
Approximation Algorithms

for Spreading Points

Sergio Cabello

institute of information and computing sciences, utrecht university

technical report UU-CS-2003-040

www.cs.uu.nl

Approximation Algorithms for Spreading Points ∗

Sergio Cabello

Institute of Information and Computing Sciences

Universiteit Utrecht

The Netherlands

sergio@cs.uu.nl

Abstract

We consider the problem of placing n points, each one inside its own, prespecified
disk, with the objective of maximizing the distance between the closest pair of them. The
disks can overlap and have different sizes. The problem is NP-hard and does not admit a
PTAS. In the L∞ metric, we give a 2-approximation algorithm running in O(n

√
n log2 n)

time. In the L2 metric, we give a quadratic time algorithm that gives an 8

3
-approximation

in general, and a ∼ 2.2393-approximation when all the disks are congruent.

1 Introduction

The problem of distant representatives was recently introduced by Fiala et al. [12, 13]: given
a collection of subsets of a metric space and a value δ > 0, we want a representative of
each subset such any two representatives are at least δ apart. They introduced this problem
as a variation of the problem of systems of disjoint representatives in hypergraphs [3]. It
generalizes the problem of systems of distinct representatives, and it has applications in areas
such as scheduling or radio frequency (or channel) assignment to avoid interferences.

As shown by Fiala et al. [12, 13], and independently by Baur and Fekete [4], the problem
of deciding the existence of distant representatives is NP-hard even in the plane under natural
metrics. Furthermore, in most applications, rather than systems of representatives at a given
distance, we would be more interested in systems of representatives whose closest pairs are
as separated as possible. Therefore, the design of approximation algorithms for the latter
problem seems a suitable alternative.

Here, we consider the problem of maximizing the distance of the closest pair in systems
of representatives in the plane with either the L∞ or the Euclidean L2 metric. The subsets
that we consider are (possibly intersecting) disks.

This geometric optimization problem finds applications in cartography [7], graph drawing
[8], and more generally in data visualization, where the readability of the displayed data is
a basic requirement, and often a difficult task. In many cases, there are some restrictions
on how and where each object has to be drawn, as well as some freedom. For example,
cartographers improve the readability of a map by displacing some features with respect to
their real position. The displacement has to be small to preserve correctness. A similar
problem arises when displaying a molecule in the plane: the exact position of each atom is

∗Revised in April 2004. Partially supported by Cornelis Lely Stichting, NWO, and DIMACS.

1

not known, but instead, we have a region where each atom is located. In this case, we also
have some freedom where to draw each atom, and a thumb rule tells that the drawing of
the molecule improves as the separation between the atoms increases. In both applications,
the problem can be abstracted as follows. We want to place a fixed number of points (0-
dimensional cartographic features or atoms) in the plane, but with the restriction that each
point has to lie inside a prespecified region. The regions may overlap, and we want the
placement that maximizes the distance between the closest pair. The region where each point
has to be placed is application dependent. We will assume that they are given, and that they
are disks.

Formulation of the problem. Given a distance d in the plane, consider the function
D : (R2)n → R that gives the distance between a closest pair of n points

D(p1, . . . , pn) = min
i6=j

d(pi, pj).

Let B = {B1, . . . , Bn} be a collection of (possibly intersecting) disks in R
2 under the metric

d. A feasible solution is a placement of points p1, . . . , pn with pi ∈ Bi. We are interested in a
feasible placement p∗1, . . . , p

∗
n that maximizes D

D(p∗1, . . . , p
∗
n) = max

(p1,...,pn)∈B1×···×Bn

D(p1, . . . , pn).

We use D(B) to denote this optimal value.
A t-approximation, with t ≥ 1, is a feasible placement p1, . . . , pn, with t · D(p1, . . . , pn) ≥

D(B). We will use B(p, r) to denote the disk of radius r centered at p. Recall that under
the L∞ metric, B(p, r) is an axis-aligned square centered at p and side length 2r. We assume
that the disk Bi is centered at ci and has radius ri, so Bi = B(ci, ri).

Related work. The decision problem associated to our optimization one is the original
distant representatives problem: for a given value δ, is D(B) ≥ δ? Fiala et al. [12, 13] showed
that this problem is NP-hard in the Euclidean and Manhattan metrics. Furthermore, their
result can be modified to show that, unless NP = P , there is a certain constant T > 1 such
that no T -approximation is possible. They also notice that the one dimensional problem can
be solved using the scheduling algorithm by Simons [22].

Closely related are geometric dispersion problems: we are given a polygonal region of the
plane and we want to place n points on it such that the closest pair is as far as possible.
This problem has been considered by Baur and Fekete [4] (see also [6, 11]), where both
inapproximability results and approximation algorithms are presented. Their NP-hardness
proof and inapproximability results can easily be adapted to show inapproximability results
for our problem, showing also that no polynomial time approximation scheme is possible,
unless P = NP .

In a more general setting, we can consider the following problem: given a collection
S1, . . . , Sn of regions in R

2, and a function f : S1 × · · · × Sn → R that describes the quality
of a feasible placement (p1, . . . , pn) ∈ S1 × · · · × Sn, we want to find a feasible placement
p∗1, . . . , p

∗
n such that

f(p∗1, . . . , p
∗
n) = max

(p1,...,pn)∈S1×···×Sn

f(p1, . . . , pn).

2

metric regions approximation ratio running time

L∞ arbitrary disks 2 O(n
√

n log2 n)

L2

arbitrary disks 8
3 O(n2)

congruent disks ∼ 2.2393 O(n2)

Table 1: Approximation algorithms for the plane in this paper.

Geometric dispersion problems are a particular instance of this type where we want to max-
imize the function D over k copies of the same polygonal region. In [5], given a graph on the
vertices p1, . . . , pn, placements that maximize the number of straight-line edges in a given set
of orientations are considered.

Our results. A summary of our approximation algorithms is given in Table 1. The main
idea in our approach is to consider an “approximate-placement” problem in the L∞ metric:
given a value δ that satisfies 2δ ≤ D(B), we can provide a feasible placement p1, . . . , pn

such that D(p1, . . . , pn) ≥ δ. The proof can be seen as a suitable packing argument. This
placement can be computed in O(n

√
n log n) time using the data structure by Mortensen [19]

and the technique by Efrat et al. [9] for computing a matching in geometric settings. See
Section 2 for details.

We then combine the “approximate-placement” algorithm with the geometric features of
our problem to get a 2-approximation in the L∞ metric. This can be achieved by paying an
extra logarithmic factor; see Section 3.

The same techniques can be used in the L2 metric, but the approximation ratio becomes
8/3 and the running time increases to O(n2). However, when we restrict ourselves to congruent
disks, a trivial adaptation of the techniques gives an approximation ratio of ∼ 2.2393. This
is explained in Section 4. We conclude in Section 5

2 A placement algorithm in L∞

Consider an instance B = {B1, . . . , Bn} of the problem in the L∞ metric, and let δ∗ = D(B) be
the maximum value that a feasible placement can attain. We will consider the “approximate-
placement” problem that follows: given a value δ, we provide a feasible placement p1, . . . , pn

such that, if δ ≤ 1
2δ∗ then D(p1, . . . , pn) ≥ δ, and otherwise there is no guarantee on the place-

ment. We start by presenting an algorithm and discussing its approximation performance.
Then we discuss a more efficient version of it.

2.1 Algorithm and its approximation ratio

Let Λ = Z
2, that is, the lattice Λ = {(a, b) | a, b ∈ Z}. For any δ ∈ R and any point

p = (px, py) ∈ R
2, we define δp = (δpx, δpy) and δΛ = {δp | p ∈ Λ}. Observe that δΛ is also

a lattice. The reason to use this notation is that we can use p ∈ Λ to refer to δp ∈ δΛ for
different values of δ. An edge of the lattice δΛ is a horizontal or vertical segment joining two

3

Bi

p∗
i

Bi

δΛ

p∗
i

pi

pi Q

δΛ

Figure 1: Special cases where the disk Bi does not contain any lattice point. Left: Bi is fully
contained in a cell of δΛ. Right: Bi intersects an edge of δΛ.

points of δΛ at distance δ. The edges of δΛ divide the plane into squares of side length δ,
which we call the cells of δΛ.

