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Abstract

To better handle situations where additional resources are available to carry out a task,
many problems from the manufacturing industry involve dividing a task into a constant k
number of smaller tasks, while optimizing a speci�c objective function. In this paper we
consider the problem of partitioning a given set S of n points in the plane into k subsets,
S1; : : : ;Sk, such that max1�i�k jMST (Si)j is minimized. Variants of this problem arise
in applications from the shipbuilding industry.

We show that this problem is NP-hard, and we also present an approximation algo-
rithm for the problem. The approximation algorithm runs in time O(n logn) and produces
a partition that is within a factor (4=3 + ") of the optimal if k = 2, and a factor (2 + ")
otherwise.

1 Introduction

Scheduling problems [9] arise in a variety of settings. In general, scheduling problems involve
m jobs that must be scheduled on k � m machines subject to certain constraints while opti-
mizing an objective function. In parallel computation [12], often the problem is to minimize
the time complexity of the parallel algorithm.

In this paper we consider a geometric version of these problems, namely given a geometric
task divide it into k subtasks such that the size of the largest subtask is minimized. Such
problems arise in applications from the shipbuilding industry [13]. The task is to cut out
a set of prespeci�ed regions from a sheet of metal while minimizing the completion time.
Typically the size of the sheet is 10� 30 meters and the number of regions that are to be cut
out can vary from a few regions to several hundreds. In most cases there is only one single
robot to handle this task but lately there are also examples where the number of robots is
greater. In the case when there is just one robot the problem is closely related to the problem
known in the literature as the Traveling Salesperson problem with Neighborhoods (TSPN) and

�J.G. is supported by the Swedish Foundation for International Cooperation in Research and Higher Edu-

cation
yDepartment of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden. E-mail: mattias,

christos@cs.lth.se
zDepartment of Computer Science, Utrecht University, PO Box 80.089, 3508 TB, Utrecht, the Netherlands.

E-mail; joachim@cs.uu.nl
xSchool of Computer Science, Florida International University, Miami, FL 33199, USA. E-mail:

giri@cs.�u.edu

1



it has been extensively studied [2, 4, 5, 8, 10, 11]. The problem asks for the shortest tour
that visits all the regions, and it was recently shown to be APX-hard [4]. A variant of the
Euclidean TSP when k robots are available was considered by Fredrickson et al. [6]. They
showed that by computing a TSP-tour of the given point set and then partitioning the tour
into k parts a (2 + " � 1=k)-approximation could be obtained in the restricted case when
the k robots must start and end at the same point. The need for partitioning the input set
such that the optimal substructures are balanced gives rise to many interesting theoretical
problems. In this paper we consider the problem of partitioning the input so that the sizes
of the minimum spanning trees of the subsets are balanced. More formally, the k-Balanced
Partition Minimum Spanning Tree problem (k-BPMST) is stated as follows:

Problem 1 Given a set of n points S in the plane, partition S into k sets S1; : : : ;Sk such
that the weight of the largest minimum spanning tree,

W = max
1�i�k

(jM(Si)j)

is minimized. Here M(Si) is the minimum spanning tree of the subset Si and jM(Si)j is the
weight of the minimum spanning tree of Si.

We also formulate the following problem below, the k-BPTSP problem. This is relevant since,
given a c-approximation for the k-BPMST problem, we can easily achieve a 2c-approximation
for the k-BPTSP problem, by traversing the produced minimum spanning trees (MSTs).

Problem 2 Given a set of n points S in the plane, partition S into k sets S1; : : : ;Sk such
that the weight of the largest traveling salesperson tour,

W = max
1�i�k

(jTSP (Si)j)

is minimized. Here TSP (Si) is the minimum traveling salesperson tour of the subset Si and
jTSP (Si)j is the weight of the minimum traveling salesperson tour of Si.

From the formal de�nitions of these problems it is clear that they can be classifed as
geometric k-clustering problems. As such they are very fundamental and have possible ap-
plications in a wide variety of settings such as for example statistics, image understanding,
learning theory and computer graphics.

The paper is organized as follows. We �rst show, in Section 2, that the k-BPMST problem
is NP-hard. We then present an approximation algorithm for the problem with approximation
factor (4=3 + ") for the case k = 2, and with approximation factor (2 + ") for the case k � 3.
The algorithm runs in time O(n log n).

