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Abstract

In image registration mutual information is a well-performing measure based
on principles of uncertainty. Similarly, in image analysis the Gaussian scale space,
based on minimal assumptions of the image, is used to derive intrinsic properties
of an image. In this paper a combination of both methods is investigated. This
results in a parametrized mutual information measure using local information of
the image. For single modality matching a critical scale is found on which the
parametrized mutual information has an extremum. First results on multi-modality
matching show that different scales for the images yield the best response of the
parametrized mutual information.

1 Introduction

If two images are derived from a scene, they will mostly be (slightly) different due to
change of, for instance, illumination, position, and the scene itself. If the images are
taken with different kind of camera’s the differences will even be larger, since then the
correspondence in intensity is not an a priori relevant correspondence. Although a dif-
ference in position is sometimes an advantage and used in stereo images, in most cases
these differences are not desired and it is a non-trivial task to find the correspondence
between the two images, sayA andB.

This correspondence is expressed as a transformationT that applied toA, yields
imageB. If T contains one rotation and translation that holds for the complete image,
T is called a ridged transformation.

Secondly, the transformationT (A) needs to be compared toB. Since images are
discrete by nature, transformations imply comparison between the pixels and one ob-
viously needs to use some interpolationsceme. In other words, the images are assumed
to be continuous.

The third step is to evaluate the correctness of the transformation. This requires an
appropriate measure on the set(T (A); B). The mutual information measure, using the
entropies of the images and their joined entropy, has proven to perform well [8, 9, 16,
17, 19]. The use of the entropy implies the use of uncertainty, or ‘lack of knowledge’.

On the other hand, the acquisition of an image introduces the notion of scale. The
evaluation of an image under (almost) trivial assumptions derived from the statement
‘we know nothing of the image’, leads to the notion of scale space [1, 4, 5, 10, 18].
One advantage in this context is that the discrete image becomes a continuous scale
space image. The scale space image contains sufficient information for an uncommitted
hierarchy and segmentation without a priori knowledge [7].

Since both methods start of by taking minimal assumptions and it makes sense to
investigate the combination of them. In this paper the usage of scale space in mutual
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information image registration is investigated. This essentially boils down to apply-
ing the mutual information measure to the images at various scales. Since images at
increasing scales become more and more blurred, combining the methods is a way to
embed local information of the image in the mutual information measure.

Research has been done on the use of scale space and entropy, but these investi-
gations are based on the scale space of the histogram of the image [14, 15], or the
Gaussian pyramid [20]. Pluim et al. [11] implemented a multi-scale approach to mu-
tual information matching, aiming for an acceleration of the matching process while
considering the accuracy and robustness of the method. They found an acceleration up
to a factor of around 3.

The MI measure, scale space are their combination are described in section 2. In
section 3 the results of this approach are presented on MR, CT, and PET images, as
well as their combinations. In section 4 results are summarised and discussed.

2 Theory

Next I will briefly describe the ideas behind and theory of the concepts of mutual
entropy in section 2.1 and scale space in section 2.2. The combination, the application
of MI to scale space images, will be described in section 2.3

2.1 Mutual Information

The Mutual Information measure [8, 16] is based on the shared information of the over-
lapping part of two images. This information is obtained using the Shannon entropy
[13], known as a measure of uncertainty. LetA be a random variable andpA(a) its
marginal probability distribution, then the entropyH(A) is given by

H(A) =
X
a2A

pA(a) log
1

pA(a)
= �

X
a2A

pA(a) log pA(a):

LetB, pB(b), andH(B) be similarly defined andpAB(a; b) the joint marginal proba-
bility distribution, then the joint entropy is given by

H(A;B) = �
X

a2A;b2B

pAB(a; b) log pAB(a; b):

The Mutual Information (MI) is defined as

MI =
X

a2A;b2B

pAB(a; b) log
pAB(a; b)

pA(a)pB(b)

Expanding the division and multiplication in the logarithm and the sum over the terms
yield

MI =
P

a2A;b2B (pAB(a; b) log pAB(a; b)� pAB(a; b) log pA(a)pB(b))

=
P

a2A;b2B pAB(a; b) log pAB(a; b)

�Pa2A;b2B pAB(a; b) log pA �
P

a2A;b2B pAB(a; b) log pB(b)
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Since
P

a2A;b2B pAB(a; b) =
P

b2B pB(b) =
P

a2A pA(a) = 1, the latter reduces to

MI =
P

a2A;b2B pAB(a; b) log pAB(a; b)

�Pa2A pA(a) log pA �
P

b2B pB(b) log pB(b)

and thus
MI = �H(A;B) +H(A) +H(B) (1)

