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ABSTRACT 

By means of quantum chemical cluster calculations the contribution of the electrode itself to the 
double layer capacity is established. The "metal layer" capacity C m is defined. Model calculations have 
been carried out on Li clusters. The metal layer capacity is shown to be periodically distributed along the 
electrode surface, its value ranging from 3.6 to 5.2 #F cm -2. The capacity distribution originates from 
coordinate-dependent charge redistribution caused by a change of electric field strength at the electrode 
surface. It follows that this distribution leads to a deviation from purely capacitive behaviour of a solid 
metal/inert electrolyte interface but does not explain the constant phase element, often found experimen- 
tally for solid electrodes. 

(I) INTRODUCTION 

The existence of an electrical double layer at the metal/electrolyte solution 
interface was ascertained by Helmholtz [1] as early as 1853. At the beginning of this 
century a simple theory was developed by Gouy [2] and Chapman [3] which could 
describe several features of double layer experiments. An essential improvement of 
their theory was given by Stern [4]. The Gou y -Ch ap m an -S t em  model is still 
reputed to be applicable in many cases. An essential feature of this theory is its 
one-dimensionality: the potential and charge variation are only considered in a 
direction normal to the electrode surface. The electrode is modelled by a conductor 
with a sharp boundary at which the electrode charge o M is homogeneously spread 
out .  

I n  n e t w o r k  a n a l y s i s  o f  t he  i n t e r f a c e  t h e  e l ec t r i ca l  d o u b l e  l a y e r  is g e n e r a l l y  

r e p r e s e n t e d  b y  a c a p a c i t o r .  O n e  p l a t e  o f  t h i s  c a p a c i t o r  is f o r m e d  b y  t h e  m e t a l ,  t h e  

o t h e r  b y  t h e  i o n s  i n  s o l u t i o n ,  w h i c h  c o u n t e r b a l a n c e  t he  c h a r g e  o n  t h e  e l e c t r o d e .  T h i s  

c a p a c i t o r  c a n  f o r m a l l y  b e  sp l i t  u p  i n t o  t w o  c a p a c i t o r s  in  ser ies :  o n e  r e p r e s e n t i n g  t he  
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inner layer and one representing the diffuse double layer [5]. By experiment one can 
only obtain the total capacity. The contribution of the diffuse double layer to the 
total capacity can be calculated by the Gouy-Chapman-Ste rn  theory. This leaves 
the inner layer capacity as the unknown quantity. Several models have been 
proposed for the inner layer, which, in the absence of specific adsorption, are based 
on the solvent dipole orientation of the first solvent layer(s) adjacent to the electrode 
surface [6]. In these models the electrode is still regarded as a homogeneous reservoir 
of electrons with a sharp boundary, although the solution now has a three-dimen- 
sional structure. That also the electrode itself is important in double layer theory was 
considered as early as 1928 by Rice [7]. Recent model calculations include the 
influence of the metal [8]. Kornyshev et al. [9] used a non-local electrostatic 
approach to the interface and showed that a model with a diffuse boundary gave 
better results than one with a sharp boundary. Recently, Badiali et al. [10] calculated 
the contribution of the metal to the inner layer capacity. Their model for the 
electrode was a one-dimensional one with an a priori fixed shape of the electron- 
density profile. They showed [11] that neglecting the solvent structure did not change 
their results. 

For the meta l /vacuum interface, Smoluchowski [12] showed in 1941 that the 
metal structure had a predominant effect on the electronic work function. He could 
explain successfully the differences in electronic work function found experimentally 
for single crystals by taking into account the three-dimensional surface charge-den- 
sity profile of those crystals. 

In this paper we study the influence of the atomic structure of the electrode on 
the metal /solut ion interfacial behaviour. It has already been known for a long time 
that solid metal electrodes display a deviation from purely capacitive behaviour. The 
interfacial impedance is generally described by the so-called constant phase element. 
A physical model of it is lacking. From experiments we can deduce that the atomic 
structure of the electrode may be responsible for the observed interfacial behaviour, 
i.e. the three-dimensional surface charge-density profile of the metal contributes to 
the properties of the inner layer capacity. 

