
J. Electroanal. Chem., 171 (1984) 157-175 
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands 

157 

THE S T U D Y  OF THE M E C H A N I S M  OF AN ELECTRODE REACTION BY 
FIRST- A N D  S E C O N D - O R D E R  T E C H N I Q U E S  

A THEORETICAL A P P R O A C H  

J. STRUYS, M. SLUYTERS-REHBACH and J.H. SLUYTERS 

Van "t Hoff Laboratory of Physical and Colloid Chemistry, State University Utrecht, Padualaan 8, 
3584 CH Utrecht (The Netherlands) 

(Received 22nd December 1983; in revised form 6th February 1984) 

ABSTRACT 

The theoretical expressions for the faradaic admittance and the faradaic demodulation voltage are 
rewritten, introducing the thermodynamic restrictions proposed by Reinmuth in 1972 and without any 
specification of the mechanism of the electrode reaction. 

The result is applied to general first-order kinetics of the type CECEC. . .  etc. A treatment is also given 
in the case that one or more of the steps are of a higher order. Although the overall rate equation becomes 
extremely complex in such a case, it is shown that the expressions describing the faradaic admittance and 
the faradaic demodulation voltage are relative simple. 

From some numerical examples it is made clear that, in general, by these methods discrimination 
between possible mechanisms can be realized on the basis of the potential dependences of the overall rate 
constant,  operational transfer coefficient, irreversibility quotient and demodulation voltage. This work is 
believed to provide a framework for future quantitative studies of electrode reactions. Some ideas about 
its possible further elaboration are given. 

(I) I N T R O D U C T I O N  

In many cases, the mathematical description of the rate of redox processes at an 
electrode/solution interface was and still is based on the assumption of the validity 
of the well-known Butler-Volmer equation relating the faradaic current JF to the 
interfacial potential E and the interfacial concentrations c o and c R by the relation- 
ship 

J r  = - n F k s h  [Co exp( - aq~) - c R exp(1 - a)  q~] (1) 

with 

4~ = ( n F / R T ) [  E - E ° ] (2) 

Many different techniques have been developed to determine the kinetic parameters 
ksh ("standard" heterogeneous rate constant) and et (cathodic transfer coefficient) 
for a large number of mainly inorganic electrode reactions in various media. From 
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the collection of these data made by Tanaka and Tamamushi [1], one may easily 
obtain the impression that ksh and et values are just characteristics of the system, 
although in some cases a physico-chemical background could be indicated, e.g. the 
catalyzing effect of adsorbing anions [2-4] and the more general effect of the 
potential across the double layer described by Frumkin [5]. However, quite often the 
results from different techniques or even those obtained for the same redox system 
by different investigators are inconsistent and, although experimental artefacts were 
not always recognized, these inconsistencies have inspired a number of authors to 
voice doubts about the general validity of the Butler-Volmer equation. 

The simplest example is the case of charge transfer proceeding via a linear 
sequence of single-electron transfer steps. Remarkably enough, the theory of this 
mechanism had been given attention long ago by Vetter [6], Hurd [7], Hush and 
Blackledge [8] and Mohilner [9], among others. Yet it was only during the last 
decade that this type of mechanism was quantitatively shown to apply to the 
reduction of several divalent metal ions at mercury, e.g. Zn 2÷ [8,10-13], Ni 2÷ [14], 
Mn 2÷ [15], Cu 2÷ [16] and Cd 2÷ [8,17]. The techniques employed in these studies 
were relaxation techniques of different orders: the large-amplitude galvanostatic 
pulse method [10,12,14-16], the ac impedance method [17] and the faradaic rectifica- 
tion method [11]. All the studies have in common that reliable results appear to have 
been obtained by collecting very precise data over a very wide range of the mean 
electrode potential. 

However, it should not be ignored that the consistency of the data with the 
two-electron transfer model was established only by virtue of one or more assump- 
tions that cannot be proved experimentally. This was most clearly emphasized in a 
theoretical study by Reinmuth [18], who considered the information that can be 
obtained from relaxation experiments of different orders, if no explicit rate equation 
is postulated a priori; in other words, if neither the potential dependence nor the 
order of the charge-transfer reaction in c o and c R is specified. The most important 
conclusion was reached that it is not possible to establish unambiguously the 
prevalence of e.g. a first-order rate equation from data obtained using a single 
technique, be it zero, first, second or higher order._ On the other hand, it has also 
been stated that inconsistencies can be expected between second-order kinetic 
parameters and the corresponding quantities obtained from first-order results, in the 
case that the rate equation is not first order in c o or c R. So, the combination of the 
two approaches is thought to be useful, if not indispensable, for making really 
unambiguous decisions about reaction mechanisms. 