The idea is that whenever 2δ ≤ δ∗, the lattice points δΛ almost provide a solution.
However, we have to treat as a special case the disks with no lattice point inside. More
precisely, let Q ⊂ δΛ be the set of points that cannot be considered as a possible placement
because there is another already placed point too near by. Initially, we have Q = ∅. If a disk
Bi does not contain any point from the lattice, there are two possibilities:

• Bi is contained in a cell C of δΛ; see Figure 1 left. In this case, place pi := ci in the
center of Bi, and remove the vertices of the cell C from the set of possible placements
for the other disks, that is, add them to Q.

• Bi intersects an edge E of δΛ; see Figure 1 right. In this case, choose pi on E ∩ Bi,
and remove the vertices of the edge E from the set of possible placements for the other
disks, that is, add them to Q.

We are left with disks, say B1, . . . , Bk, that have some lattice points inside. Consider
for each such disk Bi the set of points Pi := Bi ∩ (δΛ \ Q) as candidates for the placement
corresponding to Bi. Observe that Pi may be empty if (Bi ∩ δΛ) ⊂ Q. We want to make sure
that each disk Bi gets a point from Pi, and that each point gets assigned to at most one disk
Bi. We deal with this by constructing a bipartite graph Gδ with B := {B1, . . . , Bk} as one
class of nodes and P := P1 ∪ · · · ∪ Pk as the other class, and with an edge between Bi ∈ B
and p ∈ P whenever p ∈ Pi.

It is clear that a (perfect) matching in Gδ provides a feasible placement. When a matching
is not possible, the algorithm reports a feasible placement by placing each point in the center
of its disk. We call this algorithm Placement, and its pseudocode is given in Algorithm 1.
See Figure 2 for an example.

In any case, Placement always gives a feasible placement p1, . . . , pn, and we can then
compute the value D(p1, . . . , pn) by finding a closest pair in the placement. We will show
that, if 2δ ≤ δ∗, a matching exists in Gδ and moreover Placement(δ) gives a placement
whose closest pair is at distance at least δ. In particular, this implies that if Bi ∩ δΛ 6= ∅ but
Pi = Bi ∩ (δΛ \ Q) = ∅, then there is no matching in Gδ because the node Bi has no edges,
and so we can conclude that 2δ > δ∗. We first make the following definitions.

Definition 1 In the L∞ metric, we say that Placement(δ) succeeds if the computed place-

ment p1, . . . , pn satisfies D(p1, . . . , pn) ≥ δ. Otherwise, Placement(δ) fails.

4

Algorithm 1 Placement(δ)

Q := ∅ {Q ≡ Lattice points that cannot be used further}
for all Bi s.t. Bi ∩ δΛ = ∅ do

if Bi ∩ E 6= ∅ for some edge E of δΛ then

choose pi on Bi ∩ E;
add the vertices of E to Q

else {Bi is fully contained in a cell C of δΛ}
pi := ci;
add the vertices of C to Q;

P := ∅;
for all Bi s.t. Bi ∩ δΛ 6= ∅ do

Pi := Bi ∩ (δΛ \ Q);
P := P ∪ Pi;

construct Gδ := ({Bi |Bi ∩ δΛ 6= ∅} ∪ P, {(Bi, p)|p ∈ Pi});
if Gδ has a (perfect) matching then

for each disk Bi, let pi be the point that it is matched to;
else

for each disk Bi, let pi := ci;

B1

B2

B3

B4

B5

B6

B1

B4

B3

B2
B5

B6

p1

p2

p8

p1 p2

p3 p4 p5 p6

p7

p8

q1

q2

q1

q2

p5

p6

Q

Figure 2: Example showing the main features of the placement algorithm in L∞.

Lemma 2 If 2δ ≤ δ∗, then Placement(δ) succeeds.

Proof: The proof is divided in two steps. Firstly, we will show that if 2δ ≤ δ∗ then the
graph Gδ has a matching. Secondly, we will see that if p1, . . . , pn is a placement computed by
Placement(δ) when 2δ ≤ δ∗, then indeed D(p1, . . . , pn) ≥ δ.

Consider an optimal placement p∗1, . . . , p
∗
n. The points that we added to Q due to a disk

Bi are in the interior of B(p∗i , δ
∗/2) because of the following analysis:

• If Bi ∩ δΛ = ∅ and Bi is completely contained in a cell C of δΛ, then p∗
i is in C, and

C ⊂ B(p∗i , δ) ⊂ B(p∗i , δ
∗/2); see Figure 1 left.

5

• If Bi ∩ δΛ = ∅ and there is an edge E of δΛ such that Bi ∩E 6= ∅, then E ⊂ B(p∗i , δ) ⊂
B(p∗i , δ

∗/2); see Figure 1 right.

The interiors of the disks (in L∞) B(p∗i , δ
∗/2) are disjoint, and we can use them to con-

struct a matching in Gδ as follows. If Bi∩ δΛ 6= ∅, then B(p∗i , δ
∗/2)∩Bi contains some lattice

point pi ∈ δΛ. Because the interiors of the disks B(p∗
i , δ

∗/2) are disjoint, we have pi 6∈ Q and
pi ∈ Pi. We cannot directly add the edge (Bi, pi) to the matching that we are constructing
because it may happen that pi is on the boundary of B(p∗i , δ

∗/2)∩Bi, but also on the bound-
ary of B(p∗j , δ

∗/2) ∩ Bj. However, in this case, B(p∗i , δ
∗/2) ∩ Bi ∩ δΛ contains an edge of δΛ

inside. If we match each Bi to the lexicographically smallest point in B(p∗
i , δ

∗/2) ∩ Bi ∩ δΛ,
then, because the interiors of disks B(p∗i , δ

∗/2) are disjoint, each point is claimed by at most
one disk. This proves the existence of a matching in Gδ provided that 2δ ≤ δ∗.

For the second part of the proof, let pi, pj be a pair of points computed by Placement(δ).
We want to show that pi, pj are at distance at least δ. If both were computed by the matching
in Gδ, they both are different points in δΛ, and so they have distance at least δ. If pi was not
placed on a point of δΛ (at ci or on an edge of δΛ), then the lattice points closer than δ to
pi were included in Q, and so the distance to any pj placed during the matching of Gδ is at
least δ. If both pi, pj were not placed on a point of δΛ, then Bi, Bj do not contain any point
from δΛ, and therefore ri, rj < δ/2. Two cases arise:

• If both Bi, Bj do not intersect an edge of δΛ, by the triangle inequality we have
d(pi, pj) ≥ d(p∗i , p

∗
j) − d(pi, p

∗
i) − d(pj , p

∗
j) > δ∗ − δ/2 − δ/2 ≥ δ, provided that 2δ ≤ δ∗.

• If one of the disks, say Bi, intersects an edge E of δΛ, then Bi is contained in the two
cells of δΛ that have E as an edge. Let C be the six cells of δΛ that share a vertex
with E. If Bj does not intersect any edge of δΛ, then Bj ∩ C = ∅ because otherwise
d(p∗i , p

∗
j) < 2δ, and so d(pi, pj) ≥ δ. If Bj intersects an edge E ′ of δΛ, we have E∩E ′ = ∅

because otherwise d(p∗i , p
∗
j) < 2δ. It follows that d(pi, pj) ≥ δ.

Notice that, in particular, if rmin is the radius of the smallest disk and we set δ =
(rmin/

√
n), then the nodes of type Bi in Gδ have degree n, and there is always a matching.

This implies that δ∗ = Ω(rmin/
√

n).
Observe also that whether Placement fails or succeeds is not a monotone property. That

is, there may be values δ1 < δ2 < δ3 such that both Placement(δ1) and Placement(δ3)
succeed, but Placement(δ2) fails. This happens because for values δ ∈ (δ∗

2 , δ∗], we do not
have any guarantee on what Placement(δ) does.

The following observations will be used later.

Observation 3 If Placement(δ) succeeds for B, but Placement(δ) fails for a translation

of B, then δ ≤ δ∗ < 2δ and we have a 2-approximation.

Observation 4 If for some δ > δ′, Placement(δ) succeeds, but Placement(δ ′) fails, then

δ∗ < 2δ′ < 2δ and we have a 2-approximation.