If A andB are completely uncorrelated,H(A;B) = H(A) + H(B) and therefore
MI = 0. In the opposite case, ifA andB are fully correlated, i.e.A = B,H(A;B) =
H(A) = H(B) andMI = H(A). Since this is a priori unknown value, in many tasks
the Normalised Mutual Information (NMI) is used. It is defined by

NMI =
H(A) +H(B)

H(A;B)
=

MI(A;B)

H(A;B)
+ 1 (2)

and is bounded by 1 (uncorrelated) and 2 (correlated).
For images the marginal probability functions are derived from the histogram of

the intensities in the image. The histogram containsn bins bk containing the relative
number (#) of intensities ofA, I(A), between (generally equidistant) boundary values
Lk�1 andLk :

bk = #fI(A) j Lk�1 < I(A) � Lkg (3)

Obviously,
Pn

k=1 bk = 1. Similarly, a histogram forB with boundary valuesNm is
obtained. The joint marginal probability is represented by a 2D histogram containing
binsbk;m. In these bins the relative number of corresponding image points (pixels, vox-
els, etc.) are stored. These image points have the same spatial location (after translation
and if necessary interpolation) and are storend in the binsbk andbm of the histograms
of A andB, respectively.

bk;m = #ffI(A) j Lk�1 < I(A) � Lkg ^ fI(B) j Nm�1 < I(B) � Nmgg (4)

As a consequence, ifA = B, and both histograms have equal binwidth (Lk �
Lk�1 = Nm �Nm�1 for all (k;m)), thenbk;m = 0 if k 6= m and the 2D histogram
has only non-zero entries on the diagonal.

2.2 Scale Space

The important addition of a scale space image to an ordinary image is the notion of
scale. Its appearance lies in the fact that all images are discrete. Generally, there is
no a priori reason to threat the image on pixel scale, since they are only a result of
the acquisition of the image by an aperture with a certain scale or sampling range.
Moreover, the assumption that the image can be regarded as some kind of more or
less continuous function of its spatial variables is mathematically justified, only if this
discrete set is convolved with a so-called test function (Theory of Distributions [12]).

One of the most simplest and most used test functions is the Gaussian filter with
zero mean and variable variance [1]. The latter is very important: since there is no a
priori reason to fix the variance, all possible variances are taken. Therefore the image
L(x) is extended to a scale space imageL(x; t) by
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L(x; t) =

Z
IRn

1p
4�t

n e
�
jx�yj2

4t L(y) d y

From this formulation it is clear that when regarding scale�, � =
p
2t, scale and

spatial location have the same dimensionality. It thus makes sense to speak of ‘a scale
of two pixels’. This corresponds to regard the image blurred witht = 2.

2.3 Mutual Information in Scale Space

The basic idea of mutual information in scale space is that applying a Gaussian filter
to an image followed by binning, introduces spatial information into the histograms.
The intensity of an image point that is put into a certain bin is partly determined by
the intensity of that point in the original image, and partly by the environment aroud
that image point. The larger the scale of the filter, the larger the local environment of a
pixel that is taken into account. Since convolution with a Gaussian is a way of low-pass
filtering, noise is suppressed and the image is smoothened. The result on the histogram
is twofold. It also blurs, albeit not necessarily Gaussian, due to smoothening of edges.
On the other hand, the suppression of noise yields ideally removement of irrelevant
(noise induced) intensities, i.e. sharpening, or at least more pronouncing, of relevant
(non-noisy) clusters.

Note that changing the binsize is completely different. In that case the neighbour-
ing values in thehistgramare taking together, regardless where they are neighbouring
pixels in theimage. So in this case non local spatial information is taken into account.

In literature, applying a scale space on itensities themselves is also proposed. In
this case the intensity is partly put in its bin and partly in its neighbouring bins, de-
pending on the width of the Gaussian filter used. This may be called fuzzy binning:
the measured values are stored in bins determined by theblurring of the valuesthem-
selves, cf. [2, 3, 6]. Although this may give interesting results for single images, the
transfer of this idea to the joint histogram - and thus the mutual information measure -
is complicated.

In these both case the values in the one dimensional signal calledhistogramare
blurred, while in the presented approach the values in theimageare blurred. It is
therefore essentially different.