Reinmuth's reasoning being quite general, it is the aim of the present paper to 
work out a more explicit discussion of this matter, with reference to the ac 
impedance method as it has long been performed in our laboratory [19], and its 
combination with the recently developed second-order demodulation method [20]. 
The collection of fourteen relatively simple mechanisms for two-electron reductions 
tabulated by Bongenaar et al. [17] will serve as a starting point, but an attempt will 
be made to generalize their implications as much as possible. 
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(II) THEORY 

In order to have more comprehensible expressions we will restrict ourselves 
initially to the simple linear overall stoichiometry inherent in a reaction of the type 
O + n e - ~  R. The implications of a more complex reaction will be discussed 
afterwards. For the same reason, throughout the text we will assume that we are 
dealing with so-called dc reversible reactions, for which the Nernst equation applies 
to the interfacial mean concentrations ?o and ?R, most conveniently expressed by 

/~1/2/7" /11/2  [Do/DR] 1/2 exp(~)  = e x p ( ~ ' )  
o ~ o  / ~ ' R ~ R  (3) 

where D O and D R a r e  the respective diffusion coefficients. 
The discussions will be devoted to reaction mechanisms which may consist of 

several partial reaction steps of different types (electron transfer, dismutation, 
coupled chemical steps, or even adsorption), but always with unstable intermediates, 
which means that the existence of coupled homogeneous reactions is excluded. 

Apart from the reaction mechanism, the current-potential  characteristic may also 
be influenced by the potential dependence of the electrical doul~le layer. Effects of 
this nature are also considered separately. Throughout it is assumed that double 
layer charging is not affected by the presence of the electroactive species; in other 
words the interfacial admittance Y is composed of the double layer capacity of the 
supporting electrolyte in parallel with the faradaic admittance [19,21]. Likewise, 
demodulation by the interface gives rise to the separate "demodulation voltage 
sources" S F and S c as we described recently [20]. 

(11.1) General expressions for faradaic admittance and demodulation voltage source 
under dc reversible conditions 

If all intermediates are unstable, the faradaic currentjF will be a function of the 
three independent principal variables ¢, c o and c R. Consequently the Taylor 
expansion, used to derive expressions for the first- and higher-order current-voltage 
relationship, contains three first-order and six second-order partial derivatives; in 
the notation we introduced previously [22], 

P =(OJF/O~) . . . .  R ~) =(OJF/OCo)¢', CR ~ =OJr/OCR)~'.¢o (4) 

= at/aCo) ,c. = ( a t l O c R ) , , c o  

~'0=(36/3Co)~.c ,  ~'R=(OblOcR),.Co R-'R=(0R/~cR), ,co (6) 
= 

With linear diffusion as the model for mass transfer the complex faradaic 
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admittance YF is found to obey the expression [19,22]: 

(nF)  p2+p+ip 
YF=Yv +iYv'= ~ P (7) 

( p + 1 ) 2 + 1  

with 

(2{o) 1/2 (2w)'/2nr 
P= x kD?1/2_ ODo,/= (8) 

where w is the angular frequency. Note that (nF/RT)~" = R~t 1, the reciprocal of the 
charge-transfer resistance in the Randles equivalent circuit [21]. 

For the amplitude [Sv] of the faradaic demodulation voltage source we recently 
derived an expression which, for the present purpose, is transformed int6 a more 
convenient quantity S~, expressed by 

2WHCd ] 
s ?  = J 

= ( p H + I )  2 + 1  f ~ h'f p n + 2  

(pH+ l)Z +(an+ l) 2 ~--£-ff+--~ ( p H + 1 ) 2 + 1  ~2 (pH + 1)2+ 1 

(9) 

high frequency; a l l =  where pH=(2WH)I/2/~, as in eqn. (8) with w n the 
pn/(  RctwHC.a), and 

7t', = ( ~}h/Oq} ) = ( nr )- I [ ~ D  R 1/2 _ ~ D o  1/2] (10) 

X 2 = (nFI-Z[-'R'RD~ 1 + 2~D01/2D{~l/2--b'-OD01] (111 

The conclusion from eqn. (9) is that the demodulation effect is governed by the 
first-order parameter p H and three parameters comprising combinations of first- and 
second-order partial derivatives. All the parameters are in principle dependent on 
the mean dc electrode potential, i.e. on the quantities q~ or ~ defined in eqns. (2) and 
(3). S~ is dependent on the high frequency w n via the presence of the dimensionless 
parameter p H" 

In order to put the potential and frequency dependencies in a more intelligible 
form, use can be made of the relationships between the partial derivatives following 
from thermodynamic restrictions as derived by Reinmuth [18]. It can easily be 
recognized that Reinmuth's considerations hold for fluctuations around the dc 
current, potential and surface concentrations under dc reversible conditions, as well 
as in the case of fluctuations around the equilibrium state. Therefore we have 

0e  o = - he  R = - P (12) 

OF~o= 1[ P_rr_o0~2]  (13) 
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R"~R =½[/~ +~"~+~'~2] (14) 

~'-~OO~R = _ ½ [~--~2 +~ '~ ]  (15) 
With these relationships, the expression for S~ can be rewritten in several com- 
pletely equivalent forms, depending on the partial derivatives eliminated. The 
following version appears to be the most attractive: 

1 exp(~') - 1 F-F R'-R~ exp(~') +O--re~ 
2exp(~)+l(PH+Z)---2-f f  (pz~+pH)+ 2 P [ e x p ( ~ ' ) + l ]  P "  

S~ - (16) 
(PH + 1) 2 + ( a l l  + 1) 2 

in which use has also been made of eqn. (3). So, the three terms determining S~ in 
eqn. (9) have been rearranged to obtain three terms, but containing only two 
second-order quantities instead of three. Comparing with Reinmuth's notations [18], 
we see that 

F -~ /P  = 1 - 2a (17) 

and 

~-'~2 exp(~) +b'O~}) (v~-  I) exp(~)+(I - v~) (18) 
P[exp( ) + 1] = exp(D + I 

where ~ is to be considered as an operational transfer coefficient, and v~ and v(] as 
operational stoichiometric coefficients. As long as a rate equation has not been 
specified, however, the meaning and thus the usefulness of these quantities remains 
unclear. 