2 NP hardness

In this section we show that the k-Bpmst problem is NP-hard. In order to do this we need
to state the recognition version of the k-Bpmst problem:

Problem 3 Given a set of n points S in the plane, and a real number L, does there exist a
partition of S into k sets S1; : : : ;Sk such that the weight of the largest minimum spanning
tree is bounded by L, i.e., is it true that

W = max
1�i�k

(jM(Si)j) � L?
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Figure 1: The set of points S created for the reduction. In Figure (a) all notations for the
points are given. Similarly, in Figure (b) the notations for the distances between points are
given. Figure (c) illustrates a class 1 partition, and (d) illustrates a class 2 partition.

Remark: The computational model used here is the real-RAM model in which we
can handle square roots in polynomial time. Thus the above formulation of the problem is
suÆcient in order to show that the k-Bpmst problem is NP-hard. Note, however, that it may
be inadequate in stricter models, such as the algebraic decision tree model, where eÆcient
handling of square roots is not possible. The computation of roots is necessary to determine
the length of edges between points, which, in turn, is needed in order to calculate the weight
of a minimum spanning tree. So in a stricter computational model the hardest part may
not be to partition the points optimally, but instead to calculate precisely the length of the
MST's. In such computational models, the combinatorial hardness of the k-Bpmst problem
is better captured by considering the rectilinear version of the problem. We do not discuss
the rectilinear version of the problem here.

The NP-hardness proof is done by a polynomial-time reduction from the following recog-
nition version of Partition.

Problem 4 Partition Given integers A = fa1; : : : ; ang, such that 0 � a1 � : : : � an,
does there exist a subset P � I = f1; 2; : : : ; ng such that

jP j = h = n=2 and
X
j2P

aj =
X
j2I=P

aj

The above version of Partition is NP-hard [7].

Lemma 2.1 The k-Bpmst problem is NP-hard.

Proof: The reduction is done as follows. Given an instance of Partition, we create an
instance of 2-Bpmst in polynomial time, such that it is a yes-instance if and only if the
Partition-instance is a yes-instance. Given that the Partition-instance contains n integers
a1; : : : ; an in sorted order, we create the following 2-Bpmst instance. A set of points S, as
shown in �gure 1(a) is created, with interpoint distances as shown in �gure 1(b). A closer
description of these points and some additional de�nitions are given below:

� A0 = fa01; : : : ; a
0
ng, where a

0
i = (0; i�),
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� L = fl1; : : : ; lng, where li = (�Æ � ai; i�),

� R = fr1; : : : ; rng, where ri = (Æ + ai; i�),

� L0 = fl01; : : : ; l
0
n�1g, where l

0
i is the midpoint on the line between li and li+1, and

� R0 = fr01; : : : ; r
0
n�1g, where r

0
i is the midpoint on the line between ri and ri+1.

For any given partition P = fP [1]; P [2]; : : : ; P [h]g � f1; 2; : : : ; ng, we de�ne AP =
faP [1]; : : : ; aP [n]g. Furthermore, let � = 11n(an + n) and let Æ = 7n(an + n). Note that
�2i � �2+ a2n which implies that �i � 12n(an+n), which means that 
i = �i=2 � 6n(an+n).
Finally let

L =
1

2

X
i2I

ai +
n

2
� Æ +

n�1X
i=1

�i:

Since the number of points in S is polynomial it is clear that this instance can be created in
polynomial time. Next we consider the \if" and the \only if" parts of the proof separately.

If: If partition P exists and we have a yes-instance of Partition, then we will show that
the corresponding 2-Bpmst instance is also a yes-instance. This follows when the partition
S 0
1 = AP [ L [ L0, S 0

2 = S � S1 (a class 1 partition, as de�ned below) is considered. The
general appearance of M(S 0

1) and M(S 0
2) is determined as follows. The set of points L [ L0

and the set of points r [R0 will be connected as illustrated in �gure 1(c), which follows from
the fact that 
i < Æ < Æ + a1. Next consider the remaining points A0. Any point a0i will
be connected to either li (in M(S 0

1)) or ri (in M(S 0
2)), since ri and li are the points located

closest to a0i (follows since � > Æ + an). Thus,

jM(S 0
1)j = jM(S 0

2)j =
1

2

X
i2I

ai +
n

2
� Æ +

n�1X
i=1

�i

and we have that the created instance is a yes-instance.
Only if: We have that P does not exist and we therefore want to show that the created

2-Bpmst is a no-instance. For this we examine two classes of partitions referred to as Class
1 and Class 2 partitions.

