
1 

J. Electroanal. Chem., 256 (1988) l-10 

Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands 

On the rate equation of nucleation and the concept of active 
sites in electrodeposition 

J.H.O.J. Wijenberg, W.H. Mulder, M. Sluyters-Rehbach and J.H. Sluyters * 

Van ‘t Hoff Laborarmy, State Universrty of Utrecht, Padualaan 8, 3584 CH Utrecht (The Netherlands) 

(Received 26 April 1988; in revised form 20 June 1988) 

ABSTRACT 

On the basis of the assumption that on a homogeneous surface area a probability 0 < P( E, c) <: 1 for 

nucleation can be defined which increases with the monomer concentration c and is also dependent on 

the potential E, it is shown both by a schematrc computer simulation and by an approximate analytical 

derivation that necessarily the number of nuclei has to attain a limiting value for long times. without 

having to resort to the existence of active sites. It follows that this limiting number arises from a 

concurrence between the probability of nucleation and the processes that accompany the growth of a 

nucleus and that decrease supersaturation. 

LIST OF SYMBOLS 

A 

c(r, t) 

c* 
D 
k 

N(t) 

N, 

P(E, c> 

R(t) 
R(L u> 

nucleation rate per active site, s-’ 
monomer concentration at a radial distance r from the centre of a lone 
nucleus at time t, mol cmm3 
monomer bulk concentration, mol cmP3 
diffusion coefficient, cm2 s-l 
growth constant of exclusion zone, cm s- ’ 
number density of nuclei at time t, cm-2 
number density of active sites, cmP2 
nucleation rate probability as a function of potential E and concentration 
c, cme2 s-’ 
radius of a nucleus at time t, cm 
radius of exclusion zone at time t belonging to a lone nucleus, which is 
born at time u, cm 
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s fractional surface area excluded for further nucleation 

s, Avrami’s extended area 

f; 

=rk2 

= (dN(t)/dt),,,, cmm2 s-r 
Y factor with which P( E, c) decreases because of depletion 

P/M molar density, mol cmW3 

(I) INTRODUCTION 

A large body of literature exists dealing with the mathematical description of the 
electrodeposition of some material on a foreign substrate [l-33]. These theories, at 
present, consist mostly of ~mbining theories on nucleation, growth of the nuclei 
under diffusion and/or activation control, overlap of the growing nuclei and/or the 
diffusion zones that surround them, ohmic effects, etc. From these partial processes 
nucleation is the crucial one because it largely determines how the overall process 
will proceed. 

Generally, the nucleation process is supposed to be stochastic in time and to 
occur only at certain locations randomly distributed on the electrode surface, named 
active sites [l-4,6,15-32]. Although speculations on the nature of active sites do 
occur in the literature [l-3,30] and although there is clear evidence that nucleation 
occurs preferentially on scratches in the electrode surface [18], the question of 
whether active sites are a physical reality also on well-prepared supposedly homoge- 
neous electrode surfaces seems to be unsettled. On the other hand, the number of 
sites. i.e. the quantity N, in the generally accepted nucleation law, dN/dr = A( N, - 
N ), on any surface is found to be finite in practice, although dependent on, for 
example, the electrode potential and electrode pretreatment [2,3,6,15-17,19,20,23, 
25,26,30]. 

In particular, the dependence on the electrode potential has remained puzzling 
and has been explained assuming the site to occur in a wide and continuous 
spectrum of activities, each site being active only beyond some value of the electrode 
potential [l-3,6,19,22]. Also it has been argued that sites will become inactive if the 
concentration of the electroactive species in their vicinity has become low because of 
the consumption of the species by neighbouring growing sites (ingestion effect 
[3,5,8,11,15,18,20-23,30-321). 

In this paper we show that the occurrence of a finite number of nuclei can also be 
explained on the plausible assumption of the existence of a probability P (in cm-’ 
s-‘) for the birth of a nucleus, which increases with the concentration of the 
electroactive species, thus abandoning the concept of the active site. 