The relationship between the first-order derivatives, eqn. (12), can also be used to 
simplify eqn. (7) for the faradaic admittance to the well-known expression [19] 

0) 1/2 ( p "1- 1) + i (19) 
YF=YF+iYF" 2o ( p + l ) 2 + l  

where 

o =  RT [(~oD~/2)-x+(rRD1/2)-,] (20) 
n2F221/2 

(11.2) Separability of the parameters 

Consideration of eqns. (16)-(20) leads to the conclusion that from measurements 
of S~ at fixed potential and varied frequency the values of p' =pH0)~ 1/2 and the 
quantities defined in eqns. (17) and (18) can be determined. From YF only p '  can be 
obtained, which may be useful as a check. Repeating this at different potentials 
enables us to examine the potential dependence of a and to find the values of v~ and 
vd, provided that these quantities are constants. 
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The latter condition, however, is not always met, as will be discussed in the 
following sections. 

(llI) EXPLICIT APPLICATIONS 

In our previous paper [20] we discussed the shape and further characteristics of 
demodulation polarograms assuming the validity of the Butler-Volmer rate equa- 
tion. The corresponding expression for S~ was given in eqn. (29) of Part IV. It was 
shown that S~ is an S-shaped function of the dc potential with limiting values of + ½ 
a t ~ > > 0 a n d  - l a t ~ < < O .  

Here the discussion will be extended to other rate equations. 

(III. 1) First-order kinetics 

If a reaction mechanism can be represented by an overall rate equation of the 
form 

JF = - n F [  k fco  -- kbCR] = - n F k f (  E ) [  co -- CR exp(~)]  (21) 

the reaction is still first order in c o and c R. The third term in eqn. (16) equals zero, 
or, to put it differently, in eqn. (18) v~ = v~ = 1. 

Eqn. (21) applies to mechanisms consisting of an arbitrary number of consecutive 
linear reactions, either of the type O + e - ~  Y, Y + e - ~  R (Y being an inter- 
mediate), or of the type O ~ 01, Y1 ~ Y2 (i.e. heterogeneous reactions without 
charge transfer). The overall forward rate constant is related to the individual 
forward rate constants k~ and the individual equilibrium constants K~ by [6,7,11,17] 

m i--1 
k f l ( E )  = E k i  -1 IX g j  

i=1 j = 0  
( K  o = 1) (22) 

The question is then, whether the potential dependence of k f ( E )  can be predicted 
on the basis of theoretical principles. The experimental facts collected thus far 
strongly suggest that each elementary single-electron transfer reaction would con- 
form to the Butler-Volmer model with a transfer coefficient equal to 0.5. For 
example, in the studies of the two-step reactions mentioned earlier [8,10-17] this 
follows from the change of a from ca. 0.75 at positive potentials to ca. 0.25 at 
negative potentials, these values being in agreement with the predictions of De- 
vanathan [23] for the two-step mechanism. A multi-step mechanism with n electron- 
transfer reactions would generally lead to 

" k-' ( i - ° 5 , 1  (23) k } - l ( E )  = E ,3 e x p  - -  
i = l  n ] 
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in which 

= (E ° - E j  ° (24) k"i  k i ( E = E ° ) e x p  ~ i 

Evidently several steps can be simultaneously rate-controlling, while their relative 
preponderance can to a large extent be chosen at will be adjusting the dc potential. 

The operational transfer coefficient ranges from a = 0.5/n at negative potentials 
to a = 1 - (0.5/n)  at positive potentials. 

However, in some cases experimental results are such that these limits are 
exceeded, a tending to zero in the negative region [17] or to unity in the positive 
region [24]. It must be concluded that, in addition to charge-transfer steps, "chemi- 
cal" reactions, i.e. not influenced by the interfacial potential difference, can also be 
more or less rate controlling. Assuming that these reactions can precede the first 
electron transfer, be intermediate and can follow the final electron transfer, eqn. (23) 
must be extended with a series of n + 1 terms: 

( ) °  ( ) n+l i -  1 k_ 1 i -  0.5 
k f ( E )  - 1 =  E k e - )  exp - - - - ~ ,  + E  s,, exp ~ b  (25) 

i ~ l  i = 1  

with 

k s , i = k , ( E = E  ° )exp  ~ E ° - E j  ° X H K,.j (26) 
• = j = i + l  

k¢i k ° exp ( O_EjO × 
= c , i  ~ i K¢ j • . = .  , (27) 

where k i denotes the potential-dependent rate constant of the ith electron transfer, 
and k ° the potential-independent rate constant of the heterogeneous chemical ¢ , i  

process preceding the ith electron transfer. 
It should be stressed that this model is suggested by experimental evidence rather 

than by a soundly developed theory. 
It will be evident that this model, summarized in the mathematical expression 

(25), should be clearly distinguished from the deeply elaborated and frequently 
quoted continuum theoretical treatments leading to a potential dependence of the 
apparent transfer coefficient as well. The latter potential dependence originates from 
electronic coupling of the charge transfer and the solvent polarization [25]. 