The algorithm can be adapted to compute Placement(δ + ε) for an infinitesimal ε > 0
because only the points of δΛ lying on the boundaries of B1, . . . , Bn are affected. More
precisely, if a point δp ∈ δΛ is in the interior of Bi, then, for a sufficiently small ε > 0, the

6

point (δ + ε)p ∈ (δ + ε)Λ is in Bi as well. On the other hand, if a point δp ∈ δΛ is on the
boundary of Bi, then, for a sufficiently small ε > 0, the point (δ + ε)p ∈ (δ + ε)Λ is outside Bi

if and only if δp is the point of the segment lp ∩ Bi furthest from the origin, where lp is the
line passing through the origin and p. Similar arguments apply for deciding if a disk Bi is
contained in a cell of (δ + ε)Λ or it intersects some of its edges. Therefore, for an infinitesimal
ε > 0, we can decide if Placement(δ + ε) succeeds or fails. This leads to the following
observation.

Observation 5 If Placement(δ) succeeds, but Placement(δ + ε) fails for an infinitesimal

ε > 0, then δ∗ ≤ 2δ and we have a 2-approximation.

2.2 Efficiency of the algorithm

The algorithm Placement, as stated so far, is not strongly polynomial because the sets
Pi = Bi ∩ (δΛ \ Q) can have arbitrarily many points, depending on the value δ. However,
when Pi has more than n points, we can just take any n of them. This is so because a node
Bi with degree at least n is never a problem for the matching: if Gδ \ Bi does not have a
matching, then Gδ does not have it either; if Gδ \ Bi has a matching M , then at most n − 1
nodes from the class P participate in M , and one of the n edges leaving Bi has to go to a
node in P that is not in M , and this edge can be added to M to get a matching in Gδ .

For a disk Bi we can decide in constant time if it contains some point from the lattice
δΛ: we round its center ci to the closest point p of the lattice, and depending on whether p
belongs to Bi or not, we decide. Each disk Bi adds at most 4 points to Q, and so |Q| ≤ 4n.
We can construct Q and remove repetitions in O(n log n) time.

If a disk Bi has radius bigger than 3δ
√

n, then it contains more than 5n lattice points,
that is, |Bi ∩ δΛ| > 5n. Because Q contains at most 4n points, Pi has more than n points.
Therefore, we can shrink the disks with radius bigger than 3δ

√
n to disks of radius exactly

3δ
√

n, and this does not affect to the construction of the matching. We can then assume that
each disk Bi ∈ B has radius O(δ

√
n). In this case, each Bi contains at most O(n) points of

δΛ, and so the set P =
⋃

i Pi has O(n2) elements.
In fact, we only need to consider a set P with O(n

√
n) points. The idea is to divide the

disks B into two groups: the disks that intersect more than
√

n other disks, and the ones that
intersect less than

√
n other disks. For the former group, we can see that they bring O(n

√
n)

points in total to P . As for the latter group, we only need to consider O(
√

n) points per disk.

Lemma 6 It is sufficient to consider a set P with O(n
√

n) points. Moreover, we can con-

struct such a set P in O(n
√

n log n) time.

Proof: As mentioned above, we can assume that all disks in B have radius O(δ
√

n). Among
those disks, let B< be the set of disks that intersect less than

√
n other disks in B, and let

B> be the set of disks that intersect at least
√

n other disks in B. We treat B< and B>

independently. We first show that for the disks in B< we only need to consider O(n
√

n)
points, and then we show that the disks in B> add at most O(n

√
n) points to P .

For each disk Bi ∈ B<, it is enough if Pi consists of
√

n points. This is so because then
the node Bi is never a problem for the matching in Gδ. If Gδ \Bi does not have a matching,
then Gδ does not have it either. If Gδ \ Bi has a matching M , then at most

√
n− 1 nodes of

Pi participate in M because only the disks that intersect Bi can use a point in Pi, and there

7

are at most
√

n − 1 by definition of B<. Therefore, one of the
√

n edges leaving Bi has to go
to a node in Pi that is not in M , and this edge can be added to M to get a matching in Gδ.

We can construct the sets Pi for all the disks in B< in O(n
√

n log n) time. First, construct
Q and preprocess it to decide in O(log n) time if a query point is in Q or not. This takes
O(n log n) time. For each disk Bi ∈ B<, pick points in Bi ∩ (δΛ \ Q) as follows. Initialize
Pi = ∅. Take a point p ∈ Bi ∩ δΛ and check in O(log n) time if p ∈ Q. If p ∈ Q, then take
another point p and repeat the test. If p 6∈ Q, then add p to Pi. Stop when Pi has

√
n points

or there are no points left in Bi ∩ δΛ.
For a disk Bi we may spend Ω(n) time if, for example, Q ⊂ (Bi ∩ δΛ). However, each

point in Q has appeared in the construction of at most
√

n different sets Pi, as otherwise
there is a point q ∈ Q that intersects

√
n disks in B<, which is impossible. Therefore, we have

spent O(n
√

n log n) time overall.
As for the disks in B>, let U =

⋃

Bi∈B<
Bi be the region that they cover. We will see how

to compute U ∩ δΛ in O(n
√

n log n) time, and this will finish the proof. Consider the disk
Bi ∈ B with biggest radius, say r, and grow each disk in B to have radius r. We keep calling
them B. Construct a subset B̃> ⊂ B> as follows. Initially set B̃> = ∅, and for each Bi ∈ B>,
add Bi to B̃> if and only if Bi does not intersect any disk in the current B̃>.

Consider the number I of intersections between elements of B̃> and B. On the one
hand, each disk in B̃> intersects at least

√
n elements of B by definition of B>, so we have

|B̃>|
√

n ≤ I. On the other hand, because the disks in B̃> are disjoint by construction and all
have the same size after the growing, each disk of B can intersect at most four other disks of
B̃>, and we get I ≤ 4n. We conclude that |B̃>| ≤ O(

√
n).

Each disk in B> intersects some disk in B̃>. Therefore, because r is the radius of the
largest disk in B>, we can cover the whole region U by putting disks of radius 3r centered
at the disks of B̃>. Formally, we have that U ⊂ ⋃

Bi∈B̃>
B(ci, 3r) =: Ũ . There are O(

√
n)

such disks, and each of them contains O(n) points of δΛ because 3r = O(δ
√

n). We can
then compute all the lattice points P̃ = Ũ ∩ δΛ in this region and remove repetitions in
O(n

√
n log n) time. In particular, we have that |U ∩ δΛ| ≤ |P̃ | = O(n

√
n).

To report U ∩ δΛ, we first compute U and decide for each point in P̃ if it belongs to U
or not. Because the disks behave like pseudo-disks, U has linear size description, and we can
compute it in near-linear time [16]. We can then process U to decide in O(log n) time if it
contains a query point or not. We query with the O(n

√
n) points in P̃ , and add to P those

that are contained in U . This accomplishes the computation of U ∩ δΛ in O(n
√

n log n) time.

We are left with the following problem: given a set P of O(n
√

n) points, and a set B of
n disks, find a maximum matching between P and B such that a point is matched to a disk
that contains it. We also know that each Bi contains at most O(n) points of P .

If we forget about the geometry of the problem, we have a bipartite graph Gδ whose
smallest class has n vertices and O(n2) edges. We can construct Gδ explicitly in O(n2) time,
and then compute a maximum matching in O(

√
nn2) = O(n2.5) time [15]; see also [21]. In

fact, to achieve this running time it would be easier to forget Lemma 6, and construct each
set Pi by choosing 5n points per disk Bi, and then removing Q from them.

However, the graph Gδ does not need to be constructed explicitly because its edges are
implicitly represented by the the disk-point containment. This type of matching problem,
when both sets have the same cardinality, has been considered by Efrat et al. [9, 10]. Although
in our setting one of the sets may be much larger than the other one, we can make minor

8

modifications to the algorithm in [9] and use Mortensen’s data structure [19] to get the
following result.

Lemma 7 In the L∞ metric, Placement can be adapted to run in O(n
√

n log n) time.