Class 1: All partitions fV1;V2g such that L [ L0 � V1 and R [R0 � V2

Class 2: All other partitions fU1;U2g not belonging to Class 1.

We start by examining class 1 { see �gure 1(c). A simple examination of the edges that
will be picked by Kruskal's algorithm on the entire set S shows that an optimal MST for S
will contain the edges connecting the lis and the l0is, and also the edges connecting the ris
and the r0is. Also, for each point a0i; i > 1, it will contain an edge connecting it to either li or
to ri, Finally, for point a1, it will contain edges connecting it to both l1 and r1. So clearly,
jM(S)j = 2�L+Æ+a1. Its longest edge is of length Æ+a1. Therefore, jM(V1)j+jM(V2)j � 2�L.
Consequently, maxfjM(V1)j; jM(V2)jg � L.

Let P1 and P2 be the subset of points from A0 that are in V1 and V2 respectively. If
jP1j = jP2j = n=2, then clearly for j = 1; 2, we have:

jM(Vj)j =
X
i2Pj

ai +
n

2
� Æ +

n�1X
i=1

�i:
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Since we have assumed that no solution to the instance of Partition exists, it is clear that
jM(V1)j 6= jM(V2)j, implying that maxfjM(V 0

1)j; jM(V 0
2)jg > L, and that the instance of

2-Bpmst is a no-instance.
If, on the other hand, jP1j 6= jP2j, then w.l.o.g., we assume that jP1j > n=2. Then we

know that

jM(V1)j � Æ +
n

2
� Æ +

n�1X
i=1

�i >
X
i2I

ai +
n

2
� Æ +

n�1X
i=1

�i > L;

again proving that the instance of 2-Bpmst is a no-instance.
Next consider the class 2 partitions, illustrated in �gure 1(d). There is always an edge of

weight 
i (1 � i � n) connecting the two point sets of any such partition. This means that
there can not exist a class 2 partition U1;U2 such that maxfjM(U1)j; jM(U2)jg � L, because
we could then build a tree with weight at most 2�L+
i < jM(V1)j+jM(V2)j+Æ+a1 = jM(S)j,
which is a contradiction. Thus, maxfjM(U1)j; jM(U2)jg > L, which concludes this lemma. �

3 Approximating the k-BPMST

In this section a (2 + ")-approximation algorithm is presented. Before we present the ap-
proximation algorithm note that a straight-forward greedy algorithm that partitions M(S)
into k sets by removing the k � 1 longest edges gives a k-approximation. The main idea
of the (2 + ")-approximation algorithm is to partition S into a constant number of small
components, test all valid combinations of these components and, �nally, output the best
combination. In order to do this eÆciently, as will be seen later, one will need an eÆcient
partitioning algorithm.

A partition of a point set S into two subsets S1 and S2 is said to be valid if maxfjM(S1)j;
jM(S2)jg �

2
3 � jM(S)j. The partition is denoted by the collection fS1;S2g. It is known that a

valid partition always exists and can be computed eÆciently [3]. For completeness we provide
a detailed description of this algorithm.

3.1 ValidPartition

In this section we describe an algorithm, denoted ValidPartition or VP for short; given a
set of points S, VP computes a valid partition. First the algorithm is described and then it
is shown that it outputs a valid partition. We need the following de�nition.

De�nition 3.1 A point q is said to be a \hub" of M(S) if and only if:

1. It has at least four (at most six) incident edges e1 = (q; v1); : : : es = (q; vr) (in clockwise-

order).

2. Every subtree of M(S) that has q as a leaf has weight less than 1=3 �M(S), see Fig. 2.

Note that a spanning tree has at most one hub. We need the following notations. Let
M(T1); : : : ;M(Tr) be the r maximal subtrees of M(S), in clockwise order, that have q as
a leaf (one for each incident edge of q), and let Ti be the set of points included in M(Ti).
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M(S  )3

q

Figure 2: A possible hub q with �ve incident edges.