Of course, in expression (25) the chemical steps can sometimes be identified 
beyond all reasonable doubt, like the protonation of the intermediate O{ in the 
reduction of oxygen [26]. In some other cases, like the reductions of Cd(II) [17], 
Zn(II) [12] and Fe(C204) 3- [24], however, one has to resort to hypotheses on slow 
heterogeneous dissociation of complexes or slow dehydration that might turn out to 
be true in the end. 

At present, however, we feel that these "chemical" steps should be identified with 
the stochastic creation of energy-rich molecular fluctuations a n d / o r  the creation of 
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geometrical orientations at the electrode interface necessary for an electron to 
acquire a sufficiently high probability of transfer. These two processes, i.e. the 
"chemical" step and the electron transfer, are both supposed to proceed in both 
directions and also to be totally mutually independent. 

It will be clear that if solvent molecules are involved in the stochastic processes 
mentioned above this explanation will not be very different from the idea of slow 
dehydration. 

For an electrode reaction, the configuration after charge transfer, if succesful, will 
relax, thus making the reverse charge transfer improbable. A reverse charge transfer 
will be possible again only if the appropriate energetic a n d / o r  geometrical fluctua- 
tion arises. This reasoning can apply to any charge transfer step. If, in between two 
charge-transfer steps, there is more than one chemical step, e.g. a relaxation and an 
organization, these will be indistinguishable and will show up as one chemical step. 

The above view is rather close to the explanation given by Conway et al. [27] of 
the low proton mobility in aqueous solutions. They were able to show by calculation 
that the rotation of a water molecule into an appropriate position is a much slower 
process than proton tunnelling and, in fact, is the rate-determining step. 

Only a charge-transfer step at an electrode can be accelerated or decelerated by 
choosing the electrode potential, and by that choice the relative contribution of a 
step to the overall rate can be varied. 

It is highly probable that both causes of a potential dependence of the operational 
transfer coefficient will in general be operative at the same time. Because the effect 
of a multi-step contribution is much more serious there is reason for some doubt 
about the feasibility of an experimental verification of continuum theories. In order 
to show a potential dependence of the transfer coefficient of an elementary charge- 
transfer step in an analysis like that advocated in this paper, an extremely high 
precision of the experimental data would be essential. For the time being, in eqn. 
(25) and the following, transfer coefficients of individual charge-transfer steps will 
be assumed to be potential independent. 

The general trend in eqn. (25) is that the operational transfer coefficient decreases 
from a = 1 in the anodic region to a = 0 in the cathodic region. However, the 
relative weight of the constants k¢, i and ks. i, respectively, determines the feasibility 
of demonstrating the existence of all the steps. This is shown in Figs. 1 and 2 where 
the potential dependence of the relevant quantities kf, a, p' =pro -1/2 and Sff is 
represented for the case of an overall electrode reaction involving two electrons. 
Corresponding to the chosen sets of parameters, the rate control is governed by a 
typical mechanism, for example CECEC (all steps rate controlling) or cEcEc (only 
the two charge-transfer steps rate controlling), etc. A survey is given in Table 1. 

It is important to note that closely similar mechanisms cannot always be dis- 
tinguished. Among the symmetrical examples considered here, this especially applies 
to mechanisms with and without the intermediate C step. This means that the 
occurrence of such chemical steps will be hard to prove. On the other hand, it may 
happen that two dissimilar mechanisms incidentally lead to almost identical kf vs. E 
curves. In that case, the second-order behaviour (S~ vs. E)  enables a clear distinc- 
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t ion to be made;  for example,  compare  the dashed curves in Fig. 1 ( E - E  mechanism) 

with the cont inuous  curves indicated with b in Fig. 2 ( C E C E C  with the middle  C 

dominat ing) .  

Due  to the nature  of eqn. (26), the value of  p '  at tains a constant  value equal  to 

(2Do)]/2/kc,n+ 1 at extreme anodic  potentials;  at the same t ime the opera t ional  

transfer coefficient  becomes  equal to ct = 1. At  extreme cathodic  potent ia ls  we have 

p' = (2Do)~/2/kcj  and a = 0. Consequent ly  the values of  S~ range between +0,5  in 

the anodic region and - 0 . 5  in the cathodic  region. The  potent ia l  dependence  in 
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Fig. 1. Theoretical potential dependences of In kf, a, p' and Sg in the case of the linear five-step 
mechanism for the reaction O + 2 e- ~ R. Rate control by electron-transfer steps and (some) chemical 
steps. See Table 1. Values of other parameters: D o = 8 x 10- 6 cm 2 s- 1, to H = 2 ¢r × 105 s- 1, Co = 25 # F 
cm -2. 
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between those limits is sensitive to the kind of mechanism, and this sensitivity will be 
greater if the high frequency o~ H is increased. 