Proof: We compute the set P of Lemma 6 in O(n
√

n log n) time, and then apply the idea by
Efrat et al. [9] to compute the matching; see also [10]. The maximum matching has cardinality
at most n, and then the Dinitz’s matching algorithm finishes in O(

√
n) phases [15]; see also

[21].
In each of the phases, we need a data structure for the points P that supports point

deletions and witness queries with squares (disks in L∞). If we construct the data structure
anew in each phase, and P has Ω(n

√
n) points, then we would need Ω(n

√
n) time per phase,

which is too much. Instead, we construct the data structure D(P) of [19] only once, and
reuse it for all phases. The data structure D(P) can be constructed in O(n

√
n log n) time,

and it supports insertions and deletions in O(log n) time per operation. Moreover, D(P) can
be modified for answering witness queries in O(log n) time [20]: for a query rectangle R, it
reports a witness point in R ∩ P , or the empty set.

We show how a phase of the algorithm can be implemented in O(n log n) time. Consider
the construction of the layered graph L, as in Section 3 of [9]; B for the odd layers, and P for
the even layers. We make the following modifications:

• We construct the whole layered graph L but without the last layer. Call it L ′. The
reason is that the graph L′ only has O(n) vertices. All odd layers together have at most
n vertices; an odd layer is a subset of B, and each Bi ∈ B appears in at most one layer.
In all the even layers together except for the last, the number of vertices is bounded by
the matching, and so it has O(n) vertices (points).

The last layer may have a superlinear number of vertices (points), but we can avoid its
complete construction: if we are constructing a layer L2j and we detect that it contains
more than n vertices, then L2j necessarily has an exposed vertex, that is, a vertex that
is not used in the current matching. In this case we just put back into D all the vertices
of L2j that we already computed.

For constructing L′ we need to query O(n) times the data structure D, and make O(n)
deletions. This takes O(n log n) time. If P ′ ⊂ P is the subset of points that are in L′,
the final status of D is equivalent, in time bounds, to D(P \ P ′).

• For computing the augmenting paths, we use the reduced version L′ that we have
computed, together with the data structure D(P \ P ′). All the layers but the last can
be accessed using L′; when we need information of the last layer, we can get the relevant
information by querying D(P \ P ′) for a witness and delete the witness element from
it. We need at most one such query per augmenting path, and so we make at most n
witness queries and deletions in D. The required time is O(n log n).

• Instead of constructing the data structure D(P) anew at the beginning of each phase,
we reconstruct it at the end of each phase. Observe that we have deleted O(n) points
from D(P). We can insert all of them back in O(n log n) time because the data structure
is fully-dynamic. In fact, because the points that we are inserting back are exactly all
the points that were deleted, a data structure supporting only deletions could also do

9

the job: for each deletion we keep track of the operations that have been done and now
we do them backwards.

We have O(
√

n) phases, and each phase takes O(n log n) time. Therefore, we only need
O(n

√
n log n) time for all the phases after P and D(P) are constructed.

Computing the closest pair in a set of n points can be done in O(n log n) time, and so
the time to decide if Placement(δ) succeeds or fails is dominated by the time needed to
compute Placement(δ).

3 Approximation algorithms for L∞

When we have a lower and an upper bound on the optimum value δ∗ = D(B), we can use
Lemma 7 to perform a binary search on a value δ such that Placement(δ) succeeds, but
Placement(δ + ε) fails, where ε > 0 is any constant fixed a priori. Due to Lemma 2, this
means that δ ≤ δ∗ < 2(δ + ε) and so we can get arbitrarily close, in absolute error, to a
2-approximation of δ∗.

We can also apply parametric search [17] to find a value δ̃ such that Placement(δ̃)
succeeds, but Placement(δ̃ + ε) fails for an infinitesimally small ε > 0. Such a value δ̃
can be computed in O(n3 log2 n) time, and it is a 2-approximation because of Observation 5.
Megiddo’s ideas [18] of using a parallel algorithms to speed up parametric search are not very
fruitful in this case because the known algorithms for computing maximum matchings [14] in
parallel machines do not have an appropriate tradeoff between the number of processors and
the running time.

Instead, we will use the geometric characteristics of our problem to find a 2-approximation
δ̃ in O(n

√
n log2 n) time. The idea is to consider for which values δ the algorithm changes its

behavior, and use it to narrow down the interval where δ̃ can lie. More specifically, we will
use the following facts in a top-bottom fashion:

• For a given δ, only the disks Bi with radius at most 3δ
√

n are relevant. Therefore, the
algorithm constructs non-isomorphic graphs Gδ if δ is below or above ri

3
√

n
.

• The disks Bi with radius ri < δ∗

4 are disjoint.

• If all the disks in B are disjoint, placing each point in the center of its disk gives a
2-approximation.

• For a value δ, assume that the disks B can be partitioned into two sets B1,B2 such that
the distance between any disk in B1 and any disk in B2 is bigger than δ. If 2δ ≤ δ∗,
then we can compute a successful placement by putting together Placement(δ) for B1

and and Placement(δ) for B2.

• If for a given δ and B we cannot apply the division of the previous item, and each disk
Bi ∈ B has radius at most R, then B can be enclosed in a disk B of radius O(|B|R).

We show how to solve this last type of problems, and then we use it to prove our main
result.

10

Lemma 8 Let B be an instance consisting of m disks such that each disk Bi ∈ B has radius

O(r
√

k), and assume that there is a disk B of radius R = O(mr
√

k) enclosing all the disks in

B. If Placement(r
3
√

k
) succeeds, then we can compute in O(m

√
m log2 mk) time a placement

p1, . . . , pm with pi ∈ Bi that yields a 2-approximation of D(B).

Proof: The proof is divided into three parts. Firstly, we show that we can assume that the
origin is placed at the center of the enclosing disk B. Secondly, we narrow down our search
space to an interval [δ1, δ2] such that Placement(δ1) succeeds but Placement(δ2) fails.
Moreover, for any δ ∈ (δ1, δ2], the subset of lattice points P̃ ⊂ Λ such that δP̃ are inside the
enclosing ball B is exactly the same. Finally, we consider all the critical values δ ∈ [δ1, δ2]
for which the flow of control of Placement(δ) is different than for Placement(δ + ε) or
Placement(δ − ε). The important observation is that the values δ1, δ2 are such that not
many critical values are in the interval [δ1, δ2].

Let B′ be a translation of B such that the center of the enclosing disk B is at the origin.
By hypothesis, Placement(r

3
√

k
) for B succeeds. If Placement(r

3
√

k
) for B′ fails, then

Placement(r
3
√

k
) for B gives a 2-approximation due to Observation 3, and we are done.

From now on, we assume that Placement(r
3
√

k
) succeeds and the center of B is at the

origin. This finishes the first part of the proof.
As for the second part, consider the horizontal axis h. Because the enclosing disk B has

radius R = O(mr
√

k), the lattice (r
3
√

k
)Λ has O(mk) points in B ∩ h. Equivalently, we have

t = max{z ∈ Z s.t.(r
3
√

k
)(z, 0) ∈ B} = b 3R

√
k

r c = O(mk). In particular, R
t+1 ≤ r

3
√

k
.

If Placement(R
t+1) fails, then Placement(r

3
√

k
) is a 2-approximation due to Obser-

vation 4. So we can assume that Placement(R
t+1) succeeds. We can also assume that

Placement(R
1) fails, as otherwise B consists of only one disk.

We perform a binary search in Z∩ [1, t+1] to find a value t′ ∈ Z such that Placement(R
t′)

succeeds but Placement(R
t′−1) fails. We can do this with O(log t) = O(log mk) calls

to Placement, each taking O(m
√

m log m) time due to Lemma 7, and we have spent
O(m

√
m log2 mk) time in total. Let δ1 := R

t′ and δ2 := R
t′−1 .

Consider the lattice points P̃ := Λ
⋂

[−(t′ − 1), t′ − 1]2. For any δ ∈ (δ1, δ2], the points
δP̃ are in B. The intuition behind why these values δ1, δ2 are relevant is the following. If
for a point p ∈ Λ we consider δp as a function of δ, then the points p that are further from
the origin move quicker. Therefore, the points δ2P̃ cannot go very far from δ1Λ because the
extreme cases are the points on ∂B. This finishes the second part of the proof.

Before we start the third part, let us state and prove the property of δ1, δ2 that we will
use later; see Figure 3. If p ∈ Λ is such that δ1p is in the interior of B, and Cp is the union
of all four cells of δ1Λ having δ1p as a vertex, then δ2p ∈ Cp, and more generally, δp ∈ Cp for
any δ ∈ [δ1, δ2]. Therefore, if for a point p ∈ Λ there is a δ ∈ [δ1, δ2] such that δp ∈ ∂Bi, then
∂Bi must intersect Cp.