Finally, let T 0
i = Ti � fqg. As mentioned earlier, a partition of a point set S into two subsets

S1 and S2 is said to be valid if maxfjM(S1)j; jM(S2)jg � 2=3 � jM(S)j.
Now, consider the following straight-forward algorithm, ValidPartition, for partitioning

a set of points S into two subsets S1 and S2. Select an arbitrary leaf � of M(S) as a starting
point, and set S1 = f�g and S2 = S�f�g. During the whole process, vertices are added to S1
and deleted from S2, and both sets correspond to connected sets of vertices in M(S). While
fS1;S2g is not a valid partition, expand S1 with points of S by following the tree in such a
way that M(S1) �M(S), M(S � S1) �M(S), and the weight of M(S1) minimally increases
in each iterative expansion. The algorithm will terminate after O(n) steps. It is clear that
the algorithm will either �nd a valid partition with M(S1);M(S2) � M(S), or a \hub" of
M(S) would have been reached without �nding a valid partition.

If, upon termination, S1 and S2 is not a valid partition then ValidPartition combines
the r+1 trees fq;M(T 0

1 ); : : : ;M(T 0
r )g into an \optimal" partition, S1 and S2, by adding r�1

edges. Note that since a minimum spanning tree for points in the plane has maximum degree
6, r + 1 � 7, which makes it possible for the above \optimal" partitioning of the r + 1 trees
to be done in constant time.

The following lemma can now be shown:

Lemma 3.2 Given a set of points S, ValidPartition partitions S into two sets S1 and S2
such that (i) maxfjM(S1)j; jM(S2)jg �

2
3M(S), and (ii) jM(S1)j+ jM(S2)j � jM(S)j.

Proof: If a hub was not located by ValidPartition, then the lemma is clearly true. If a
hub q was located, then we know that maxfjM(T1)j; : : : ; jM(Tr)jg < 1=3 � jM(S)j and r � 4
(otherwise we would have a valid partition). Hence, it follows that there exists an r0 < r � 1
such that M(T1 [ : : : [ Tr0) has weight between 1=3 � jM(S)j and 2=3 � jM(S)j. We will have
two cases (the other cases cannot occur):

r0 = 2 or r � r0 = 2: Assume for simplicity that r0 = 2, then a valid partition is S1 = T 0
1 [T

0
2

and S2 = S � S1 = T3 [ : : : Tr. We know that jM(S2)j < 2=3 � jM(S)j since jM(T1)j +
jM(T2)j � 1=3 � jM(S)j. Now, since the shortest edge connecting M(T 0

1 ) with M(T 0
2 ) is

obviously shorter than je1j + je2j it also holds that jM(S1)j < 2=3 � jM(S)j. Note that
in this case jM(S1)j+ jM(S2)j � jM(S)j.

r0 = 3 and r = 6: We have that jM(T4 [ T5 [ T6)j = M(S) � jM(T1 [ T2 [ T3)j �
2
3 jM(S)j.

Further, it can be shown (see below) that jM(T 0
4 [ T 0

5 [ T 0
6 )j � jM(T4 [ T5 [ T6)j,
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which means that S1 = T1 [ T2 [ T3 and S2 = T 0
4 [ T

0
5 [ T

0
6 is a valid partition. Also,

jM(T 0
4 [T

0
5 [T

0
6 )j � jM(T4[T5[T6)j, because if we consider the edges e4 = (q; v4); e5 =

(q; v5) and e6 = (q; v6). The angle between ei = (q; vi) and ei+1 = (q; vi+1) is 60
Æ since

M(S) is a Euclidean minimum spanning tree. It holds that M(T 0
4 ), M(T 0

5 ) and M(T 0
6 )

can be connected by two segments of total length less than je4j+ je5j+ je6j.

Thus the lemma follows. �

If a minimum spanning tree of S is given as input then it is easy to see that the time
needed for VP to compute a valid partition is O(n).

3.2 Repeated ValidPartition

One of the main ideas in the approximation algorithms (presented in Section 3.3) is to re-
peatedly use VP in order to create the many small components. The algorithm constructing
these components is therefore called RepeatedValidPartition, or RVP for short.