(II) A COMPUTER SIMULATION OF NUCLEATION WITH INGESTION 

The electrode surface is supposed to be completely homogeneous. All over the 
surface the probability for a nucleus to arise is defined by 0 c P( E, c) < 1, which is 
a function of both the potential E and the concentration of the electroactive species 
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c via some rate equation. Then if a nucleus is born and has started to grow, in its 
neighbourhood the value of P(E, c) will decrease because of the build up of a 
region of decreased concentration, the depletion zone. The form of this zone in the 
case where growth of the nucleus is governed by hemispherical diffusion and at high 
over-potential (surface concentration of the nucleus zero) has been shown to be f&32] 

c(r, ~)=c*~l-~(~)/~~erfc[{~-~(~)}/2(~~)1’2] forrlR(t) (11 
where R(t) = (2Dc*M/p)‘/2t’/2, c* is the bulk concentration, D the diffusion 
coefficient of the electroactive species and p/M the molar density of the deposit. 
Equation (1) describes how the depletion propagates both in time and in distance 
from the nucleus. 

Here, in order to keep both the discussion and the computer program simple, for 
the present the build up of the zone around a nucleus will be introduced very 
schematically, although the essence of the method is retained. For the same reason 
the simulation will be made in one dimension only. Along this dimension the 
“surface” is divided into 80 discrete elements to make possible the simulation that 
runs as follows. 

The decision whether in an element a nucleus is born is made via a random 
number generation At the start of the program, all elements have the same 
probability P of generating a nucleus. Then in the second run all elements adjacent 
to a successful element are given a lower probability yP. This power law decrease 
goes on, but we desisted from decreasing the probability beyond the next nearest 
elements. Of course, in every run new nuclei are allowed to be born as a result of 
decisions made by the random number generator on the basis of the prevailing value 
of the probability. In order to avoid edge effects the ends of the “surface” were 
connected. 

In order to give a visual explanation, in Table 1 as an example we report the 
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Fig. 1. Development of the nucleus density with time obtained with 
y, averaged over 500 simulations. 

P = 0.05 for some indicated values of 
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development of the probabilities along a part of the “surface”. Also we indicate 
each of the successful nucleations with an N. 

It will be clear that in this way the development of the number of nuclei with 
time can be obtained. To remove the stochastic noise from the results, 500 of such 
simulations were averaged. These averaged results are reported in Fig. 1 for eight 
indicated values of the parameter y, and P = 0.05. 

A value y = 1 indicates no depletion and will occur if mass transport is infinitely 
fast. Obviously only then the monomolecular development of the nucleus density 
will be observed according to the well-known rate equation 

N(t) = N,[l - exp( -At)] (2) 

For all other values of y, the rate equation differs from eqn. (2). Another 
interesting result, reproduced in Fig. 2, is the limiting value N(cc) that occurs after 
a large number of time increments (here 300). Most surprisingly, the limiting 
number of nuclei is strongly dependent on the parameter y at y close to unity and is 
rather independent of y for y < 0.8. From its definition it will be clear that a high 
value of y, i.e. close to unity, corresponds to a high mass-transfer rate. So, under 
such experimental conditions the density of the nuclei will be strongly dependent on 
the rate of mass transfer, i.e. when depletion is minor. 

Finally, we report the development of N(t) with time for some values of P at 
constant y = 0.9 in Fig. 3. 

A variation of P experimentally can be brought about by varying the electrode 
potential. Evidently from Fig. 3 the potential dependence of the limiting value 
N(W) can be understood. A second corollary of Fig. 3 is that at constant rate of 
mass transfer a causal relationship should exist between N(oc) and P, or to put it in 
usual terminology, between the active site density and the nucleation rate constant. 

TABLE 1 

Development of the probabilities along a part of the “surface”. Successful nucleations are indicated with 
an N. The probability for a nucleus to arise is equal to y ““mberP, where “number” is specified m the 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 N 0 N 0 0 0 0 0 

0 0 0 0 0 1 N 2 N 1 0 0 N 0 

0 0 0 0 1 2 N 4 N 2 1 1 N 1 

0 0 0 0 2 3 N 6 N 3 3 2 N 2 

0 0 0 N 3 4 N 8 N 4 5 3 N 3 
0 0 1 N 5 5 N 10 N 5 7 4 N 4 

0 1 2 N 7 7 N 12 N 6 9 5 N 5 

0 2 3 N 9 9 N 14 N 7 11 6 N 7 

0 3 4 N 11 11 N 16 N 8 13 7 N 9 
0 4 5 N 13 13 N 18 N 9 15 8 N 11 

0 5 6 N 15 15 N 20 N 10 17 9 N 13 

0 6 7 N 17 17 N 22 N 11 19 N N 15 

0 7 8 N 19 19 N 24 N 12 22 N N 17 
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Fig. 2. Limiting values N(co) of the nucleus denstty as a function of the parameter y. obtained with 

(from top to bottom) P = 0.05, 0.025 and 0.0125, respectively. 

