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We consider a series of queues with Poisson input. Each queueing system contains an infinite
number of service channels. The service times in each channel have a general distribution.

For this M/G/% tandem model we obtain the joint time-dependent distribution of queue
length and residual service times at each queue. This leads to an expression for the joint stationary
distribution of the number of customers in various queues at the arrival epochs of a tagged
customer at those queues.

M/G/ queue * queue length * tandém queue * correlation coefficient * time-dependent
analysis

1. Introduction

One of the main interests in present-day queueing literature concerns the analysis
of queueing networks for which the stationary distribution of the number of cus-
tomers at each queue is of a special type: the so-called product form (see e.g.
Baskett e.a. [1], Cohen [2]). One of the models belonging to this class is the model
of a network of M/ G/ queues: queues with iindependent Poisson arrival processes,
an infinite number of servers at each node and general service time distributions.

Although analysis of the stationary queue length distribution in such product
form networks is simple, a complete analysis of the relevant queueing characteristics
is in general not easy. In particular, as is observed by Kreinin and Vainshtein [3].
not much is known about the distribution of, e.g.,, the process (X,(k),
X,(k). ..., X,(k)), where X;(k) is some characteristic of the jth queue at the arrival
epoch of the k-th customer at that queue, like waiting time, response time or yueuc
length.

In M/G/x networks waiting time and response time distributions are clearly
trivial; but the determination of the joint distribution of the queue lengths at the
various nodes at the arrival epochs of a tagged customer in those nodes presents
an interesting problem. The present paper is devoted to this problem.

In order not to obscure the basic ideas we restrict ourself to the case of a tandem
connection of n M/G/x nodes with one Poisson input stream, at the first queue
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(note that it is justified to speak of M/ G/ nodes since the departure process of
each queue again is a Poisson process). A remark at the end of the paper explains
how our results can be extended to more general models. Section 2 is devoted to
the case n =2, and Section 3 to the case of arbitrary n. In both cases we determine
the joint stationary distribution of the queue lengths at each node and the residual
service times at each server. This leads to our main result: the joint stationary
distribution of the successive queue lengths a particular customer finds at his arrival
epochs at two queues . the tandem connection.

We thus extend results in [6] (n =2) and [3] (n arbitrary), obtained for the special
case of a tandem connection of M/ M/ queues. In [3] much use has been made
of combinatorial arguments. We follow a different approach, which is more direct
and which clearly expresses the meaning of the intermediate and resulting formulas.

Finaliy some notation: Q,,. .., Q, are n queues in series with an infinite number
of scrvers at each queue. Customers arrive at Q, according to a Poisson process
with intensity A. Service times at Qy, O-, ..., Q, are independent, identically dis-
tributed  stochastic  variables 7', 7., .. 7™  with distribution B,(-),
B.(-h,....B,(-)withfirstmoment 8,, 8., .. .. B,. In the following it will be assumed
that B(O+)=0and B,<x,i=1,...,n

2. Two M/G /oo queues in series

Let x, (1), x»(1) denote the queue lengths at Q, and Q. at time  and under the
condition that x((th=l.x:(0) =1, let o}, . .o . o\, .. .. ;7' denote the
residual service times of the customers in service, i.e. the still required service times.
Clearly

() (1) t2) )
(xy(t).xx(). oy OO L O

constitutes a Markov process. We shall analyse this process, following the elegant
approach of Takacs [4, 5]for the M/ G/x queue. The results in Theorem 2.1 below
are of independent interest, but they also provide the basis for our further investiga-
110N, '

Theorem 2.1

i t1
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re0 L L=00000 000 XL, XYy =0. (2.1)
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If B, <0, B, <0 then

imPrix, (D=1, x.()=h.o"<x\,...,0!<x,0"<y,...,0 <y}

-+

s ABDY L (ABY)E L {J'"-I—Bl(x) } L {J'”fl—B,(x) }
= '\B) )‘B: ____._.__.d =
c ly! ¢ h! fgl 0 B ¥ ,gl 0 B> dxf,

and the limiting distribution is independent of the initial state.

Proof. Assume that in the interval (0, t) n customers arrive (n= 1, +1,). It is well
known that under the condition that in the Poisson process n customers arrive in
(0, 1), the joint distribution of the epochs of these arrivals agrees with the joint
distribution of n independent random points distributed uniformly in (0, t) (see e.g.
[4,5]). If a particular customer arrived at epoch ¢ — x, then

B,(x+ x;) — B;(x) denotes the probability he is still in Q, at 1, with residual service
time at most x;;

If, {B:(x—u+y)~ B:(x—u)} dB;(u) denotes the probability he has left Q,. but
he is still in Q- at £ with residual service time at most y;;

B,*B-(x) denotes the probability he has left Q. before 1.

Hence the lefthand side of (2.1) car be written as

< AD)" ! Dol ,
T e A (AD) n I {7J (B,(x+x,-)-—13,(x))d)c}
{

- nt 1L (=1, = 1) ,

12 1y
ol {%J- j (B_‘(x—u+yj)—Bz(X*U))dBl(“)dx}
i=1 0Jo

}

n-I]’l_. l t .
x| {7J BI*B:(X,)dx}. (2.3)
(

k=1 )
which easily leads to (2.1). If we let 1 » o then we obtain (2.2) after some rearrange-
ments of integrations. The argument can be adapted for general x,(0), x,(0) to
show that the limiting distribution is independent of the initial distribution. [

Remark 2.1. It follows from (2.1) that at any time 1, x,{) and x,(1) are independent
Poisson distributed random variables. This is a result which has been known in far
greater generality for some time, cf. Kingman [9, Section 4] and Harrison and
Lenoine [8]. Observe that (2.2) yields the well-known product form for the joint
stationary queue length distribution. Cohen [2] gives a detailed analysis of the joint
distribution of queue lengths and attained (or residual) service times in networks
of queues with the so-called generalized processor sharing discipline; (2.2) can be
viewed as a limiting case of one of his models (cf. [2. Section 7}).