RVP is described as follows: Given M(S) and an integer m, �rst partitions S into two
components using VP. Then repeatedly partition the largest component created thus far,
again using VP, until m components have been created.

The following lemma describes an important property of RVP.

Lemma 3.3 Given a minimum spanning tree of a set of points S and an integer m, RVP

will partition S into m components S1; : : : ;Sm such that

maxfjM(S1)j; : : : ; jM(Sm)jg �
2

m
jM(S)j:

Proof: Consider the following alternative algorithm A, which is similar to RVP. Given
M(S), algorithm A uses VP to divide M(S) until all resulting components weigh at most
2
m jM(S)j. The order in which the components are divided is arbitrary but when a component
weighs at most 2

m jM(S)j it is not divided any further. Compare algorithm A with RVP,
which always applies VP to the largest component and stops as soon as m components are
computed. A component of weight at most 2

m jM(S)j will not be divided by RVP unless all
other components created thus far also weigh at most 2

m jM(S)j.
Now, if the number of resulting components of A is at most m then the lemma would

follow. This is because RVP will �rst create the same components as A and then possibly
divide these components further. Since these additional divisions are performed using VP we
have that the resulting m components obviously will weigh at most 2

m jM(S)j.
The process of A can be represented as a tree. In this tree each node represents a subset of

S or a subtree of M(S) on which VP is applied. The root represents M(S), and the children
of a node represent the components created when that node is divided using VP. We use the
notation M(v) to denote the subtree of M(S) associated with node v. Note that the leaves
of this tree represent the output components created by A. We divide these leaves into two
categories, where the �rst category consists of all leaves whose sibling is not a leaf and the
second consists of all remaining leaves (that is, those whose siblings are also leaves). We let
m1 and m2 denote the number of leaves of the �rst and second category correspondingly.

We start by examining the leaves of the �rst category. Consider any such leaf li, its
sibling si, and its parent pi. To each li we attach a weight w(li) which is de�ned as w(li) =

7



jM(pi)j � jM(si)j. Since si is not a leaf it holds that jM(si)j >
2
m jM(S)j, and since VP

was applied we know that jM(si)j �
2
3 jM(pi)j. Thus jM(pi)j >

3
m jM(S)j, which implies that

w(li) �
1
3 jM(pi)j >

1
m jM(S)j and, hence,

Pm1

i=1 w(li) > m1 �
1
m jM(S)j.

Next the second category of leaves is examined. Denote any such leaf l0i and its corre-
sponding parent p0i. Since there are m2 leaves of this category and each leaf has a leaf sibling,
these leaves have a total of m2=2 parent nodes. Furthermore, for each of the m2=2 parent
nodes, the corresponding component M(p0i) we have that jM(p0i)j >

2
m jM(S)j, since they are

not leaves. Thus,
Pm2

i=1 jM(p0i)j >
m2

2 � 2
m jM(S)j = m2 �

1
m jM(S)j.

Finally, consider the total weight of the components examined. We have that m1 �
1
m jM(S)j+m2�

1
m jM(S)j <

Pm1

i=1 w(li)+
Pm2

i=1 jM(p0i)j � jM(S)j, which implies thatm1+m2 <
m. Thus, the number of leaves does not exceed m, and the lemma follows. �

3.3 The approximation algorithm

Now we are ready to present the approximation algorithm, which we will denote CA. As input
we are given a set S of n points, an integer k and a positive real constant ". The algorithm
considers two cases: k = 2 and k � 3. First the case k = 2 is examined.

Case: [k = 2]

step 1: Divide M(S) into 4
"0 components, using RVP, where "0 = "

4=3+" . The reason for the

value of "0 will become clear below. Let w denote the weight of the heaviest component
created.

step 2: Combine all components created in step 1, in all possible ways, into two groups.

step 3: For each combination tested in step 2, compute the MST for each of its two created
groups.

step 4: Output the pair of MSTs with the least total weight.

Theorem 3.4 For k = 2, the approximation algorithmCA has a time complexity ofO(n log n),
and produces a partition whose total weight is within a factor (43+") of the optimal partition.