We have performed calculations on model electrodes with a definite crystalline 
structure. The macroscopic metal /solut ion interface was modelled by clusters with a 
single crystal atomic arrangement. An electric field was then applied to the cluster. 
In this way a three-dimensional charge-density profile was obtained as a function of 
potential, leading to a distribution of capacities on the electrode surface. This 
distribution was compared with the one generally used for the interpretation of the 
experimental results. 

(II) EXPERIMENTAL 

In this section we present an impedance study of a gold single crystal / inert  
solution interface (Section II.1). The interfacial behaviour of the gold electrode is 
compared with the ideal interfacial behaviour of a dropping mercury electrode 
(DME) and the so-called constant phase element is described, which in general 
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represents the frequency dependence of the interface between a solid metal electrode 
and an electrolyte solution. In Section (11.2) a phenomenological explanation is 
proposed for the observed solid metal /solut ion interface characteristics. 

(II. 1) The interfacial impedance of goM single crystal electrodes 

By means of the ac-impedance technique we studied the electrical double layer at 
single crystal gold electrodes in 1 M perchloric acid. The impedance analysis was 
performed as described by Sluyters et al. and measured with the experimental set-up 
described in ref 13. The frequency characteristic of the electrical interface is shown 
in Fig. 1 in which the impedance is plotted in a complex-plane representation [14]. 

The dashed line in Fig. 1 shows the frequency characteristic of a DME in an inert 
electrolyte solution at a potential in the ideally polarisable region. The impedance is 
represented by a straight line perpendicular to the abscissa, showing ideal interfacial 
behaviour. In terms of an equivalent circuit, the interracial behaviour of the DME at 
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Fig. 1. Complex plane representation of the impedance of an Au (100) single crystal in 1 M HCIO 4. 
Potential within the ideally polarisable region ( ). Frequency range between 80 and 20,000 
Hz. (-- -- --) RC-type behaviour. 
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one potential is represented by one capacitor (Fig. 2a). It is evident from Fig. 1 that 
there is a difference between the D M E  and the Au (100) solid electrode. By rotating 
the line for the D M E  clockwise through an angle of fl radians one gets the frequency 
characteristic of the gold electrode and a one-to-one mapping of the frequency 
points can be constructed. This constant phase shift, with respect to the DME, 
ranges from 0.5 to 1.5 o, depending on the gold single crystal face and potential. This 
constant phase shift is a generally observed phenomenon for solid electrodes. At 
sol id/sol id interfaces constant phase shifts are also observed that range from 1 to 
2 ° [15]. The interfacial behaviour of a solid electrode is represented by the so-called 
"constant  phase element" (CPE), which can be constructed of passive circuit 
elements as shown in Fig. 2b: instead of one capacitance there are many combina- 
tions of a capacitance (Ci) and a resistance (Ri)  in series, all RiC i combinations 
parallel to each other, giving rise to a distribution in RC times. 

The interracial impedance Z of a solid electrode can be expressed mathematically 
as 

Z =  R ( j t o R C )  ~-1 (1) 

w i th j  = fZ_ 1 and to = angular frequency, a is a rotation parameter. Its value ranges 
between 0 and 1. a~r/2 represents the angle ft. Equation (1) implies a distribution 
function of RC times. RoC o is the mean value of the distributed RC times, if 
expressed on a logarithmic RC scale. The distribution function F(s)  is, with 

C2 
R 2 

R 3 
c3 - - - ~ / ~ / k / - -  

(a) (b) 
I Ci ~ _ _  

Fig. 2. Equivalent circuit representation of the electrical interface in the ideally polarisable region; (a) for 
a DME, (b) for a solid electrode. 
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s = ln(RC/RoCo),  

1 sin ct~- 

F ( s )  = 2--~ cosh(1 - a)s  - cos a~r 
(2) 

This expression is analogous to the one given by Cole and Cole [16] for dielectric 
relaxation and can be derived following the general procedure outlined in ref. 17. 
The rotation parameter  a determines the width of the distribution, see Fig. 3. 