It might be argued that dividing the surface into a finite number of elements is 
identical to saying that there is the same number of active sites. The problem arises 
only because of the necessity, for the sake of the simulation, to make the nucleation 
process discrete in time and space. The way out is to realize that in reality the 
number of elements should be taken as infinite and the probabilities accordingly 
small. Then for y = 1 the value of N(oc) will be infinite, as is to be expected for a 

table. P was taken equal to 0.05 and y to 0.9. The rows show the situation after a number (0 to 13) of 

time intervals have elapsed 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 N 0 0 
N 1 0 0 0 0 0 0 0 0 1 N 1 0 

N 2 1 0 N 0 0 0 0 1 2 N 2 1 
N 3 2 1 N N 0 0 0 2 3 N 3 2 

N 4 4 2 N N 2 0 0 3 4 N 4 3 

N 5 6 N N N 4 1 0 4 5 N 5 4 

N 6 9 N N N 6 2 0 5 6 N 6 5 



Fig. 3. Development of the nucleus density with time calculated 

P, averaged over 500 simulations. 
with y = 0.9 for some indicated values of 

homogeneous surface, and a finite number of nuclei will occur in reality only 
because mass transfer can never be infinitely fast. 

Although the adaptation of the present simulation procedure to real systems will 
be more difficult (e.g. performing it on the basis of eqn. 1, including the ohmic drop 
and implementing it with a real relationship between P and c and possibly between 
P and cluster size f33]), we think it is legitimate to draw some qualitative conclu- 
sions. A relationship is expected to exist between the limiting number of nuclei 
N(cc), the probability P and the mass-transfer coefficient y. Also the existence of 
active sites is not an inevitable assumption to explain the occurrence of a limiting 
number of nuclei for long times. It should be realized that the factor y could 
comprise all other effects that tend to decrease supersaturation, like the effect of 
ohmic drop and rise of temperature if the growth of a nucleus is exothermic. 

An analogous simulation in two dimensions yielded graphs quite similar to Figs. 
l-3. This program is most suitable for an on-line demonstration and is available on 
request. 

(III) AN ANALYTICAL EXPRESSION FOR THE NUCLEATION RATE 

The simulation in the preceding section could be made more realistic by 
implementing it with the mathematics of mass transfer, the kinetics of the nuclea- 
tion process yielding P(E, c), the kinetics of growth and the ohmic drop effect. A 
completely rigorous derivation of an expression describing the development of the 
number of nuclei with time N(t) seems to be infeasible. Nowever, an acceptable 
compromise (based on the Avrami theorem applied in a way analogous to the 
current theories on the effect of ingestion of active sites by the growing and 
overlapping depletion zones) is possible in the following way, restricting the 
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discussion to diffusion~ontrolled hemispherical growth of the nuclei. Then it can be 
postulated that, after the nucleation process has started at t = 0, around every 
growing nucleus born at time t = u an effective exclusion zone develops with radius 
&(t, u) = k(t - u) ‘I2 [5 15,20 23,31,32], where k stands for the growth constant of 
the zone within which nk nucleation is possible. So, every nucleus is the centre of a 
circle with surface area vrB2(t, u), excluded from nucleation. Of course, in reality 
the nucleation probability will vary continuously from the value belonging to the 
bulk monomer concentration to that belonging to the concentration at the surface of 
the nucleus, dictated by the Nemst equation for a reversible system. The extended 
surface area, i.e. the surface of all the exclusion circles including those which 
originated from the ingested nuclei (often denoted in the literature as phantoms or 
ghosts) will be, with the initial condition N(0) = 0: 

s, = 77 u) du = ,rrk2 ( ~),=opu) did 

This area should be corrected for overlap of the exclusion zones with the Avrami 
equation, which states that the fractional surface area corrected for overlap, S, is 
related to S, according to 

S= 1 -exp(-S,) (4) 

The nucleation rate is proportional to the free fractional surface area (1 - S), 
whence 