In the scale space image, the mutual information becomes a parametrized measure.
Let A andB become the scale space imagesA� andB� , then the entropies and joint
entropy becomeH(A�), H(B� ), andH(A� ; B� ). Consequently,

MI(A� ; B� ) = �H(A� ; B� ) +H(A�) +H(B� )

and

NMI(A� ; B� ) =
H(A�) +H(B� )

H(A� ; B� )

Now two different routes to investigate the behaviour of these parametrized mea-
sures seem to be possible. The first one is to construct the scale space images, derive
the histograms at all scales and compare the histograms and joined histogram at all
these scales. An alternative way is to construct the scale space images and derive his-
tograms at all scales simultaneously. In this case the scales are regarded as an extra
variable adding an extra dimension to the image, instead of a parameter.
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Figure 1: Used test images: a) MR b) CT c) PET

Although both methods appear different, the latter is a special case of the first. This
is due to the fact that the histogram of the scale space image (the second route) equals
the sum of the histograms at all the calculated scales (obtained in the first route) divided
by the number of scales. It therefore suffices to take into account only the first case.

Several aspects of these parametrized measured are investigated. Firstly, the case
A = B is taken. This gives insight in the behaviour of the mutual information under
the influence of scale. ThenMI(A� ; A� ) = �H(A�; A� ) +H(A�) +H(A� ). The
special case� = � , yielding a one parameter measureMI = H(A�) is also dealt
with, It describes the behaviour of the entropy under blurring. Secondly, the general
caseA 6= B, is vestigated.

3 Results

In this section I consider thetest images as shown in Figure 1. They are, from left to
right, Magnetic Resonace (MR), Computed Tomography (CT), and Positron Emission
Tomography (PET) images. These images are already aligned and have integer values
ranging from0 to 255. Consequently, histograms are taken with bandwidth1. In
subsequent sections firstly the single modality behaviour MR-MR, CT-CT, and PET-
PET is investigated.

In all case the behaviour of the MI as function of increasing scale are presented.
Here the images are perfectly registered (the set(A� ; A�). Then the MI reduces to
the entropy of the image (H(A�)) and the NMI to 2 (and is thus disregarded), as was
shown in section 2.1. These results are followed by the behaviour of the MI and NMI
as function of both linear translation of one of the images and increasing scale (the set
fT (A�); A�g). The results can be explained by the effects of increasing scale to each
image and its histogram, which are also presented and discussed. The last unimodal
registration comparison is by perfectly registered images, but as a function of both
varying scales (the set(A� ; A� ).

Secondly the bimodal results for the MR-CT, MR-PET, and CT-PET registrations
are calculated. Here the images are perfectly registered, but both MI and NMI are
calculated as a function of both varying scales (the set(A� ; B� ).

3.1 MR-MR registration

Of the MR image shown in Figure 1a a scale space is calculated. The first and second
row of Figure 2 show the image at several scales. The corresponding histograms with
binwidth 1 are shown in the third and fourth row of this Figure.
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Figure 2: MR image at scales 1, 3, 5 (row 1), 20, 33, and 60 (row 2). Histograms of
the MR image at scales 1, 3, 5 (row 3), 20, 33, and 60 (row 4).
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Figure 3: MI of the MR image A) Small scale behaviour: scales1; 1:25; : : : ; 8. B)
Large scale behaviour: scales1; 2; : : : ; 100.

Firstly a scale space containing small scales is analysed. This scale space has 29
scales, ranging linearly from 1 to 8 pixels. At each scale the MI of the image with itself
is calculated and shown in Figure 3a.

One may note that initially the MI decreases until a scale of 3 pixels, remains
constant for, say, two pixels, and then increases again. The histograms of the image at
scales 1, 3, and 5 pixels is shown in the third row of Figure 2. The decrease can be
explained by noting that the binsb1, b2, andb3 with fractions 0.14, 0.31, and 0.19 are
reorganised to the more pronounced bin sequence 0.53, 0.12, and 0.1 This deletion of
noise in the background influences the change in MI more than the decreasing number
of filled bins, from 227 to 178. With increasing scale this number decreases more to
143 bins, causing an increasing value of the MI.

To investigate the large scale behaviour, scales varying from 1 to 100 pixels are
taken. The MI of the image with itself is shown in Figure 3b. Clearly, the increase of
MI changes to a decrease at a scale of 33 pixels.

An explanation of this fact can be found in Figure 2. The second row shows the
image at scales 20, 33, and 60. Where there is still some structure visible at scale 20,
at the other two images only a white blob occurs. The histograms of these images,
shown in the bottom row of Figure 2 clearly visualise this. The first histogram shows
a (small) peak at the bins 50-70 (the latter is the last filled bin). The other histograms
just present blob information in the binrange 4-59 and 10-36, respectively. Blurring
this blob obviously converges to a uniformly grey image (to be expected at a scale of
approx. 140, i.e. half of the image size) with only one bin filled and a MI of 0. Note
that the NMI is not defined for a single filled bin.