(H.2) Phenomenological explanation 

What can be the reason for a distribution of RC times representing the electrical 
interface at a solid electrode? By working under very precise conditions with very 
clean materials the influence of contamination was minimised. Frequency dispersion 
due to uneven current density distribution was avoided by careful cell construction. 
Moreover, the electrodes were monocrystalline and smoothly polished. As the 
measurements are reproducible the only difference between a D M E  and a solid 
electrode is the crystalline nature of the latter. On an atomic scale the electrode 
surface can be considered as "rough".  This leads to a charge distribution on the 
electrode surface, which will be periodical, depending on the crystal face which 
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forms the electrode surface [12]. This charge distribution might be the cause of the 
observed CPE. In order to check this, it is necessary to get detailed information on 
the electrode/solution interface at an atomic level. Quantum mechanics, and more 
specifically quantum chemical methods, are well suited for this purpose, enabling 
one to obtain the charge distribution as a function of coordinates and as a function 
of potential, which is necessary for calculating capacities. In this way we get the 
contribution of the metal to the differential double layer capacity and can find out if 
the distribution in capacities explains the CPE behaviour. 

(III) QUANTUM CHEMICAL CLUSTER CALCULATIONS 

In this section the calculational procedure for obtaining capacities on an atomic 
scale is demonstrated on the so-called ion lattice model (Section III.1). The applica- 
tion of this procedure to real clusters is outlined in Section (111.2). The calculation 
set-up is then described in Section (111.3). By studying Li clusters of varying number 
of atoms the necessary size of the cluster is established (Section 111.4). Results are 
given in terms of a distribution of capacities and are related to experiments (Section 
IV). 

(IlL 1) Definition of the metal layer capacity 

In the ion lattice model [18] a metal is considered as consisting of positive nuclei 
on fixed grid points and of a homogeneous distribution of negative charge (elec- 
trons) throughout the metal as depicted in Fig. 4a. The bulk of the metal can be 
thought of as being made up of electroneutral units, the so called Wigner-Seitz ceils 
[19], which contain one nucleus, centred in the middle of the cell. The boundary of 
such a cell lies at half a grid length (d)  from the center. 

By cleaving the metal one obtains two halves which can be considered as 
electrodes. The condition of electroneutrality implies that the cleaving must take 
place at the boundary, z b, between two Wigner-Seitz cells (Fig. 4a), which becomes 
the location of the metal-vacuum interface. The discontinuity in the homogeneous 
charge distribution at the interface is energetically unfavourable and a relaxation of 
the charge distribution across the interface will take place. There will be a "spill 
over" of charge as is modelled in Fig. 4b. The nuclei are kept fixed in their locations. 
The total charge - Q outside the metal (with boundary Zb) leaves a charge deficiency 
+ Q inside the metal compared with the unrelaxed situation. 

By applying an external electric field E perpendicular to the electrode surface, 
there will be a redistribution of charge, e.g. an extra amount of charge - A Q  will 
come on the outside of the metal, leaving an extra deficiency of AQ on the inside 
(Fig. 4c). The induced charge redistribution is the difference in charge distribution 
with an external electric field and without it and is depicted in Fig. 4d. This spatial 
charge separation forms a capacity, the metal layer capacity C m. The distance 

+ and z m, respectively, between the centres of both induced charge distributions, z m 
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Fig. 4. Two-dimensional schematic representation of the construction of an electrode and calculation of 
the metal layer capacity C m. (a) Ion lattice model of a metal with Wigner-Seitz  cells. Cleaving of metal on 
cell boundary %. d = grid length. (b) Relaxation of electronic charge to z > z b. (e) Charge profile around 
interface with external field E. (d) Induced charge density difference profile, obtained by subtraction of 
the values in (b) from those in (c). 
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The value of the metal layer capacity is then 

Cm = 1/4~r(Zm + + Zm ) (4) 

We shall show that the definition (4) of Cm can also be obtained starting from the 
one-dimensional Poisson equation for the charge redistribution. The Poisson equa- 
tion is 

v2V (z )  = -41rp(z)  (5) 

which can be rewritten as 

V(z )=-4~r f~_  p(z ' ) . ( z  - z ' )dz"  (6) 

Whence 

V + ( Z b )  = -4¢~f~o(z').(zu-z')dz' (7a) 

and 

V-(zb)  = --4~rf~?p(z').(z'--Zb)dZ' (7b) 

With 

f\o(z)d  glo(z)a +L?(z = 0 =  ) d z =  + A Q - A Q = 0  (8) 

and eqn. (4) one obtains: 

1 [ 1 ( V -  V+)]  - '  AQ AQ (9) 
Cm = " ~ "  ~ AQ AQ V- - V + AV 

If the induced charge distribution across the metal boundary is known, eqn. (3a and 
b) can easily be applied and eqn. (4) will give the interfacial metal layer capacity C~. 