To show that indeed this property holds, consider a point p = (px, py) ∈ Λ such that δ1p is
in the interior of B. We then have |δ1px| < R, and because |px| < R

δ1
= R

R/t′ = t′ and px ∈ Z,

we conclude that |px| ≤ t′ − 1. This implies that

|δ2px − δ1px| =

∣

∣

∣

∣

δ1px

(δ2

δ1
− 1

)

∣

∣

∣

∣

=

∣

∣

∣

∣

δ1px

(t′

t′ − 1
− 1

)

∣

∣

∣

∣

= δ1
|px|

t′ − 1
≤ δ1.

The same arguments shows that
|δ2py − δ1py| ≤ δ1.

11

δ1p

Cp

δ2p

To the origin

δ1Λ

B

Figure 3: If for p ∈ Λ we have δ1p ∈ B, then δ2p lies in one of the cells of δ1Λ adjacent to δ1p.

Since each coordinate of δ2p differs by at most δ1 of the coordinates of δ1p, we see that indeed
δ2p is in the cells Cp of δ1Λ.

We are ready for the third part of the proof. Consider the critical values δ ∈ [δ1, δ2] for
which the flow of control of the Placement changes. They are the following:

• A point p ∈ Λ such that δp ∈ Bi but (δ + ε)p /∈ Bi or (δ − ε)p 6∈ Bi for an infinitesimal
ε > 0. That is, δp ∈ ∂Bi.

• Bi intersects an edge of δΛ, but not of (δ + ε)Λ (δ − ε)Λ for an infinitesimal ε > 0.

Because of the property of δ1, δ2 stated above, only the vertices V of cells of δ1Λ that
intersect ∂Bi can change the flow of control of Placement. In the L∞ metric, because the
disks are axis-aligned squares, the vertices V are distributed along two axis-aligned rectangles
R1 and R2. All the vertices of V along the same side of R1 or R2 come in or out of Bi at the
same time, that is, they intersect ∂Bi for the same value δ. Therefore, each disk Bi induces
O(1) such critical values ∆i changing the flow of control of Placement, and we can compute
them in O(1) time.

We can compute all the critical values ∆ =
⋃m

i=1 ∆i and sort them in O(m log m) time.
Using a binary search on ∆, we find δ3, δ4 ∈ ∆, with δ3 < δ4, such that Placement(δ3)
succeeds but Placement(δ4) fails. Because |∆| = O(m), this can be done in O(m

√
m log2 m)

time with O(log m) calls to Placement. The flow of control of Placement(δ4) and of
Placement(δ3 + ε) are the same. Therefore, Placement(δ3 + ε) also fails, and we conclude
that Placement(δ3) yields a 2-approximation because of Observation 5.

Theorem 9 Let B = {B1, . . . , Bn} be a collection of disks in the plane with the L∞ metric.

We can compute in O(n
√

n log2 n) time a placement p1, . . . , pn with pi ∈ Bi that yields a

2-approximation of D(B).

12

Proof: Let us assume that r1 ≤ · · · ≤ rn, that is, Bi is smaller than Bi+1. Consider the values
∆ = { r1

3
√

n
, . . . , rn

3
√

n
, 4rn}. We know that Placement(r1

3
√

n
) succeeds, and we can assume that

Placement(4rn) fails; if it would succeed, then the disks in B would be disjoint, and placing
each point pi := ci would give a 2-approximation.

We use Placement to make a binary search on the values ∆ and find a value rmax such
that Placement(rmax

3
√

n
) succeeds but Placement(rmax+1

3
√

n
) fails. This takes O(n

√
n log2 n)

time, and two cases arise:

• If Placement(4rmax) succeeds, then rmax 6= rn. In the case that 4rmax > rmax+1

3
√

n
,

we have a 2-approximation due to Observation 4. In the case that 4rmax ≤ rmax+1

3
√

n
,

consider any value δ ∈ [4rmax, rmax+1

3
√

n
]. On the one hand, the balls Bmax+1, . . . , Bn

are not problematic because they have degree n in Gδ . On the other hand, the balls
B1, . . . , Bmax have to be disjoint because δ∗ ≥ 4rmax, and they determine the closest
pair in Placement(δ). In this case, placing the points p1, . . . , pmax at the centers
of their corresponding disks, computing the distance δ̃ of their closest pair, and using
Placement(δ̃) for the disks Bmax+1, . . . , Bn provides a 2-approximation.

• If Placement(4rmax) fails, then we know that for any δ ∈ [rmax

3
√

n
, 4rmax] the disks

Bj with
rj

3
√

n
≥ 4rmax have degree at least n in Gδ . We shrink them to have radius

12rmax
√

n, and then they keep having degree at least n in Gδ, so they are not problem-
atic for the matching. We also use B for the new instance (with shrunk disks), and we
can assume that all the disks have radius O(12rmax

√
n) = O(rmax

√
n).

We group the disks B into clusters B1, . . . ,Bt as follows: a cluster is a connected com-
ponent of the intersection graph of the disks B(c1, r1 + 4rmax), . . . , B(cn, rn + 4rmax).
This implies that the distance between different clusters is at least 4rmax, and that each
cluster Bj can be enclosed in a disk of radius O(rmax|Bj|

√
n).

For each subinstance Bj, we use Lemma 8, where m = |Bj | and k = n, and compute in
O(|Bj |

√

|Bj | log2(|Bj |n)) time a placement yielding a 2-approximation of D(Bj). Joining
all the placements we get a 2-approximation of D(B), and because n =

∑t
i=1 |Bi|, we

have used
t

∑

j=1

O
(

|Bj|
√

|Bj| log2(|Bj |n)
)

= O(n
√

n log2 n)

time for this last step.

4 Approximation algorithms in the L2 metric

We will now study how the L2 metric changes the bounds and results of the algorithms studied
for the L∞ metric. First, we consider arbitrary disks. Then, we concentrate on congruent
disks, for which we can improve the approximation ratio.

13

A cell

Edges

Figure 4: Hexagonal packing induced by the lattice δΛ = {δ(a + b
2 , b

√
3

2) | a, b ∈ Z}. A cell
and a couple of edges of δΛ are also indicated.

δΛ

pi

pi

pi

pj

Bi Bi

Bi
Bj

(a) (b) (c)

Q

δΛ

Figure 5: Cases and properties of Placement for the L2 metric. (a) Placement when Bi is
fully contained in a cell. (b) Placement when Bi intersects an edge: we project the center ci

onto the closest edge. (c) A case showing that the closest pair in Placement(δ) may be at

distance δ
√

3
2 .

4.1 Arbitrary disks

For the L∞ metric, we used the optimal packing of disks that is provided by an orthogonal
grid. For the Euclidean L2 metric we will consider the regular hexagonal packing of disks;
see Figure 4. For this section, we let

Λ := {(a +
b

2
,
b
√

3

2
) | a, b ∈ Z}.

Like in previous sections, we use δΛ = {δp | p ∈ Λ}. For disks of radius δ/2, the hexagonal
packing is provided by placing the disks centered at δΛ. The edges of δΛ are the segments
connecting each pair of points in δΛ at distance δ. They decompose the plane into equilateral
triangles of side length δ, which are the cells of δΛ; see Figure 4.

Consider a version of Placement using the new lattice δΛ and modifying it slightly for
the cases when Bi contains no lattice point:

• If Bi is contained in a cell C, place pi := ci and add the vertices of C to Q; see Figure 5a.

• If Bi intersects some edges of δΛ, let E be the edge that is closest to ci. Then, place pi

at the projection of ci onto E, and add the vertices of E to Q; see Figure 5b.

Observe that, in this case, the distance between a point placed on an edge and a point in

14

δΛ
pi

Bi

(a)

p∗
i

pi

Bi

(b)

p∗
i

δΛ

Figure 6: Part of the analysis of Placement for the L2 metric. (a) and (b) When Bi∩δΛ = ∅
and pi was placed on the edge E, then the distance from p∗

i to any point of E is at most δ
√

3
2 ,

and therefore E ⊂ B(p∗i ,
δ
√

3
2).