Here, (Y and /3 have been introduced for convenience, 
equation gives 

N(t) = ( g)1’2erf[ ($$)‘“t] 

For small values of ($@)‘/2t, eqn. (6) reduces to 

Solving this differential 

(6) 

describing that part of the time domain that is usually referred to as the domain of 
progressive nucleation. Also the so-called “instantaneous limit” is described by eqn. 
(6) namely if ($xp)“2t is large: 

N(t) = (7rfl/2a)1/2 (8) 

In Fig. 4, N(t)/(vrj3/2a)“2 has been plotted vs. (aj?/2)“2t. For long times N(t) 
has the limiting value N(M)) = (@/2a) 1/2 This means that the final number of . 
nuclei will be large if the initial nucleation rate is high and/or the development of 



Fig. 4. NormaIized plot of the development of nucleus density with time (cf. eqn. 6). 

the exclusion zones is slow. The final number will be reached sooner if the initial 
nucleation rate is high and/or the exclusion zones develop rapidly. All this is in 
qualitative accordance with the results of the simulation procedure presented in 
Section (II). 

(IV) DISCUSSION 

Both the simulation and the analytical derivation lead to the conclusion that if 
the interface is assumed to be homogeneous as for nucleation, the two effects that 
counteract the supersaturation in the neighbourhood of growing nuclei, i.e. decrease 
of monomer incubation and ohmic drop, necessarily lead to a finite value of the 
nucleus density. Consequently the assumption of the existence of locations on the 
interface that are specially suitable for nucleation to occur, so-called active sites, is 
unnecessary. Of course, this does not mean that all practical surfaces are homoge- 
neous and that active spots cannot occur, only that their use in theories should be 
restricted to those cases where their presence for some reason is to be considered 
realistic. 

Electrodeposition is quite a complex process, made up of many partial processes 
that proceed simultaneously. In order to arrive at surveyable and tractable mathe- 
matical descriptions it is tempting in a derivation to restrict ourselves to only one or 
two of those partial processes and then to pose that for such a derivation always 
some time domain in the transient exists in which the derived behaviour will apply. 
This is a risky procedure and seems to have led to ~sinte~retations of experimen- 
tal results [31]. 

Likewise, it is customary to assume that the ingestion effect becomes effective 
only in a later stage of electrodeposition. This idea was most probably nourished by 
the idea that the active sites are situated relatively far apart. We expect that with the 
views developed in this paper some further inte~ation of the partial processes in 
electrocrystallization has been acquired. 

As a conclusion we state that the ingestion effect should be regarded as a basic 
aspect of the nucleation process rather than as a complication to it. In cases where 
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the ingestion occurs because of a temperature rise in the vicinity of a growing 
nucleus due to exothermic growth in a medium of low thermal conductivity these 
views may also apply to (non-electrochemical) phase transitions in a condensed 
phase. 

(V) COMPARISON WITH THE LITERATURE 

Many treatments on electrochemical nucleation and growth have been published, 
many of which include the ingestion effect. All of them seem in some way to assume 
the existence of sites randomly distributed on the surface. Physically this means that 
the surface is supposed to be inhomogeneous as for nucleation for some, generally 
unknown, reason. 

On a crystal surface there can be a finite number of dislocations which could act 
as a site and then the active site model will be applicable. On the other hand, in the 
case of a practical electrode material so many imperfections could exist that the 
electrode surface might as well be treated as homogeneous. As a consequence, then 
the present treatment (after further elaboration) is to be preferred because it leads to 
an understanding of the potential dependence of the apparent number of active sites 
and to the use of a better rate equation for nucleation. 

There is good experimental evidence that the probability for nucleation P( E, c) 
is an existing property of an electrode/electrolyte interface, for it is closely related 
to the function P which has been obtained experimentally on screw-dislocation-free 
silver surfaces by Obretenov et al. 1131 in their mononuclear tw~dimensional 
growth experiments on the electrochemical reduction of silver ions. 

Similar experiments have been described by Gunawardena et al. [lo] for a foreign 
substrate, from which the probability P( E, c) for a nucleation to occur in unit time 
and at unit surface area can be obtained directly. 

These investigations were supported in part by The Netherlands’ Foundation for 
Chemical Research (SON) with financial aid from The Netherlands’ Technology 
Foundation. 
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