(IlL 2) Calculation of the metal layer capacity at real clusters 

In the actual calculation we are interested in the influence of the crystallographic 
structure of the electrode. An ion lattice model of the electrode does not satisfy this 
requirement as its charge variation is only defined in one direction. Ab initio 
Hartree-Fock cluster calculations lead to the required coordinate- and potential-de- 
pendent charge (re)distributions. 

A cluster has a finite size. A straightforward application of formulas (3) and (4) is 
therefore not possible in this case: the indefinite integration limits must be adjusted. 
In the calculations, we have taken the middle of a cluster as the origin and the place 
where the charge density becomes negligible as the upper limit of the integration. We 

+ z m in eqn. (4), thus avoiding the calculation further established that, by taking z m = 
+ of z m, the result of the calculation differed from the more precise and expensive one 

by less than 9%. So, as a reliable estimate of C m we have taken 

Cm = 1/4~r(Zm + Zm ) (10) 
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The capacity as a function of coordinates was calculated by imagining the crystal 
to be cut in equally sized columns perpendicular to the crystal face under considera- 
tion as shown in Fig. 5, thereby dividing the cluster into many smaller parts. For 
each column the capacity was calculated as described above. 

(IlL 3) Calculation set-up 

As we are interested in the induced charge redistribution on the metal side of the 
double layer with a change of potential, we restrict our calculations to the metal, 
omitting the contribution of the solution to the double layer capacity. The potential 
drop (V) across the interface is represented by an external electric field (E)  
perpendicular to the electrode surface. From double layer theory it is known that the 
field strength in the inner layer is of the order of 105 to 108 V cm -1. It is reasonable 
to use these values for our calculations. As our main interest lies in a qualitative 
description and understanding of the influence of the metal on double layer 
characteristics, we take lithium as a representative of more practical metals like e.g. 
copper and gold. This is reasonable because lithium is also an sp metal and, 
moreover, with lithium there is the advantage that calculations can be carried out on 
clusters of a relatively large size (20-24 atoms) within the framework of an ab initio 
self-consistent-field procedure. For solving the time-independent Schrrdinger equa- 
tion 

H ~ ( r )  = c~k ( r )  (11) 

with H the Hamiltonian, ~ ( r )  the electronic wavefunction and c the eigenvalue of 
this operator equation, one has to use approximations. Within the Born-Op-  
penheimer restriction the Hamiltonian H is 

ix;, 2 +x-,x-~z~zf +~x-~ 1 x-,x-,z~ (12) 
H = - ~z.+vi / . . d . . + - -  /..,/..,-- -- /.~/.., - -  

i a < f l  raft i < j  r i j  i a ria 

I 

(J • / 
" \  / 

-o- -- I-- _~vJ 

Fig. 5. Schematic representation of the division of the duster around the central surface atom in many 
small columns. 
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The electronic wavefunction q~(r) is approximated by a single Slater determinant in 
the Har t ree-Fock method and is found by solving eqn. (11) by an iterative 
procedure until self-consistency is reached. This is done by the Roothaan method 
[20]. 

For lithium we used a minimal basis set of Gaussian-type orbitals including a set 
of 2p Gaussians, using the exponents and contraction coefficients of Van Duijne- 
veldt [21] (see Table 1). The 2p exponent was optimised for the 2p excited state of 
lithium [22]. 

The external electric field 13 can be introduced as a perturbation to the Hamilto- 
nian H of eqn. (12), which gives as the Hamiltonian H '  [23] 

H" = H +Y'~E.zl, (13) 

where z, is the coordinate of the #th electron in the external field E. Throughout this 
paper the value of E was taken as 0.01 atomic units (a.u.), which is approximately 
5 × 107 V cm -1. The chosen field strength is rather high, but is within the limits of 
accurate perturbation calculations. 