Proof: Let fV1; V2g be the partition obtained from CA. Assume that S1 and S2 is the
optimal partition, and let e be the shortest edge connecting S1 with S2. In the following
discussions, we assume that the weight of the output of CA is denoted by jCAj and the
weight of an optimal solution is denoted by joptj. According to Lemma 3 it follows that
w � 2

4="0 jM(S)j = "0

2 jM(S)j. We have two cases, jej > w, and jej � w, which are illustrated in

�gure 3(a) and 3(b), respectively. In the �rst case every component is a subset of either S1 or
S2. This follows since a component consisting of points from both S1 and S2 must include an
edge with weight greater than w. Thus, no such component can exist among the components
created in step 1. Further, this means that the partition S1 and S2 must have been tested in
step 2 of CA and, hence, the optimal solution must have been found.

In the second case, jej � w, there may exist components consisting of points from both
S1 and S2, see Fig. 3. To determine an upper bound of the approximation factor we start by
examining an upper bound on the weight of the solution produced by CA. The dividing pro-
cess in step 1 of CA starts withM(S) being divided into two components M(S 0

1) and M(S0
2),

8
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Figure 3: The two cases for CA, k = 2. The edge e (marked) is the shortest edge connecting
S1 with S2.

such that maxfjM(S 0
1)j; jM(S 0

2)jg �
2
3 jM(S)j. These two components are then divided into

several smaller components. This immediately reveals an upper bound for jCAj of 2
3 jM(S)j.

Next the lower bound is examined. We have:

joptj �
jM(S)j � jej

2
�
jM(S)j

2
�
"0=2 �M(S)

2
> (1� "0)

M(S)

2
:

Then, if the upper and lower bounds are combined we get:

jCAj=joptj �
2
3 jM(S)j

(1� "0)M(S)
2

�
4=3

1� "0
� 4=3 + ":

In the third inequality we used the fact that "0 � "
4=3+" .

Next consider the complexity of CA. In step 1 M(S) is divided into a constant number of
components using VP. This takes O(n) time, according to Lemma 3. Then, in step 2, these
components are combined in all possible ways, which takes constant time since there are a
constant number of components. For each tested combination there is a constant number of
MST's to be computed in step 3. Further, since there are a constant number of combinations
and M(S) takes O(n logn) to compute, step 3 takes O(n log n) time. �

Next we consider the case k � 3. In this case the following steps are performed:

Case: [k � 3 ]

step 1: Compute M(S) and remove the k � 1 heaviest edges e1; : : : ; ek�1 of M(S), thus
resulting in k separate trees M(U 0

1); : : : ;M(U 0
k).

step 2: Divide each of the trees M(U 0
1); : : : M(U 0

k) into
4k
"0 components, using RVP. Set "0 =

"
2+" . The reason for the value of "

0 will become clear below. Denote the resulting compo-

nents M(U1); : : : ;M(Ur), where r =
4k
"0 � k. Also, let w = maxfjM(U1)j; : : : ; jM(Ur)jg.

step 3: Combine U1; : : : ; Ur in all possible ways into k groups.

step 4: For each such combination do:

� Compute the MST for each of its corresponding groups.
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Figure 4: S1; : : : ;Sk is an optimal partition of S. All subsets that can be connected by edges
of length at most w are merged, thus creating the new set S 0

1; : : : ;S
0
k0 .

� Divide each such MST in all possible ways, using RVP. That is, each MST is
divided into 1; : : : ; i, where i � k, components, such that the total number of
components resulting from all the divided MST's equals k. Each such division
de�nes a partition of S into k subsets.

step 5: Of all the tested partitions in step 4, output the best.

Theorem 3.5 For k � 3 the approximation algorithm CA produces a partition which is

within a factor of (2 + ") of the optimal in time O(n log n).

Proof: A constant number of components are created which means that the time com-
plexity is the same as for the case when k = 2, that is O(n log n). To prove the approximation
factor we �rst give an upper bound on the weight of the solution produced by CA and then
we provide a lower bound for an optimal solution. Combining the two results will conclude
the proof.