δΛ\Q may be δ
√

3
2 ; see Figure 5c. We modify accordingly the criteria of Definition 1 regarding

when Placement succeeds, and then we state the result corresponding to Lemma 2.

Definition 10 In the L2 metric, we say that Placement(δ) succeeds if the computed place-

ment p1, . . . , pn satisfies D(p1, . . . , pn) ≥ δ
√

3
2 . Otherwise, Placement(δ) fails.

Lemma 11 If 4δ√
3
≤ δ∗, then Placement(δ) succeeds.

Proof: We follow the proof of Lemma 2. Firstly, we argue that if 4δ√
3

≤ δ∗, then Gδ

has a matching. Secondly, we will see that if p1, . . . , pn is the placement computed by

Placement(δ) when 4δ√
3
≤ δ∗, then indeed D(p1, . . . , pn) ≥ δ

√
3

2 , that is, Placement(δ)

succeeds.
Consider an optimal feasible placement p∗

1, . . . , p
∗
n achieving δ∗. We then know that the

interiors of B(p∗1, δ
∗/2), . . . , B(p∗n, δ∗/2) are disjoint. To show that Gδ has a matching, we

have to argue that:

• If Bi∩δΛ = ∅, then the points that Bi contributed to Q are in the interior of B(p∗
i , δ

∗/2).
We consider both cases that may happen. In case that Bi is fully contained in a cell C
of δΛ, then p∗i ∈ C, and so C ⊂ B(p∗i , δ) ⊂ B(p∗i ,

2δ√
3
) ⊂ B(p∗i , δ

∗/2), and the vertices

of C are in B(p∗i , δ
∗/2). In case that Bi intersects edges of δΛ and pi was placed on E,

then E is the closest edge of δΛ to ci and E ⊂ B(p∗i ,
2δ√
3
), as can be analyzed in the

extreme cases depicted in Figures 6a and 6b.

• If Bi ∩ δΛ 6= ∅, we have to argue that there is point p ∈ Bi ∩ (δΛ \ Q). If Bi has
diameter smaller than δ∗/2, then Bi ⊂ B(p∗i , δ

∗/2) and the points in Bi ∩ δΛ are inside
B(p∗i , δ

∗/2), and so not in Q. If Bi has diameter bigger than δ∗/2, then the region
Bi ∩ B(p∗i , δ

∗/2) contains a disk B ′ of diameter at least δ∗

2 ≥ 2δ√
3
. It is not difficult to

see that then B ′ contains a point p ∈ δΛ (actually this also follows from Lemma 16),
and so there is a point p ∈ δΛ ∩ B ′ ⊂ (B(p∗i , δ

∗/2) ∩ δΛ) which cannot be in Q.

This finishes the first part of the proof. For the second part, consider a pair of points pi, pj

of the placement computed by Placement(δ) when 4δ√
3
≤ δ∗. If they have been assigned in

the matching of Gδ, then they are distinct points of δΛ and so they are at distance at least

15

(a)

(b)

(c)

(d)

ci

pi

cj

pj

p̃j

≤ δ

2
√

3

E3

ci

pi

cj

pj

E4

ci

pi

cj
pj

p̃j

E5

≤ δ

2
√

3

δ

2
√

3

≤ δ

2
√

3

≤ δ

2
√

3

≤ δ

2
√

3

≤ δ

2
√

3

δ

2
√

3

ci

E

δΛ

pi

E1

E2

E4

E3

E5

Figure 7: Analysis to show that d(pi, pj) ≥ δ
√

3
2 when Bi, Bj do not contain any point from

δΛ.

δ. If pj was assigned in the matching and Bi contains no point from δΛ, then the points in

δΛd \ Q are at distance at least δ
√

3
2 from pi, and so are the distance between pi and pj .

If both Bi, Bj do not contain any lattice point, then we know that ri, rj < δ√
3
, d(pi, ci) ≤

δ
2
√

3
, and d(ci, cj) ≥ d(p∗i , p

∗
j) − d(p∗i , ci) − d(p∗j , cj) > 4δ√

3
− 2 δ√

3
= 2δ√

3
. We have the following

cases:

• Bi and Bj do not intersect any edge of δΛ. Then d(pi, pj) = d(ci, cj) > 2δ√
3

> δ
√

3
2 .

• Bi intersects an edge E of δΛ, but Bj does not. Then d(pi, pj) ≥ d(ci, cj) − d(pi, ci) −
d(pj , cj) > 2δ√

3
− δ

2
√

3
− 0 = δ

√
3

2 .

• Both Bi, Bj intersect edges of δΛ. See Figure 7a to follow the analysis. Without loss
of generality, let’s assume that ci lies in the shaded triangle, and so pi ∈ E, where E
is the closest edge to ci. The problematic cases are when pj is placed at the edges
E1, E2, E3, E4, E5, as the other edges are either symmetric to one of these, or further

than δ
√

3
2 from pi ∈ E. We then have the following subcases:

E1, E2. Consider the possible positions of cj that would induce pj ∈ E1, E2; see Figure 7a.

16

The center cj needs to lie in one of the dotted triangles that are adjacent to E1

and E2. But the distance between any point of the dotted triangles and any point
of the grey triangle is at most 2δ√

3
, and so in this case we would have d(ci, cj) ≤ 2δ√

3
,

which is not possible.

E3. Consider the possible positions of cj that would induce pj ∈ E3; see Figure 7b.
For a fixed value d(ci, cj), the distance between pi and pj is minimized when ci

and cj are on the same side of the line through pi and pj, like in the figure.
Consider the point p̃j vertically below cj and at distance δ

2
√

3
from cj . Then, we

have that d(pi, p̃j) ≥ d(ci, cj) > 2δ√
3
. Because d(pj , p̃j) ≤ δ

2
√

3
, we get d(pi, pj) ≥

d(pi, p̃j) − d(pj , p̃j) > 2δ√
3
− δ

2
√

3
= δ

√
3

2 .

E4. Consider the possible positions of cj that would induce pj ∈ E4; see Figure 7c.
For a fixed value d(ci, cj), the distance between pi and pj is minimized when
ci and cj are on opposite sides of the line through pi and pj, and d(pi, ci) =
d(pj , cj) = δ

2
√

3
. But, in this case, we can use Pythagoras’ theorem to get d(pi, pj) =

√

d(ci, cj)2 −
(

d(pi, ci) + d(pj , cj)
)2

>

√

(

2δ√
3

)2
−

(

2δ
2
√

3

)2
= δ.

E5. Consider the possible positions of cj that would induce pj ∈ E5; see Figure 7d.
For a fixed value d(ci, cj), The distance between pi and pj is minimized when
ci and cj are on opposite sides of the line through pi and pj, like in the figure.
Consider the point p̃j vertically above cj and at distance δ

2
√

3
from cj . Then, we

have that d(pi, p̃j) ≥ d(ci, cj) > 2δ√
3
. Because d(pj , p̃j) ≤ δ

2
√

3
, we get d(pi, pj) ≥

d(pi, p̃j) − d(pj , p̃j) > 2δ√
3
− δ

2
√

3
= δ

√
3

2 .

In all cases, we have d(pi, pj) ≥ δ
√

3
2 and this finishes the proof of the lemma.

Like before, we have the following observations.

Observation 12 If Placement(δ) succeeds for B, but Placement(δ) fails for a translation

of B, then δ∗ ≤ 4δ√
3

holds and Placement(δ) gives an 8
3 -approximation.

If for some δ > δ′, Placement(δ) succeeds, but Placement(δ ′) fails, then δ∗ ≤ 4δ′√
3

< 4δ√
3

and Placement(δ) gives an 8
3 -approximation.

If Placement(δ) succeeds, but Placement(δ + ε) fails for an infinitesimal ε > 0, then

δ∗ ≤ 4δ√
3

and Placement(δ) gives an 8
3 -approximation.

Lemma 6 also applies to the L2 metric because all the properties of the L∞ metric that
we used in its proof also apply to the L2 metric.

In the proof of Lemma 7 we used a dynamic data structure D for point sets that supports
witness queries: given a disk Bi, report a point contained in Bi. In the L2 case, we can handle
this using a dynamic data structure D ′ for nearest neighbor queries: given a point p, report
a closest point to p. When we want a witness for Bi, we query with ci for a closest neighbor
pci

. If pci
lies in Bi, then we report it as witness, and otherwise there is no point inside Bi.