The calculations were performed with a CYBER 175 computer using local 
versions of IBMOLH-integral, SCF and property programs [24]. For instance, a 
calculation on a cluster of 22 Li atoms involves the evaluation of 14,540,495 integrals 
and takes about 14 h computer time. 

(I lL 4) Ckoice of cluster size 

A crucial point in cluster calculations is the size of the cluster in relation to the 
parameters that are of interest. It is a well-known fact that bulk properties converge 
only slowly with increasing cluster size [25]. As we are interested in the correct 
charge distribution around the interface (see eqns. 3 and 4), which might converge 
slowly with cluster size as well, we have focussed our attention on that problem. 

(III. 4.a) Linear clusters 
The influence of bulk depth on the charge distribution was tested by means of 

TABLE 1 

Lithium basis set 

Exponent Coefficient 

l s  101.390 0.020829 
15.3116 0.138816 

3.40235 0.447529 
0.87357 0.528307 

2 s 0.08000 0.403662 
0.03300 0.665602 

2 p 0.047 1.0 
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linear clusters of varying length, ranging from two to twelve Li atoms in a row. The 
interatomic distance was taken from the literature [26]: for a face-centered cubic 
packing the plane-to-plane distance for a (100) plane is 4.1612 a.u. In order to be 
able to make comparisons with (100) clusters we have taken this interplanar distance 
as the interatomic distance in the linear clusters. A typical result is depicted in Fig. 6 
for a Li cluster of 8 atoms in a row. In Fig. 6a and b the planar charge density 
pxy(Z) = fxfyp(X, y, z, E )dxdy  without and with electric field is plotted as a func- 
tion of the z-coordinate. The linear cluster lies along the z-axis. 

The planar charge density extends beyond the physical boundary of the cluster. 
With the electric field E along the z-axis, charge is "pushed inwards" on the 
left-hand side and "pulled outwards" on the right-hand side of the Li cluster, giving 
two results in one calculation, namely the induced charge distribution at E = -0 .01  
a.u. and at E = 0.01 a.u. The induced planar charge redistribution (Fig. 6c) shows an 
oscillatory behaviour. The period of the oscillation is twice the interatomic distance. 
This may be understood by only considering the mixing of the Lowest Unoccupied 
Molecular Orbital (LUMO) into the Highest Occupied MO (HOMO) when the 
cluster is polarised. Htickel theory [27] already explains a periodicity of twice the 
L i -L i  interatomic distance in the charge shift. 

Figure 7 shows the potential difference for the Li(8) line with field E and without 
it. It  is clear that the external field is compensated inside the cluster, as is to be 
expected for a conductor. At a great distance from the cluster the potential is 
determined by the external field as V = E .  z. 

The calculated values of the metal capacity are presented in Table 2. With an 
increasing number of Li atoms the capacity decreases in a way that suggests slow 
convergence. However, the decrease is small: going from two to twelve atoms in a 
row changes the capacity by about 10%. We conclude that with a depth of 3 or 4 
atoms the cluster calculations will give a reasonable estimate of the capacity. 
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Fig. 7. Li(8) line: potential difference profile AV along z-axis. At a great distance from the cluster 
boundaries AV follows the undisturbed field. 
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Metal layer capacity C m for linear clusters vs. chain length 

207 

Number of lithium atoms Capacity//~ F cm-2 

2 5.67 
4 5.44 
6 5.32 
8 5.20 

10 5.07 
12 4.95 

changes  the capac i ty  by  abou t  10%. W e  conclude  that  with a dep th  of  3 or 4 a toms  
the cluster  ca lcula t ions  will give a reasonable  es t imate  of  the capaci ty .  

(IlL 4. b) Three-dimensional clusters 
The  inf luence of  the bulk  width  can be es tabl ished in a way which is ana logous  to 

tha t  descr ibed  in Sect ion (III .4.a).  F o r  a (100) single crystal  all surface a toms  have 
ident ica l  surroundings .  W e  can therefore  restr ict  ourselves to an adequa te  descr ip-  
t ion of the charge d i s t r ibu t ion  a round  one surface a tom,  for which there is l i t t le 
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L I [ 1 0 0 1 2 2  9 - 4 - 9  0 

Cc) 
0 80 

Fig. 8. Models of the Li clusters used in this work. (a) Li (100) 5-4-5; (b) Li (100) 9-4-5; (c) Li (100) 9-4-9. 
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disturbance from the edges of the cluster. This also applies to other single crystal 
faces. So, if extension of the cluster by more atoms in whatever direction does not 
lead to an appreciable change in the charge distribution around the central atom, 
then the cluster will do for our purpose. 