Consider an optimal partition of S into k subsets S1; : : : ;Sk. Merge all subsets that can
be connected by edges of length at most w. From this we obtain the sets S 0

1; : : : ;S
0
k0 , where

k0 � k as illustrated in �gure 4. Let m0
i denote the number of elements from S1; : : : ;Sk

included in S0
i. The purpose of studying these new sets is that every component created in

step 2 of CA belongs to exactly one element in S 0
1; : : : ;S

0
k0 . A direct consequence of this is

that every possible partition of fS1; : : : ;Skg into k
0 groups must have been tested in step 3.

Step 4 guarantees that M(S 0
1); : : : ;M(S 0

k0) will be calculated, and that these MSTs will
be divided in all possible ways. Thus, a partition will be made such that each M(S 0

i) will be
divided into exactly m0

i components. This partitions S into k subsets V1; : : : ;Vk. Let V be a
set in V1; : : : ;Vk such that jM(V)j = max1�i�kfjM(Vi)jg. We wish to restrict our attention
to exactly one element of the set S 0

1; : : : ;S
0
k0 , hence we note that V is a subset of exactly one

element S 0 in S 0
1; : : : ;S

0
k0 . Assume that M(V) was created in step 4 of the algorithm, when

M(S 0) was divided into m0 components using RVP, then it holds that M(V) � 2
m0 jM(S 0)j,

according to Lemma 3. Since the partition V1; : : : ;Vk will be tested by CA we have that
jCAj � jM(V)j � 2

m0 jM(S 0)j.
Next a lower bound of an optimal solution is examined. Let jopt0j be the value of an

optimal solution for S 0 partitioned into m0 subsets. Note that S 0 consists of m0 elements from
S1; : : : ;Sk. Assume w.l.o.g. that #S 0 = #S1 + : : : +#Sm0 . This means that S1; : : : ;Sm0 is a
possible partition of S 0 into m0 subsets. Thus, joptj � max1�i�m0fjM(Si)jg = jopt0j. Assume
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w.l.o.g. that e01; : : : ; e
0
m0�1 are the edges in M(S) connecting the components in S 0. We have:

joptj � jopt0j �
1

m0
(jM(S0)j �

m0�1X
i=1

je0ij)

�
1

m0
(jM(S0)j � (m0 � 1)w) (1)

To obtain a useful bound we need an upper bound on w. Consider the situation after step
1 has been performed. We have max1�i�k(jM(U 0

i)j) � jM(S)j �
Pk�1

i=1 jeij. Since each U 0
i

is divided into 4k
"0 components we have that the resulting components, and therefore also w,

have weight at most 1=(2k"0 ) � (jM(S)j �
Pk�1

i=1 jeij), according to Lemma 3. Using the above
bound gives us:

w

joptj
�

1=(2k"0 ) � (jM(S)j �
Pk�1

i=1 jeij)
1
k (jM(S)j �

Pk�1
i=1 jeij)

�
"0

2
=) w �

"0

2
joptj (2)

Note that joptj � jM(V)j � 2
m0 jM(S 0)j. Further, by combining (1) and (2) gives us:

joptj �
1

m0

�
jM(S0)j � (m0 � 1)

"0

2
joptj

�
� (1� "0)

jM(S 0)j

m0
:

Combining the two bounds together with the fact that "0 � "=(2 + ") concludes the proof
of the theorem.

jCAj=joptj �
2
m0 jM(S 0)j

(1� "0) jM(S0)j
m0

�
2

1� "0
� 2 + ":

�

4 Conclusion and further research

In this paper it was �rst shown that the k-BPMST problem is NP-hard. After this was
established, the next step was to design approximation algorithms for the problem. The
algorithm is based on partitioning the point set into a constant number of smaller components
and then trying all possible combinations of these small components. This approach revealed
a (4=3 + ")-approximation in the case k = 2, and a (2 + ")-approximation in the case k � 3.
The time complexity of the algorithm is O(n logn).

For several generalizations of the k-BPMST problem it is straightforward to see that the
results of this paper are immediately valid once a valid partition can be guaranteed. This
is true, for example, in a higher-dimensional geometric setting. For other settings, such as
metric graphs, it is obvious that we can't always guarantee a valid partition, since we have
to consider non-complete graphs. In this case, however, the results of this paper are valid if
we allow vertices to be included in more than one of the output subsets.
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