A clear asymmetry in the S~ vs. E curve can be expected if the mechanism leads 
to a :~ 0.5 at E = E(/2. Experimental examples of this case will be discussed in a 
subsequent paper. 

(IIL2) Non-linear stoichiometry," "simple" rate equations 

If  a mechanism involves one or more higher-order reaction steps, the overall rate 
equation usually becomes very complex, unless it can be assumed that only one step 

,nk, .db  - - - -  

- ,  ° "  . . . .  

0 

' ' 6'0 - 10  " ,60 0 - 6 0  , -60 0 - 

10 

(E - E ~ / 2 ) / r n V  (E - E ~ / 2 ) / m V  

1031:)/ 

~ . _  

SF 

t 

" ' ~  , L 6 0  Q 5  I , ,60  0 - . 6 0  0 - 6 0  

(E - E ~ / 2 ) / r n V  (E - E ~ / 2 ) / m V  

Fig. 2. Theoretical potential dependence of In kf,  a, p '  and S~ in the case of the linear five-step 
mechanism for the reaction O + 2 e -  -~ R. Rate control by chemical steps (except curves a and b). See 
Table 1. Other parameters as in Fig. 1. 
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in the whole sequence of reactions is completely rate-determining.  The examples at 
hand  in the case of n -- 2 were discussed by  Van der Pol et al. [11] and  Bongenaar  et 
al. [17]. F rom these t reatments  it can be inferred that the overall rate equat ion  will 
be of the form 

JF = -- n F k f  [ cPc q - C~C'R exp( t¢ ) ]  (28) 

where p,  q, r, s are integer or non- integer  numbers  like 1, 2, ½ or 0. For  
the rmodynamic  reasons the following relationship must  hold: 

p -  r = s -  q = t (29) 

Applying  this formalism to the partial  derivatives that, according to eqns. (8) and 
(12)-(20), determine first- and second-order behaviour,  the following expressions 
result: 

P = n F k d 3 ~ 3  q (30) 

p ' =  2 ' : / X  = ( 2 D o ) ' : [ 1  + exp(~')] - ' k - ~ t t - ' e ~ - P ) ? ~  - q )  (31) 

F ' F / F  = t + 2d In k f / d q ~  = t - 2 3  (32) 

~ ' ~ ? 2 / j 0  = q + s - 1 = 2q + t - 1 (33) 

~"~eE/ j0  = 1 - p  - r = 1 + t - 2 p  (34) 

Evident ly  the operat ional  stoichiometric coefficients defined in eqn. (18) are v~ = p  
+ r and  v~ = q + s, respectively. 

The mean  interfacial concentra t ions  in the expression for p ' ,  eqn. (31), can be 
el iminated,  e.g. in the case of Nerns t ian  behaxdour with l inear diffusion by 

Co = c~ exp(~)[1  + exp(~')] - '  (35a) 

CR = ( D o / D R ) ' / 2 c ; [  1 + exp(~ ' ) ] -1  (35b) 

TABLE 1 

Values of individual rate parameters kc. i and k,. i in cm s -1 (see eqns. 25-27) used to calculate the 
theoretical potential dependence of In kf, a, p' and S~ in Figs. 1 and 2 for the reaction 0 + 2  e- ~ R 

Type of mechanism k ca k~a k c, 2 ks, 2 k c, 3 

Fig. 1 
CECEC 1.0 
CEcEC 0.8 
cEcEc 1000 
cECEc 1000 

Fig. 2 
CECEC (a) 1.0 
CECEC (b) 4.0 
ceCec 1000 
CeeeC 0.4 
CeCeC 0.6 

1.0 1.0 1.0 1.0 
0.8 1000 0.8 0.8 
0.4 1000 0.4 1000 
0.6 0.6 0.6 1000 

1.0 1.0 1.0 1.0 
4.0 0.25 4.0 4.0 

1000 0.2 1000 1000 
1000 1000 1000 0.4 
1000 0.6 1000 0.6 
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Then  the extrema of  p '  are: 

if exp(~') >> 1: p ' =  21/2(C~9) ,-p-ql')(l-q)/21")q/2b (P'~-' z ' O  ~ R  ~ f \ ~ /  e x p [ ( q -  1)~] 

if exp(~) << 1: p ' =  21/2(C~) 1-p-qF)(1-q)/2r~q/21"~O ~ R  ~ f i ,  Jt.~ / / " / 7 ' ] - 1  exp[ ( l  - p ) ~ ]  

It should be noted that p and q do not necessarily have the same value at anodic and 
cathodic potentials, as the rate-controlling step may be different. Accordingly,  the 
concentrat ion dependence may change with potential. 