We chose three clusters. As a first cluster we took the primitive f.c.c, cell, whose 
boundary planes are (100) planes. The central atom of such a (100) plane has all its 
nearest neighbours in the first, second and third layers and four second-nearest 
neighbours in the third layer (see Fig. 8a). In a shorthand notation we will denote 
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Fig. 9. Charge density profile for three Li clusters along the (100) plane in two characteristic directions at 
two altitudes without electric field. (rq) Li (100) 5-4-5; (O) Li (100) 9-4-5; (A) Li (100) 9-4-9. 

this as a Li (100) 5-4-5 plane, i.e. five atoms in the first ( =  surface) layer, four in the 
second and five in the third layer. The second cluster is the same as the first, but 
extended with four atoms in the first layer: Li (100) 9-4-5 (see Fig. 8b). The third 
one also has four extra atoms in the third layer and can be denoted by Li (100) 9-4-9 
(Fig. 8c). 

For these three dusters we calculated point charge densities around the central 
atom without and with external electric field and compared the results. Figure 9 
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gives charge densi t ies  in two typical  d i rect ions  s tar t ing f rom the centra l  a t om that  is 
s i tuated at  (x ,  y )  = (0, 0), wi thout  field and at  two dif ferent  heights  above  the p lane  
(x ,  y,  z = 0), in which the nuclei  of the surface a toms  lie. The phys ica l  b o u n d a r y  of 
the c lus ter -e lec t rode lies at z = 2.0806 a.u., so z = 2.0 a.u. is within and  z = 4.0 a.u. is 
well  outs ide  the e lec t rode  surface. It is evident  f rom Fig. 9 that  the Li (100) 5-4-5 
c luster  gives a charge-densi ty  prof i le  that  is qui te  di f ferent  f rom those of  the other  
two clusters. The  la t ter  two give app rox ima te ly  the same result.  Evident ly  it is 
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Fig. 10. As Fig. 9, for the two biggest clusters in the presence of an electric field of 0.01 a.u. (O) Li (100) 
9-4-5; (A) Li (10) 9-4-9. 
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Fig. 11. Capacity profile around the central surface atom. the base is the same as in Fig. 5. 

necessary to have at least nine atoms in the first layer in order that the central a tom 
is sufficiently well surrounded. 

We therefore rejected the Li (100) 5-4-5 cluster and calculated the charge densities 
for Li (100) 9-4-5 and Li (100) 9-4-9 with an applied external electric field of 0.01 
a.u.. The results are shown in Fig. 10. Again there are no essential differences 
between the two clusters. For the calculation of capacities we chose the Li (100) 
9-4-9 cluster for two reasons. The first reason is that, although calculations on the Li 
(100) 9-4-5 cluster are cheaper and faster, its lack of D4h symmetry introduces a 
permanent  dipole along the main axis. This could cause some distortion of the 
results, which is not visible in the previously mentioned comparisons, but can 
interfere at lower field strengths. The second reason is that the symmetrical 9-4-9 
cluster actually has two surfaces, both perpendicular to the electric field. The field 
direction is opposite for either surface, allowing one to get two results from one SCF 
calculation. 

(IV) RESULTS 

The capacity distribution on the electrode surface 

In Fig. 11 the calculated capacity profile for the Li (100) 9-4-9 cluster is shown. 
The cluster was divided into columns with a base of 0.20806 by 0.20806 a.u. By 
sampling the capacity values a histogram can be made of the frequency with which a 
capacity value occurs vs. the value itself. See Fig. 12. 

(V) DISCUSSION 

It  is evident from Fig. 12 that the capacity is distributed over the surface. Its 
value ranges from 3.6 to 5.2 ttF cm-2.  There is a sharp peak at 4.85/~F cm -2 and a 
long tail to lower capacity values. In Section (III.4.a) we found capacities in the same 
range for linear clusters, so from them already a reliable estimate of the value of the 
capacity can be obtained. 