Next a translation ofn pixels, withn 2 [�13; 13] an integer, is taken. The MI of the
setfTn(A�); A�g for � = 1; 1:25; : : :16 is shown in Figure 4a. Obviously, the ridge at
the translationn = 0 corresponds to the MI shown in Figure 3. As the scale increases
the ridge becomes less pronounced. This is due to the fact that details are blurred away
and the number of bins decreases. Two events take place while increasing scale. Firstly
the peak occurring at a scale level due to the translation artifact is damped, for small
scales even strongly to the local minimum visible in Figure 3. Secondly the entropy at
such a level moves up vertically for all translation artifacts, see e.g. the slope on the
boundary of Figure 4a.

In the NMI, shown in Figure 4b, the ridge value is a constant, viz. 2, since it cor-
responds to the image perfectly aligned with itself. The entropy due to misregistration
increases. This is explained by the fact that due to blurring both the number of bin
decreases and the thus details of the image (i.e. small peaks) vanish, and the images
become more alike since, for example, a mismatch of one pixel is relatively small to
blurring with, say, 10 pixels.
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Figure 4: Registration at scales1; 1:25; : : : ; 16 of the MR image and itself translated
with n pixels,n = �13;�12; : : : ; 13 for a) MI. b) NMI.
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Figure 5: MI of MR-MR at scales1; 1:25; : : : ; 16. NMI.

For an comparison of the casefA� ; A�g, see Figure 5. It shows the MI (left) and
NMI (right) of the image perfectly aligned but compared at different scales. Obviously,
best result is obtained at equal scales,� = � , the diagonal of both images. The values
on the diagonal equal that of Figure 3 for the MI image, and 2 for the NMI image.

3.2 CT-CT

The CT image, see Figure 1b, behaves more or less the same, the main difference is that
the MI for the CT image doesnot contain a local minimum for small scales, but starts
monotonically increasing, see Figure 6, until a scale of 35 pixels. For large scales there
is only blurring of a white blob and consequently a decrease of MI. One may consider
the CT image to be slightly blurred already, compared to the MR image.

This becomes clear from Figure 7, where the image at various scales and corre-
sponding histograms are shown. The structure is similar to the MR image, albeit that
here only one large peak taking a fraction of 0.62 is visible for small intensities. The
temporally decrease of MI is thus no to be expected.

As a consequence, the image of the MI of the CT-CT registration with pixel wise
translation of one image under the influence of small scales, Figure 8, shows a ridge
with all values increasing. The NMI, if not equal to 2, increases too.
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Figure 6: MI of the CT image. Left: Small scale behaviour: scales1; 1:25; : : : ; 8.
Right: Large scale behaviour: scales1; 2; : : : ; 100.
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Figure 7: CT image at scales 1,3,5,20,35, and 60. Histograms of the CT image at scales
1,3,5,20,35, and 60.



3 RESULTS 10

-10
-5

0

5

10

translation

1

4

8

12

16

scale

1

2

3

4

MI

-10
-5

0

5

10

translation

-10
-5

0

5

10

translation

1

4

8

12

16

scale

1.4

1.6

1.8

2

NMI

-10
-5

0

5

10

translation

Figure 8: Registration at scales1; 1:25; : : : ; 16 of the CT image and itself translated
with n pixels,n = �13;�12; _;13 for a) MI. b) NMI.

1 4 8 12 16
scales

1

4

8

12

16

scalet

1 4 8 12 16
scales

1

4

8

12

16

scalet

Figure 9: MI of CT-CT at scales1; 1:25; : : : ; 16. NMI.
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Figure 10: MI of the PET image. Left: small scale behaviour: scales1; 1:25; : : : ; 30.
Right: Large scale behaviour: scales1; 2; : : : ; 100.

Comparing the MI and the NMI of the CT image at different scales, Figure 9, one
finds the strongest responses at identical scales.

3.3 PET-PET

For the PET image, Figure 1c, similar results as for the MR image are obtained. Figure
10 shows the behaviour of the MI under blurring. Here also a local minimum occurs,
albeit at a relatively large scale, viz. 14 pixels. The MI increases until the local maxi-
mum at scale 35 and then decreases again until it converges to 0.

The image and its histograms at several scales are shown in Figure 11. At scale 1
there is one big peak (fractions of approx. 0.05) spread over roughly 50 bins, with a
very large tail containing one small wide peak around 175. During blurring to scale
14 the spread of this big peak is narrowed to 25 bins that contain more data (fractions
of 0.04 to 0.14), while the tail is shortened (the stripes in the PET image disappear).
After this local extremum of the MI the large peak firstly remains stable, while the tail
keeps moving to the left, due to the disappearance of all structure in the image. After
the second local extremum only the white blob is blurred and the histogram converges
to a uniformly distributed one containing finally one bin.