The potential dependence of  k r will be determined by the nature of the rate-con- 
trolling step. Direct determination of  a = - d  In kr/d~ is hindered by the fact that 

the parameter  F ' ~ / P ,  which can be obtained experimentally, contains both t and a. 
An  illustration of these general conclusions is presented in Fig. 3 and Table 2, 

where the behaviour is predicted for the mechanism which may be symbolized as 
C E C D C :  

O ~ O '  Rco 

O ' + e -  ~ Y Re1 

Y ~ y '  Rcy 

2 Y '  ~ O ' + R '  R d 

R '  ~ R Rcr 

with any step rate-controlling alternately. As was done in ref. 17, the unknown 
concentrat ions of the intermediates have been eliminated by assuming that the 
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" " / , ' / \  \ ',,, 

//.',"/ \\ \ \  ",. 
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--"°' \ \  \ 
, , ~  , ~  
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Fig. 3. Theoretical potential dependences of p' a n d  Sff in the case of a non-linear five-step mechanism 
(see text and Table 2) for the reaction O + 2 e- -, R. Each curve corresponds to a case of one step being 
rate determining, as indicated. Value of the rate constant kf at E = E°:  0.2 cm s -1. Other parameters as 
in Fig. 1. 
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non-control l ing reactions are in virtual equilibrium. The notat ion in Table 2 con- 
forms to the following set of  partial rate equations: 

(Rco) : Vo -- k o [ c  o - KoCo, ] 

(R,~) :  O 1 -~ k l [ C  O, - KlCy] 

(Rcy) : V y - - k y [ c y -  K v c v ,  ] 

( R d ) : V d = k d [ ( C v , ) 2 - - K d C o , C R , ]  

( R c r )  : VR = k R [ C  R, - -  KRCR] 

k o ~: f(E) (36a) 

K o = k _ o / k  o ~ f ( E )  

k, = kst exp( - kO~l~ ) (36b) 

g I = K 0 exp(½~) 

K ° = e x p [ ( F / R T ) ( E  ° - E~ )] 

k v ~ f ( E )  (36c) 

r v = k _ v / k  v * f ( E )  

k d 4: f ( E )  (36d) 

K d = k _ d / k  d * f ( E )  

kR ~ f (E)  (36e) 
K R = k _ a / k R 4 ~ f ( E )  

It can be concluded that the behaviour of  S~ especially is indicative of  the 
non-l inear mechanism. Compare,  for example, the case where R d is rate-determining 
in Fig. 3 with the CeceC case in Fig. 2. 

The cases treated here must  be considered as examples of  a larger number  of  such 
types of mechanisms. The diagnostics of  other  examples are easily derived by 
analogous procedures.  It is interesting to note that even a slight change in the 
mechanism has a drastic impact:  in the case that the dismutat ion step R d leads to 
the regeneration of  O instead of  O '  while R~o is rate determining, the rate equation 
is determined by p = 1, q = 0, r = ½, s = ½ and t = ½, cf. mechanism F1 in ref. 17. 

(111.3) Non-finear stoichiometry," "'complex" rate equations 

From the expressions for kf in Table 2 the conclusion must  be drawn that there is 
no reason that in a certain potential region only one step should be rate-controlling. 

TABLE 2 

Expressions for 1/ke and values of a, p, q, r, s and t pertaining to the five subcases (one rate-determining 
step) of the non-linear mechanism for the reaction O + 2 e- ~ R represented in Fig. 3 

Rate-determing k f i a p q r s t 
step 

Rco ko 1 0 1 0 0 1 1 
R~ 1 Kok- ~ 1 1 1 0 1 ! ! 

4 2 2 2 

Roy Ko K1k ; I !2 1 0 !2 1: !2 
R d KoKlKykd I 1 2 0 1 1 1 
RcR KoKIKyKdk ~ 1 1 1 0 0 1 1 
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Therefore an attempt should be made to consider as an example the same mecha- 
nism (CECDC) allowing all steps to contribute to rate control. Assuming steady-state 
behaviour, i.e. no accumulation of intermediates, the procedure to be followed is the 
elimination of the unknown interfacial concentrations of intermediates from the set 
of partial rate equations (36a) to (36e), combined with the equalities 

U 0 = V R = V d "= ½ V y  = ½V 1 = - - jF /2F  (37) 

The resulting rate equation is rather complex, as the derivation involves the solutions 
of a quadratic equation in ½v 1. Yet it could be used to find the partial derivatives 
defined in eqns. (4)-(6), which determine first- and second-order behaviour (i.e. the 
quantities p '  =pw-1 /2  in eqn. (8) and S~ in eqn. (16)), according to their derivation 
by means of the Taylor expansion [22]. 