The calculated capacities are one order of magnitude smaller than those found 
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Fig. 12. Histogram of the capacity values of a Li (100) plane. 
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experimentally. For instance, on gold single crystals the capacity values range from 
25 to 40 #F  cm -2 in 1 M HC104, depending on electrode potential. In view of the 
realistic description of the electrical double layer being composed of three con- 
densers in series as stated by Badiali et al. [10], i.e. the metal layer capacity Cm, the 
diffuse layer capacity and the solution-side inner layer capacity, it must be con- 
cluded that the value of C m in the presence of an electrolyte phase has a value 
appreciably larger than its value in vacuum. A plausible explanation will be a 
restriction of the spill-over of electrons by the adjoining electrolyte solution. 

It should be kept in mind that we applied a rather high external electric field to 
the cluster. Our calculations, therefore, do not lead to a differential double layer 
capacity per se, but to a realistic approximation of the differential double layer 
capacity. 

By analogy with the Cole and Cole distribution, which is best described on a 
logarithmic scale, we transposed the histogram to a logarithmic scale and fitted a 
distribution function by means of a polynomial. This is shown in Fig. 13a. Figure 
13b shows the frequency characteristic of the impedance that corresponds to this 
distribution and that is calculated by the expressions for the admittance: 

r ' ( t o )  = f  t°ERCEF(s)ds (14) 
1 + ¢~2R2C2 

~oCF(s)ds (15) f Y"( to) 
=- I  1 + t~2R2C 2 
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with s = In(C/Co), which gives the in-phase and quadrature impedance as 

Z ' =  r ' / ( r ' 2  + V "'2) (16) 

Z " =  y , , / ( y , 2  + y, ,2)  (17) 

For R we took the experimentally reasonable value of 8 fl cm 2. The integration 
limits were  s = - 0 . 3 4  and s = 0.08 respectively. It follows that the asymmetric 
distribution function does not produce a constant phase element: i.e. the phase angle 
fl changes in the frequency range considered. Note that the abscissa in Fig. 13b is 
magnified 60-fold to show the effect more clearly. 

If we look more carefully at Fig. 12 a slight shoulder or hump can be seen on the 
low capacity side. We think that this phenomenon is caused by the atoms in the 
second layer, that lack some of their nearest neighbours. This may cause incorrect 
estimation of the contribution of the second layer to the surface-charge profile. 
Addition of more atoms to the second layer was not possible because of limited 
computer facilities (8 atoms would have to be added then). 

Yet, even if we neglect the slight shoulder, the calculated distribution function 
still remains asymmetric. If, in spite of the evident asymmetry, a symmetrical Cole 
and Cole distribution function is fitted to our histogram (Fig. 14), the concomittant 
phase angle fl is found to amount to 1.1 °, which is a value remarkably close to our 
experimental value obtained for a perfect (100) gold crystal face. 

It should be realised that our results have been calculated for a m e t a l / v a c u u m  
interphase. The calculated capacity of the metal side of the inner layer need not 
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Fig. 13. Calculated distribution function for the capacity profile of a Li (100) plane. (a) Polynomial fit to 
the histogram of Fig. 12 on a logarithmic scale. (b) Complex plane representation of resulting impedance. 
Frequency range between 80 and 20,000 Hz. 

necessarily be identical to the one for the metal /e lectrolyte  interphase. For in the 
presence of an electrolyte solution containing discrete charges, the electric field, that 
in our calculations has been supposed to be homogeneous, will be inhomogeneous. 
Moreover, the presence of oriented water molecules will contribute to the local field 
strength. This makes it difficult, as yet, to connect a change of field strength to a 
more practical potential scale. We plan to study this. 

The way in which this electrochemical problem has been treated quantum 
mechanically offers the possibility to make a comparative study of electrodes with 
different single crystal faces as a function of potential. This will be the subject of a 
forthcoming paper. 
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Fig. 14. Cole and Cole distribution function fitted to the capacity distribution profile of a Li (100) plane 
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(VI) CONCLUSIONS 

It is possible to define a metal layer capacity C m originating from charge 
redistributions at the electrode surface as a function of potential. The capacity is 
distributed over the electrode surface, as a consequence of the crystalline structure. 
This distribution causes the interfacial impedance not to behave in a purely 
capacitive way but to be complex. 

