions and their two children. ECA accepts the best two solutions from the fam-
ily of four if at least one of them is a child. However, when both children have a lower fitness than both
their parents, the children can still replace the parents with a probability determined by the coupled accep-
tance rule. This increases the explorative character of the algorithm. Call X ′

t = (. . . , Xt[i], . . . , Xt[j], . . .),
X ′

NEW = (. . . , XNEW [i], . . . , XNEW [j], . . .), P ′
Xt

(X [·]) = exp (f(Xt[·])
Temp[·] ), and max2 the function re-

turning the two most fit solutions. The ECA acceptance rule is now given as:

ECA(((XNEW [i], XNEW [j]) | (Xt[i], Xt[j])))
1 if {Xt[i], Xt[j]} = {XNEW [i], XNEW [j]}
2 then return 1
3 (XMAX [i], XMAX [j]) ← max2 (XNEW [i], XNEW [j], Xt[i], Xt[j])
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Fig. 1. The number of different solutions found over the total number of possible solutions for a fitness value on a
logarithmic scale for (a) MIC, (b) popMCMC, (c) PT, (d) PT with recombination, (e) PRSA and (f) ECA/FOT

4 if XMAX [i] ∈ {XNEW [i], XNEW [j]} ∨ XMAX [j] ∈ {XNEW [i], XNEW [j]}
5 then return 1

6 else return
P ′

Xt
(XNEW [i])·P ′

Xt
(XNEW [j])

P ′
Xt

(Xt[i])·P ′
Xt

(Xt[j])
· S(X′

t|X′
NEW )

S(X′
NEW

|X′
t)

Note that the temperatures of the current and accepted solutions remain the same. ECA can be viewed
as a combination between the family-competitive, elitist replacement rule from regular GAs [25] and the
coupled acceptance rule AC . To see the difference between ECA and AC let us consider 2 parent states
and their offspring such that P ′

Xt
(XNEW [i]) > P ′

Xt
(Xt[j]) > P ′

Xt
(Xt[i]) > P ′

Xt
(XNEW [j]). Call F =

P ′
Xt

(XNEW [i])

P ′
Xt

(Xt[i])
· P ′

Xt
(XNEW [j])

P ′
Xt

(Xt[j])
. If F < 1, AC may loose XNEW [i] which is the best solution of this family,

while if F > 1, AC accepts XNEW [j] which is the worst solution.

Combining the FOT temperature assignment mechanism and the ECA acceptance rule leads to the
ECA/FOT MCMC algorithm: each generation the temperatures of each individual in the population are
recomputed with FOT, new individuals are proposed by mutation and recombination, and are accepted - or
rejected - with the ECA acceptance rule. It is important to note that at the individual level the transition
matrix of ECA/FOT is not stationary, since, in time, the same fitness values may be associated with differ-
ent temperatures. At the population level however, the transition matrix is stationary because for the same
population of individuals, the temperature is always assigned in the same way. The ECA/FOT MCMC
is aperiodic, since, for each state, there is a non-zero probability to remain in the current state, and irre-
ducible, because it has a non-zero probability to arrive from each state to each other state. If the state space
is finite, ECA/FOT converges to a distribution R(·) =

∏i=1
N R′(·), where R′(·) is the unnormalised distri-

bution for a single chain which depends on TempMAX and TempMIN , the temperature assignment (e.g.
geometrically) and the size of the population.

6 Experimental results

To illustrate the use of the ECA/FOT algorithm we have applied 6 (E)MCMC algorithms to the well known
deceptive trap function [9], and counted the number of different solutions visited as a function of their fit-
ness. The 6 algorithms are multiple independent MCMC chains (MIC), population MCMC (popMCMC),
parallel tempering (PT), parallel tempering with recombination, parallel recombinative simulated annealing
(PRSA), and elitist coupled acceptance with fitness ordered tempering (ECA/FOT). The first three algo-
rithms do not apply recombination, while the other three do. For comparison purposes, we sample for each
algorithm from the Boltzmann distribution exp ( f(·)

Temp[·] ). In the MIC algorithm, each chain has been given
a constant temperature calculated with the PT ladder. The PRSA algorithm uses the MH acceptance rule A
(instead of the logistic acceptance rule), and two single acceptance/rejection competition between a parent
and one of its children.

The trap function has 10 building blocks of length k = 3 and a linearly scaled fitness function: f =∑10
i=1 i · fi. fi is the fitness value of the i-th trap function and depends only on the number of one bits



at each building block: fi(3) = 5, fi(2) = 0, fi(1) = 3, fi(0) = 4. The algorithmic parameters are
chosen as follows. We set TempMAX = 160 for the MH acceptance rule and TempMAX = 320 for
the ECA acceptance rule, resulting in an acceptance probability of 0.73 for two individuals with fitness
difference equal to 50. TempMIN is equal to 1. We choose a geometrically increasing temperature ladder
that increases the temperature each step with β = exp ( 1

s · log TempMIN

TempMAX
), where s is the total number of

steps for the scheduler. At step j, Tempj = TempMAX · βj . We choose the population size N equal with
the number of generations to obtain the same β for all algorithms. If β = 0.97, we obtain N = 250. The
mutation rate is 3

l , which is the optimal rate for a deceptive function with building block length k = 3. The
recombination operator is two point crossover . For each algorithm, we have made 10 independent runs and
sampled the whole population every 10 generations, resulting in 25 samples and 6250 solutions in total.

Figure 1 shows - as expected - the advantage of using recombination as proposal operator for functions
(or distributions) whose structure can be exploited by the crossover operator. One can also notice that
ECA/FOT is more biased towards highly likely individuals than PT or PRSA.

7 Conclusion

Evolutionary Markov Chain Monte Carlo combine techniques form Evolutionary Computation and parallel
Markov Chain Monte Carlo algorithms to design new algorithms for sampling or optimising complex
distributions resp. functions. EMCMC algorithms offer new proposal operators and new acceptance rules.
Individual states in the population can be single MCMC chains that interact with each other, though it is
not necessary that they are indeed single MCMC chains. At the population level however - this is, states
are entire populations of given size - EMCMC algorithms need to be MCMC chains.

We have surveyed a number of existing EMCMC algorithms in the literature, and categorised them in
two classes: family-competitive EMCMC and population-driven EMCMC algorithms. We have also intro-
duced an EMCMC algorithm, ECA/FOT, which applies a Fitness Ordered Temperature assignment mecha-
nism and an Elitist Coupled Acceptance rule. EAC/FOT is, at population level, an MCMC which converges
to a stationary distribution biased towards the most likely states.

Clearly, the merger of the EC and MCMC paradigms represents a rich source for future development
of powerful sampling and optimisation algorithms.
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