However, in the case of a d c  reversible system an easier route can be followed, if 
it is realized that the partial rate equations are explicit functions of the concentra- 
tions of the intermediates, but implicit functions of the concentrations of the stable 
reactants c o and c R. This is because the concentration of each intermediate will be a 
function of the three independent variables c o, c R and E (or q~). Thus it is 
permissible to expand each expression for v i in eqn. (36) in a Taylor series with 
respect to its own primary variables, and to separate the first-order part, Av9 ), and 
the second-order part, Av{ 2), from the mean part AO i. For example, for reaction R~o 
we obtain the simple result: 

av'g, + a0g,= 1,o[ ac'o" + acg,] -1,oKo [ AcS' + acS'] 

and, since in the dc reversible case the equilibrium condition, K o = ?o/?o, ,  holds for 
the mean concentrations, 

Avg'+ avS'= k°~°{ Ac~'-+ Acg' Co ac°~)-+ Acg" } Co, (38a) 

where Ac[ 1) is the first-order part and AC! 2) the second-order part of the fluctuation 
around ?i [22]. Similar reasoning leads to Taylor series for the other reactions: 

ac~o 9 + acg) Ac~ + Ac~ h4m + h¢a~ 
Av} l) + flv~ 2) kl~ o, 

~o' ?v 2 

1 - 2a~ a~ Ac~ogA~ °~ 1 - a~ Ac~)Aq, m } (38b) 
-8 [A¢']~ 2 ~o, 2 ~v 

(38c) 
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Avid l' + --~dA' <2)_-- kd~2, {2 Ac~!?v, + Ac~/ Ac~o 9c0, + Ac ~°2> AC~/cR, + Ac~! 

+ [Ac~!]2 Ac~ogAc~! I (38d) 

L-~-~w j ~O,~R----- ~ ] 

AU(R1 )-4- A U(R2) ~_,~_ kRCR, ( AC(RI!~ -+cR,Ac(R2! AC(R1) 2cR AC(R2) ) (38e) 

Note that only the electron-transfer reaction and the dismutation reaction give rise 
to additional terms in [A@~)] 2, etc., due to the existence of second-order derivatives. 

The next step is to realize that the steady-state relationship expressed in eqn. (37) 
will also hold separately for the first-order and the second-order contributions to 
Av~. Then, taking all first-order terms together, it is seen that the intermediate Ac O) 's 
are easily eliminated, while the terms in Ac~ ), Ac~ ) and Ath <1) remain: 

Ac~) 1A,<l)f 1__._~ 4 4 1 1 = A + t , ) _ A c ~ ) + _ _  
2 - 1   ko o- 1,1eo---: + 

(39) 

If this is compared with the formal first-order expansion of the faradaic current [22]: 

AjtF') = --FAv{D = pAq~(1) + back  ) + RAc a 

it appears that eqn. (12) holds, as it should, and that the partial derivative P can be 
expressed simply by: 

P = 2 Frok ff (40) 

and consequently p' =p~-1/2 (see eqn. (8)) is of the form 

p ' =  (2Do)1/2[1 + exp f ] - l k ~ '  (41) 

where kff can  be considered as a "'formal" rate constant given by 

1 1 4Ko 4KoK1 Ko Co (42) 

The potential dependence of the five terms in eqn. (42) is readily inferred from 
eqns. (35) and (36); the result is: 

1 +(Do/DR) '/2 exp(~) + exp(q~) 1 1 exp(½a,q~) + exp(½q~) + (43) 
k f~ = ko "{- k sl k s-"""~ k sd C~) k _ R 

Note that the fourth term corresponding to the dismutation step is a sum of two 
terms, so that the whole series contains the terms in 0~, ½al~, ½¢ and ~. 

The elaboration of the second-order part is more tedious but feasible. First, the 
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same calculation is made as was done for eqn. (39), leading to 

2 koF o + klCo-----'~ + k y c y  + ~ + = Ate(2) -- Co-- --I- - - C R  

1 -  2o, r 1 + ( 1 -  o1) ] 2 + 
+ - - - T - - ~ A ~ ' ~ : + ~  ~o, ~ L ~ '  J ~o,~, 

(44) 

If this is compared with the formal second-order expansion of the faradaic current 
[22], taking into account eqn. (12): 

Ajtv2) = _FAv~2)= plA~(2)_ acg '  + Ac~_____~) [ + ½~-~[kq~(o]/+ 
Co eR J 

+ R'FAc~)Aq~ 0) + ½~6[  Ac~'] 2 + O'RAc~'Ac~ ) + ½R'R[ Ac~)] 2 (45) 

we see that the series of quadratic and cross-product terms in eqn. (44) must be 
identical to the series of quadratic and cross-product terms in eqn. (45). Therefore 
the explicit meaning of the second-order partial derivatives ~ = O2jF/Sq~ 2, etc. [22], 
can be found after substitution of the appropriate relationships in terms of Ac o, Ac R 
and A~ for Ac(o 9, Ac~y ~), Ac~! and Ac~). These relationships can be derived by some 
manipulation from the combination of eqns. (38) with eqn. (39); e.g. from (38a) and 
(39), with the abbreviation used in eqn. (42) 

[ - 1 AC~o 9 ~ .  A¢~1 ~ _ Ac~ + _  
Co' ko Co CR J 

The other expressions needed are obtained by combining eqns. (38c), (38d) and (.__380 
with (39). The final results of the operation are the explicit expressions for FF/~, 
O ~ 2 / / ~  and "~c~/;, that are tabulated in Table 3. The other partial derivatives OF, 
RF and OR are found to obey eqns. (13), (14) and (15), respectively. 