The values of  the calculated capacities lie below the experimental range and 
indicate that the metal layer capacitance in an electrolyte solution differs from its 
value in vacuum. With linear clusters of  moderate size (4 -8  atoms) one can obtain a 
reliable estimate of  the average capacity values of large 3-dimensional clusters 
(20-24  atoms). 

ACKNOWLEDGEMENTS 

The authors wish to thank Dr. F.B. van Duijneveldt for helpful discussions and 
Dr. A. Hamelin and Drs. G. Brug for their active interest in this work. The gold 
electrodes were prepared at the Laboratoire d'Electrochemie Interfaciale du CNRS, 
Meudon, France, in accordance with the instructions of  Dr. A. Hamelin. 



217 

REFERENCES 

1 H.L.F. von Helmholtz, Ann. Physik, 2 (1853) 89. 
2 G. Gouy, C.R. Acad. Sci., 149C (1910) 654. 
3 D.L. Chapman, Phil. Mag., 25 (1913) 475. 
4 0 .  Stern, Z. Elektrochem., 30 (1924) 508. 
5 See e.g.P. Delahay, Double Layer and Electrode Kinetics, Interscienee, New York, 1965. 
6 R.J. Watts-Tobin, Phil. Mag., 6 (1961) 133; R. Parsons, J. Electroanal. Chem., 59 (1975) 229; W.R. 

Fawcett, S. Levine, R.M. de Nobriga and A.C. Me Donald, J. Electroanal. Chem., 111 (1980) 163. 
7 O.K. Rice, Phys. Rev., 31 (1928) 1051. 
8 W. Schmiekler, J. Electroanal. Chem., 150 (1983) 19. 
9 A.A. Kornyshev, W. Schmickler and M.A. Vorotyntsev, Phys. Rev. B, 25 (1982) 5244. 

10 J.P. Badiali, M.L. Rosinberg and J. Goodisman, J. Electroanal. Chem., 143 (1983) 73. 
11 J.P. Badiali, M.L. Rosinberg and J. Goodisman, J. Electroanal. Chem., 150 (1983) 25. 
12 R. Smoluchowski, Phys. Rev., 60 (1941) 661. 
13 G. Brug, M. Sluyters-Rehbach, J.H. Sluyters and A. Hamelin, J. Electroanal. Chem., submitted. 
14 M. Sluyters-Rehbach and J.H. Sluyters in A.J. Bard (Ed.), Electroanalytical Chemistry, Vol. 4, Marcel 

Dekker, New York, 1970, pp. 1-128. 
15 R.D. Armstrong and W.I. Archer, J. Electroanal. Chem., 87 (1978) 221. 
16 K.S. Cole and R.H. Cole, J. Chem. Phys., 9 (1941) 341. 
17 C.J.F. BiSttcher and P. Bordewijk, Theory of Electric Polarization, Vol. 2, Elsevier, Amsterdam, 1978, 

Ch. 9. 
18 N.D. Lang and W. Kohn, Phys. Rev. B, 1 (1970) 4555. 
19 Ch. Kittel, Introduction to Solid State Physics, Wiley, New York, 1968, p. 12. 
20 C.C.J. Roothaan, Rev. Mod. Phys., 23 (1951) 69. 
21 F.B. van Duijneveldt, IBM Technical Report RJ945, IBM Thomas J. Watson Research Center, 

Yorktown Heights. 
22 F.B. van Duijneveldt, private communication, 1983. 
23 H.D. Cohen and C.C.J. Roothaan, J. Chem. Phys., 43 (1965) $34. 
24 IBMOLH Program System, Internal Report, Theoretical Chemistry Group, Utrecht, 1976. 
25 J. Demuynck, M-M. Rohmer, A. Strich and A. Veillard, J. Chem. Phys., 75 (1981) 3443. 
26 R.W.G. Wychoff, Crystal Structures, Vol. 1, Wiley, New York, 1963. 
27 F.L. Pilaf, Elementary Quantum Chemistry, McGraw-Hill, New York, 1968, Ch. 18. 