Using the data structure D′ by Agarwal and Matoušek [2] for the point set P , we can con-
struct the data structure in O(|P |1+ε) time, it answers nearest neighbor queries in O(log3 |P |)
time, and supports updates in O(|P |ε) amortized time, where ε > 0 is an arbitrarily small

17

B

Λ-aligned quadrilateral

Figure 8: For computing δ1, δ2 in the proof of Lemma 14, we use, instead of B, the smallest
Λ-aligned quadrilateral that encloses B.

positive value affecting the constants hidden in the O-notation. In the special case that all
the disks are congruent, it is better to use the data structure developed by Efrat et al. [9]; it
uses O(|P | log |P |) preprocessing time, it answers a witness query and supports a deletion in
O(log |P |) amortized time. Using these data structures and with the proof of Lemma 7, we
get the following result for the L2 metric.

Lemma 13 The Algorithm Placement can be adapted to run in O(n1.5+ε) time. When all

the disks are congruent, it can be adapted to run in O(n
√

n log n) time.

The running times would actually remain valid for any Lp metric, either using the data
structure for nearest neighbors by Agarwal et al. [1] for the general case, or the semi-dynamic
data structure of Efrat et al. [9] for congruent disks. However, we would have to use suitable
lattices and we would achieve different approximation ratios.

The proof of Lemma 8 is not valid for the L2 metric because we used the fact that the
disks in the L∞ metric are squares. Instead, we have the following result.

Lemma 14 Let B be an instance with m disks such that each disk Bi ∈ B has radius

O(r
√

k), and that there is a disk B of radius R = O(mr
√

k) enclosing all the disks in B.

If Placement(r
3
√

k
) succeeds, then we can compute a placement p1, . . . , pm with pi ∈ Bi that

yields an 8
3 -approximation of D(B) in O(mk) time plus O(log mk) calls to Placement.

Proof: Consider the proof of Lemma 8. The first part of it is perfectly valid for the L2 metric
as well.

For the second part of the proof, when computing the values δ1, δ2, instead of using the
enclosing disk B, we use the smallest Λ-aligned quadrilateral that encloses the disk B; see
Figure 8. Like in Lemma 8, we compute δ1, δ2 by making a binary search on the values R

z

with z ∈ Z∩ [1, 3R
√

k
r]. We do not need to compute them explicitly because they are ordered

by the inverse of integer numbers. Because 3R
√

k
r = O(mk), we can do this with O(log mk)

calls to Placement.
Like in Lemma 8, the values δ1, δ2 have the property that if for a point p ∈ Λ there is

a δ ∈ [δ1, δ2] such that δp ∈ ∂Bi, then ∂Bi must intersect Cp. An easy way to see this is

to apply a linear transformation that maps (1, 0) to (1, 0) and (1
2 ,

√
3

2) to (0, 1). Under this
transformation, the lattice δΛ becomes δZ

2, the disk becomes an ellipse, the enclosing Λ-
aligned quadrilateral becomes a square enclosing the ellipse, and the proof of the equivalent
property follows from the discussion in the proof of Lemma 8.

18

As for the third part of the proof in Lemma 8, where we bound the number of critical
values ∆i that a disk Bi induces, we used that in the L∞ case the disks are squares. This
does not apply to the L2 disks, but instead we have the following analysis.

Because the perimeter of Bi is O(ri) = O(r
√

k) and we have δ1 = Ω(r/
√

k), the boundary

of Bi intersects O
(

r
√

k
r/

√
k

)

= O(k) cells of δ1Λ. Together with the property of δ1, δ2 stated above,

this means that Bi induces O(k) critical values changing the flow of control of Placement.
That is, the set ∆i = {δ ∈ [δ1, δ2] | ∃p ∈ Λ s.t. δp ∈ ∂Bi} has O(k) values. Each value in ∆i

can be computed in constant time, and therefore ∆ =
⋃m

i=1 ∆i can be computed in O(mk)
time.

Making a binary search on ∆, we find δ3, δ4 ∈ ∆, with δ3 < δ4, such that Placement(δ3)
succeeds but Placement(δ4) fails. If at each step of the binary search we compute the median
M of the elements where we are searching, and then use Placement(M), we find δ3, δ4 with
O(log mk) calls to Placement plus O(mk) time for computing all medians because at each
step we reduce by half the number of elements where to search.

The flow of control of Placement(δ4) and of Placement(δ3 + ε) are the same. There-
fore, Placement(δ3 + ε) also fails, and we conclude that Placement(δ3) yields an 8

3 -
approximation because of Observation 12.

Theorem 15 Let B = {B1, . . . , Bn} be a collection of disks in the plane with the L2 met-

ric. We can compute in O(n2) time a placement p1, . . . , pn with pi ∈ Bi that yields an
8
3 -approximation of D(B).

Proof: Everything but the time bounds remains valid in the proof of Theorem 9. The proof
of Theorem 9 is applicable. For solving the subinstances Bj we used Lemma 8, and now we
need to use Lemma 14. Together with Lemma 13, it means that for solving the subinstance
Bj we have m = |Bj| and k = n, and so we need to use

O(|Bj |n + |Bj|1.5+ε log |Bj |n)

time. Summing over all t subinstances, and because n =
∑t

j=1 |Bj |, we have spent

t
∑

j=1

O
(

|Bj |n + |Bj|1.5+ε log n
)

= O(n2)

time overall.

4.2 Congruent disks

When the disks B1, . . . , Bn are all congruent, say, of diameter one, we can improve the
approximation ratio in Theorem 15. For general disks, the problematic cases are those balls
that do not contain any lattice point. But when all the disks are congruent, it appears that
we can rule out those cases. For studying the performance of Placement with congruent
disks, we need the following geometric result.

Lemma 16 Let B be a disk of diameter one, and let B ′ be a disk of diameter 1 ≤ δ∗ ≤ 2

whose center is in B. Consider δ = −
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 . Then, the lattice δΛ has some

19

point in B ∩ B ′. Furthermore, this is the biggest value δ having this property. If B ′ has

diameter δ∗ ≤ 1, then the lattice (δ∗/2)Λ has some point in B ∩ B ′.

Proof: Firstly, we consider the case 1 ≤ δ∗ ≤ 2 and give a construction showing that

δ = −
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 is indeed the biggest value for which the property holds. Then, we
show that δΛ always has some point in B ∩ B ′ by comparing the different scenarios with the
previous construction. Finally, we consider the case δ∗ ≤ 1.

Assume without loss of generality that the line through the centers of B and B ′ is vertical.
The worst case happens when the center of B ′ is on the boundary of B. Consider the
equilateral triangle T depicted on the left in Figure 9. If the center of B is placed at (0, 0),
then the lowest point of T is placed at (1/2− δ∗/2, 0), and the line L forming an angle of π/3
with a horizontal line has equation L ≡ y = 1/2−δ∗/2+

√
3x. The intersection of this line with

the boundary of B, defined by y2 +x2 = 1/4, gives the solutions x = ±−
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

8 .
Because of symmetry about the vertical line through the centers of B and B ′, and because
the angle between this line and L, the depicted triangle is equilateral and has side length
−
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 . This shows that the chosen value of δ is the biggest with the desired
property.

We have to show now that the lattice δΛ has the desired property. It is enough to see
that when two vertices of a cell of δΛ are on the boundary of B ∩ B ′, then the third one is
also in B ∩ B ′. In the center of Figure 9 we have the case when the two vertices are on the
boundary of B. Consider the edge connecting these two points, and its orthogonal bisector.
The bisector passes through the center of B, and its intersection with the boundary of B ′

contained in B is further from it than the intersection of the boundary of B ′ with the vertical
line through the center. Therefore, the third vertex is inside B ∩ B ′.

In the right of Figure 9 we have the case where the two vertices are on the boundary
of B′. If we consider the case when the lowest edge of the cell is horizontal, we can see
that the triangle has the third vertex inside. This is because the biggest equilateral triangle
with that shape that is inside B ∩ B ′ has side δ∗/2, and this is always bigger than δ =
−
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 when 1 ≤ δ∗ ≤ 2. Then the same argument as in the previous case
works.