TABLE 3 

Explicit expressions for the second-order partial derivatives occurring in eqn. (16) for the general CECDC 
mechanism, cf. eqns. (36) 

1 F F  ~ -  = - a +(1 - a l )B + . 4 -  12(.4- b - ~)2 _ .~/~ 

1 O'Og" 2o 
P = A - b - ( ~ 4 +  B+d)  2--4~ 

1 ~ g ' ~  . ~ _ ( ~ +  ~ + ~,)2 _ ~ ,  
2 F 

.4 = k f r / k  o B = k n ( 2 K o / k i )  C = k f f ( 2 K o K l / k v )  

b = k f f / ( K o / k d K a K R ~  R) E = k f f ( C o / / k R K R C . R )  
. 4 + 2 b  + 2 C +  b + / ~ 2 1  
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The most important  conclusions from the derivations are the following. The 
experimental quantity p ' ,  to be obtained as a function of potential from ac 
admittances, will not show up the quadratic nature of the mechanism due to the 
dismutation step, unless p'  vs. ,~ curves are determined at varied concentration; 
otherwise no discrimination between a CECDC mechanism and a CECEC (with the 
second E fast) can possibly be made. The experimental quantity S~, however, to be 
obtained as a function of potential from demodulation measurements, potentially 
reveals the quadratic nature, primarily by the presence of non-zero OO and R R  
values. If more than one step is rate-controlling, this will be revealed by the fact that 
~ ' ~ / p ,  " ~ 2 / p  and ~ ' ~ 2 / ~ ,  are (potential dependent) functions of the individual 
rate constants rather than constant numbers. 

The consequences for kinetic studies (past and future) are obvious: if there is any 
reason to suppose or to suspect the presence of a non-linear intermediate reaction, 
the application of a second-order method is almost obligatory. On the other hand, if 
it is concluded that the mechanism contains only linear steps, this may have to be 
justified by means of the second-order response to any suitable perturbation. 

(IV) POSSIBLE EXTENSIONS OF THE THEORY 

The treatment in this paper may be considered as a framework for quantitative 
analyses of electrode reaction mechanisms in terms of consecutive steps. In view of 
the restrictions introduced in the beginning of section (II), we wish to make some 
remarks that may be relevant to practical situations, without, however, going into 
details. 

(i) Non-specific double-layer effects, i.e the Frumkin corrections are easily 
accounted for by stating that the transfer of the reactant O to the reaction plane in 
the double layer is a fast reaction preceding the whole sequence [13]. Therefore any 
expression for k ;  l, e.g. eqns. (22), (25) and (42), has to be multiplied by the 
equilibrium constant of this reaction, i.e. the reciprocal of the Boltzmann factor 
e x p [ - ( z o F / R T ) ~ x ]  , where ~x is the potential in the reaction plane. In addition it 
will be more correct to analyze the resulting kf as a function of e x p [ ( n F / R T ) ( E -  
d~×(E) - E o + ~x (E  o ))] instead of e x p [ ( n F / R T ) ( E  - E o )]. 

(ii) Specific double-layer effects, e.g. catalysis or inhibition by adsorbed species, 
are more difficult to account for, and their presence could even obscure the potential 
dependence prescribed by the elementary model. The reason is the possible potential 
dependence of the amount of adsorbed catalyst or inhibitor, which has the effect 
that the constants ks, i and kc. i in eqns. (25)-(27) and in Table 2 may be potential 
dependent. Note also that the treatment in section (III.3) has to be extended since, in 
principle, ko,  kv ,  k d and k R must be allowed to depend on the potential, so that 
additional partial derivatives with respect to q~ occur in eqns. (38a-3). 

(iii) The theory will also be applicable to reactions of more complicated overall 
stoichiometry, e.g. O 1 +~ 0 2 + . . .  + n  e -  ~ R 1 + R 2 + . . . .  Here O1, 0 2 etc. may 
represent different or identical species, as may Ri,  R 2, etc. Probably the best way to 
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account for this complication is the procedure outlined in section (III.3) (also in the 
case of a linear reaction sequence), as the basic idea will always be the assumption of 
simple partial reaction steps. 

(iv) If the overall rate constant is too low the reaction may be non-dc reversible, 
at least in part of the potential range covered. In that case the simplifying 
thermodynamic relationships, eqns. (12)-(15), are not applicable. We think that the 
implications of this may be rather serious, and that it will be necessary to think of a 
separate treatment. It should not be overlooked that the demodulation technique 
covers a very wide potential  range and is therefore liable to be affected by 
dc-irreversibility at large polarization. 

(v) Finally, two reasons for a possible fundamental non-applicability of the theory 
must be mentioned: (a) accumulation and subsequent adsorption or diffusion of the 
intermediate if it is not totally unstable; and (b) significant adsorption of the stable 
reactant and /or  product. In both cases the interfacial processes become "coupled" 
via the mass-transfer processes involved, as is known already with respect to the ac 
admittance technique (see, for example, refs. 19 and 28). At present it is difficult to 
predict whether the demodulation method will also add new information to what can 
be learned from the first-order approach when these complications arise. 
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