The registration of the PET image with itself, translatedn pixels,n = �13;�12; : : : ; 13,
as shown in Figure 12 shows the same behaviour as the MR image, albeit that the ridge
for the MI is less pronounced.

Comparing the MI and the NMI of the PET image at different scales, Figure 13,
one finds the strongest responses at identical scales.

3.4 MR-CT

In the CT - MR registration it may seem by intuition that registration at identical scales
(the� = � case) gives the best result. However, since the MR image shows a non-
monotonic behaviour for the MI for small scales, one may expect non-trivial results.
Figure 14 supports this hypothesis. It shows the MI (left) and NMI (right) of the MR
at scaless = 1; 1:25; : : : ; 10 and the CT at scalest = 1; 1:25; : : : ; 10. The second row
shows the 3D image. As one can see, the highest response is not on the diagonal with
similar scales, but roughly a line with a somewhat higher slope.

Basically this image is build-up by the combination of two functions with a maxi-
mum that move with different velocities under blurring. However, since they are out of
phase, the maximum of the combination – the top of the ridge – starts “out of phase”
and moves while increasing scales. For the CT at scale 1 pixel, the highest response is
given by he MR at scale 2.5, moving to CT at 10 pixels vs. MR at 9 pixels.
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Figure 11: PET image at scales 1,7,14,25,40,60. Histograms of PET image at scales
1,7,14,25,40,60.
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Figure 13: PET-PET at scales1; 2; : : : ; 30. Left: MI.Right: NMI.
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Figure 14: MR-CT at scales1; 1:25; : : : ; 10. Left: MI. Right: NMI.
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Figure 15: MI of MR-PET at scales1; 2; : : : ; 30. NMI.

3.5 MR-PET

For the MR - PET registration also the 2D case� 6= � is considered, since� = �

boils down to investigating the diagonal of this 2D image. Scales� (PET) and� (MR)
are taken from 1 to 30 with stepsize 1 pixel. In Figure 15 clearly two ridges can be
seen, one for each parameter. They meet and merge at the highest scales. Given the
behaviour of the entropies of both images this is to be expected. In contrast to the
previous section, however, now the absolute maximum is found the combination of the
highest scales.

3.6 CT-PET

The CT-PET registration is similarly taken for scales� (PET) and� (CT) from 1 to 30
with stepsize 1 pixel. The 2D images of the case� 6= � are shown in Figure 15. Again,
they show two ridges, one for each parameter. They meet and merge at the highest
scales.

4 Discussion

The investigation of the mutual information measure in scale space images is not as
straightforward as it would seem to be. The entropy of an image under the influence of
blurring changes non-monotonically. This can be understood by examining the change
of number of bins in the histogram. The MR image shows extra complicated behaviour
due to the temporally merging of bins for low values. This is caused by the smoothing
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Figure 16: MI of PET-CT at scales1; 2; : : : ; 30. NMI.

of the background. A resampling of the histogram, e.g. by adjusting the binwidth with
scale, does not remove this behaviour.

The registration of an image with itself under various scales, however, yields com-
pletely the desired result. The strongest response is obtained by the correct alignment
and correspondence of scale.

If images of different modality are registerd at various scales, complicated be-
haviour occur. This is due to the non-monotonic behaviour of the seperate entropies.
As a consequence, a maximal response of the MI and NMI is generally obtained by two
different scales for the images. With the images used in mind, one can argue indeed
that a highly detailed MR image may be smoothed a little bit when comparing it to a
more smooth CT image. For the PET image similar arguments hold. Here the axial
strips influence the registration, so removing them by taking the image at some larger
scale may improve the registration.

Further research may investigate if this property can be used for better or faster
registration of two images. Since blurred images can be registered faster [11], one can
has a good starting point for aligning the images at the initial scales and only need to
refine the result.

It also needs to be investigated in howfar scale influences the position of the max-
imum response of the MI and NMI. Preliminary experiments show a small deviation
which is, however, smaller than the scales used. Since blurring introduces an uncer-
tainty in location, this is also to be expected. Still, further research is recommended.

As stated in section 2.3, the influence of linear scale space, i.e. linear Gaussian
blurring, is twofold. Removing the noise is an advantage and gives a more pronounced
histogram, but the blurring of edges blurs the histogram. The latter can be avoided by
using a non-linear scale space [18]. A disadvantage is that in these scale spaces the
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relation between scale and spatial location is less obvious.
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