If one vertex is on the boundary of B and one on the boundary of B ′, we can rotate
the triangle around the first of them until we bring the third vertex on the boundary of B
contained in B ′. Now we would have two vertices on the boundary of B. If the third vertex
was outside B ∩B ′ before the rotation, then we would have moved the second vertex outside
B ∩ B′, which would contradict the first case. Therefore, the third vertex has to be inside
B ∩ B′.

Regarding the case δ∗ ≤ 1, we replace the disk B by another disk B̃ of diameter δ∗

contained in B and that contains the center of B ′. We scale the scenario by 1/δ∗ so that both
B̃ and B′ have diameter 1. If we apply the result we have shown above, we know that (1/2)Λ
contains some point in B̃ ∩ B′, and scaling back we get the desired result.

On the one hand, for 1 ≤ δ∗ ≤ 2 and δ ≤ −
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 , we have Q = ∅ when
computing Placement(δ), and the graph Gδ has a matching because of Lemma 16 and the
proof of Lemma 11. In this case, if p1, . . . , pn is the placement computed by Placement(δ),
we have D(p1, . . . , pn) ≥ δ because all the points pi ∈ δΛ. Therefore, for 1 ≤ δ∗ ≤ 2, we can

20

L

1

B B B

1 ≤ δ
∗ ≤ 2

B
′

B
′

B
′

T

Figure 9: Illustration of the proof of Lemma 16.

get an approximation ratio of

δ∗

δ
≥ 4δ∗

−
√

3 +
√

3δ∗ +
√

3 + 2δ∗ − δ∗2
.

For any δ∗ ≤ 1, the second part of Lemma 16 implies that Centers gives a 2-approximation.
On the other hand, we have the trivial approximation algorithm Centers consisting of

placing each point pi := ci, which gives a δ∗

δ∗−1 -approximation when δ∗ > 1. In particular,
Centers gives a 2-approximation when δ∗ ≥ 2.

The idea is that the performances of Placement and Centers are reversed for differ-
ent values δ∗ in the interval [1, 2]. For example, when δ∗ = 2, the algorithm Placement

gives a 4√
3
-approximation, while Centers gives a 2-approximation because the disks need

to have disjoint interiors to achieve δ∗ = 2. But for δ∗ = 1, the performances are reversed:
Placement gives a 2-approximation, while Centers does not give any constant factor ap-
proximation.

The approximation ratios of both algorithms are plotted in Figure 10. Applying both
algorithms and taking the best of both solutions, we get an approximation ratio that is the
minimum of both approximation ratios, which attains a maximum of

α := 1 +
13

√

65 + 26
√

3
∼ 2.2393.

Theorem 17 Let B = {B1, . . . , Bn} be a collection of congruent disks in the plane with the

L2 metric. We can compute in O(n2) time a placement p1, . . . , pn with pi ∈ Bi that yields a

∼ 2.2393-approximation of D(B).

Proof: The x-coordinate of the intersection of the two curves plotted in Figure 10 is given
by

4δ∗

−
√

3 +
√

3δ∗ +
√

3 + 2δ∗ − δ∗2
=

δ∗

δ∗ − 1
.

This solves to δ∗ := 1
13

(

13 +
√

13(5 + 2
√

3
)

, and therefore the approximation ratio is given

by δ∗

δ∗−1 = α ∼ 2.2393.

21

1.5 1.6 1.7 1.8 1.9

2.2

2.4

2.6

2.8

3

Figure 10: Approximation ratios for both approximation algorithms as a function of the
optimum δ∗.

5 Concluding remarks

We have presented near quadratic time algorithms for the problem of spreading points. Our
approximation ratios rely on packing arguments for the balls in the corresponding metric.
However, in the running time of our results, we did not use the regularity of the point sets
that we considered. An appropriate use of this property may lead to better running times,
perhaps designing data structures for this particular setting.

In the proof of Lemma 14, the bottleneck of the computation is that we construct D
explicitly. Instead, we could apply randomized binary search. For this to work out, we need,
for given values δ, δ′ and a disk Bi, to take a random point in the set P̃i = {p ∈ Λ | δp ∈
Bi and δ′p 6∈ Bi, or vice versa}. For the L2 metric, we constructed

⋃n
i=1 P̃i explicitly in

quadratic time, and we do not see how to take a random sample in sub-quadratic time.
The approximate decision problem can be seen as using lattice packings to place disks

inside the Minkowski sum
⋃n

i=1 Bi ⊕ B(0, d/2). In the L2 metric, we have used the lattice
inducing the hexagonal packing, but we could use a different lattice. For the L2 metric, the
rectangular packing gives a worse approximation ratio, and it seems natural to conjecture
that the hexagonal packing provides the best among regular lattices. On the other hand,
deciding if better approximation ratios can be achieved using packings that are not induced
by regular lattices seems a more challenging problem.

Acknowledgements

The author wishes to thank Pankaj Agarwal, Marc van Kreveld, Mark Overmars, and Günter
Rote for several fruitful comments that improved the content of the paper. Thanks again
to Marc for correcting the draft version and pointing out Lemma 6, which improved the
previous running time. This research was initiated when Sergio was visiting DIMACS and
Duke University, which provided good atmosphere for it.

22

References

[1] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels in
3-dimensional arrangements and its applications. SIAM J. Comput., 29:912–953, 1999.

[2] P. K. Agarwal and J. Matoušek. Ray shooting and parametric search. SIAM J. Comput.,
22(4):794–806, 1993.

[3] R. Aharoni and P. Haxell. Hall’s theorem for hypergraphs. Journal of Graph Theory,
35:83–88, 2000.

[4] C. Baur and S. Fekete. Approximation of geometric dispersion problems. Algorithmica,
30:451–470, 2001. A preliminary version appeared in APPROX’98.

[5] S. Cabello and M. van Kreveld. Approximation algorithms for aligning points. Algorith-

mica, 37:211–232, 2003. A preliminary version appeared in SoCG’03.

[6] B. Chandra and M. M. Halldórsson. Approximation algorithms for dispersion problems.
J. Algorithms, 38:438–465, 2001.

[7] B. Dent. Cartography: Thematic Map Design. McGraw-Hill, 5th edition, 1999.

[8] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall,
Upper Saddle River, NJ, 1999.

[9] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in bottleneck matching and related
problems. Algorithmica, 31(1):1–28, 2001.

[10] A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir. Dynamic data structures for fat objects
and their applications. Comput. Geom. Theory Appl., 15:215–227, 2000. A preliminary
version appeared in WADS’97, LNCS 1272.

[11] S. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight cliques.
To appear in Algorithmica 38(3), 2004.

[12] J. Fiala, J. Kratochv́ıl, and A. Proskurowski. Geometric systems of disjoint representa-
tives. In Graph Drawing, 10th GD’02, Irvine, California, number 2528 in Lecture Notes
in Computer Science, pages 110–117. Springer Verlag, 2002.

[13] J. Fiala, J. Kratochv́ıl, and A. Proskurowski. Systems of sets and their representatives.
Technical Report 2002-573, KAM-DIMATIA, 2002. Available at http://dimatia.mff.
cuni.cz/.

[14] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-time parallel algorithms for
matching and related problems. Journal of Algorithms, 14:180–213, 1993. A preliminary
version appeared in FOCS’88.

[15] J. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput., 2(4):225–231, 1973.

[16] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom.,
1:59–71, 1986.

23

[17] N. Megiddo. Combinatorial optimization with rational objective functions. Math. Oper.

Res., 4:414–424, 1979.

[18] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
J. ACM, 30(4):852–865, 1983.

[19] C. W. Mortensen. Fully-dynamic two dimensional orthogonal range and line segment
intersection reporting in logarithmic time. In Proceedings of the fourteenth annual ACM-

SIAM symposium on Discrete algorithms, pages 618–627. Society for Industrial and Ap-
plied Mathematics, 2003.

[20] C. W. Mortensen. Personal communication, 2003.

[21] A. Schrijver. A course in combinatorial optimization. Lecture Notes. Available at http:
//homepages.cwi.nl/~lex/files/dict.ps, 2003.

[22] B. Simons. A fast algorithm for single processor scheduling. In Proc. 19th Annu. IEEE

Sympos. Found. Comput. Sci., pages 246–252, 1978.

24