We are now ready to study the joint stationary distribution of the queue lengths
L,. L~ which a particular customer sees in Q, and in Q. at his successive arrival
epochs at these queues. For simplicity of notation assume that the tagged customer
arrives at Q, at time 0, finding the system in equilibrium. Applying Wolft’s [7]
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PASTA property, which states that Poisson arrivals see time averages, it follows
that the stationary joint distribution of queue lengths and residual service times just
before the arrival epoch of the tagged customer at Q, is given by (2.2).

Theorem 2.2. The generating function of the joint stationary distribution of the queue
lengths L., L- is given by

a0

E[z:‘lz.'?‘Z]::eAﬂl(zl_]H'ABZ(ZZ_” J’ eA(l_zl)(l“zl)O(') dB](t), IZ||$ 1, ‘22|$ 1’
O

. (2.4)
with
O(t)1=-[ (1-B(7))(1—-By(t—7))dr, t=0; (2.5)
C()V(L],L)_)zl\J- O(t) dBl(t), COIT(L], Lz) = ! J- O(I) dBl(I)
0 VBiB: Yo

Proof. (2.6)

E[zf'z%r]=f dBy() Y zp ¥ 2 :J :

t=0 =0 =0 ny=0Jx;=0

xj Prix.(1) =L|x,(0) =1, x:(0) =ms, r=t, 0" =x,,..., 01" = x,,

,"'n_, =41

(2) _ — v
o, =Y. 0',,2 '—,\nl}'

[| n:
X e AB, _(/\Bl) e*—Aﬁ: {ABJ)

ll! n:!
1—B.<x,>} { - B.(3))
x i T4 - dx "'dv"ﬂ
l[=ll{ B] ]l,_,l' 32 I ! R
lz))=<1, |za|= 1. (2.7)

The essential observation now is that x,(1) is composed of three independent terms:
() =wut)+ u, (1) + u-(1),

u,tt) = number of customers in Q- at ¢ who were not
yet present in the system at O;
u, ()= number of customers in Q, at ¢ who were at Q, at (0 (2.8)
u>(t):= number of customers in Q- at t who were at €, at 0,
Note that u,(r) depends on [, and o', ..., (r},”. while u.(1) depends on 0, and
o, ... o'

Once more applying the argument concerning the uniform distribution of Poisson
arfivals in (0, 1) we can write:

¥ N n \ _ NNy
E[z%"]= YN 20 ¥V ¢ ,\,L'l’_)_('f) (ﬁ) ({__._P‘_‘) ca AL
) a nooj n! i ! t
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with
I’«):'—'J- (By(x)— B*B,(x)) dx; (2.10)
0

the interpretation is that a customer arrived at Q, at (1—x), got completely served
in Q, in (t—x, t), but not yet in Q,.
Next consider u,(1):

I J E[Zgl“)'xl(o):llva'(I“:xls---aa‘l,”:xl‘]

xp =0 =0
] _ Bix

X II (]___—I('_x_lz) dx' e Xm‘
i-l B

<Y 1 !

=_Z“z: i pi(l—p)t'=(1-p+pz). |zf<l, (2.11)
i=
with
Plsz lw—:;l’(’ﬁ{l—nz(t_x)}dXQ (2.12)

0 I

the interpretation is that a customer has residual service time x <t in Q,, while his
service time in Q, ¢xceeds 1—x.
Finally consider u»(f):

Y X
J- e -[ E[z;l“"
v, =0 Vo=

" l'.B‘) V)
x [] (—“(—’*) dy, - - - dy,,
j=1

0 =n,07=y,...., o =y,]

B>
“~ h; ", n
"L zé( )Pé(l-;»:) h=(1-patpaza)™, |z, (2.13)
k=0 k
with
* l"Bﬁ()’)
S = ———dy: (2.14)
J’, B

the interpretation is that a customer has residual service time in O, excceding ¢
Combining (2.7), (2.9). (2.11) and (2.13) yields:

, " o o (ABDY s (ABD) .
1:‘[2{‘125*’]:"‘ dB(1) ¥ zy Y e s ABO oas, AB 2y

=0 =0 na=1 llf n;,_!

X(1-p, +P122)1'(1 —patpzo)™

X
:C/‘ﬁi“‘ 'HAHJ(:’\“J. e-A[fIZ,,rr;(L :llc)\ﬁ:(l Ptz ap, zz)dBl(f),
{}

[zi]=1, [z]= 1. (2.15)
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Finally (2.4) follows from the observation that
!
31P|=J (1= B{x)(1=Bylt—x)) dx=Q(1), (2.16)
1)

and

H

(B,(x)— B, * B5(x)) dx+j (1—B,(x)) dx=Q(1).
O
2.17)

—pot Br{l—py)= _j

0

Expressions (2.6) for the covariance and correlation coeflicient of L, and L, are
an immediate consequence of (2.4). [

Remark 2.2. According to (2.16) Q(t) has the following interpretation:

Q(1)=8,Prie" <1< o'+ 17}, (2.18)

. . N . . R4 . . . .
with o'"" a residual service time in Q, and 7'°' the successive service time in Q-.

Equality of expressions such as 8,p; and —p,+ B.(1— p,) plays a central role in the
analysis of the case of an arbitrary number of queues in series. To prove such
cqualities note that, c.g.

K T 1N t
J (Bl*Bz(x))d.x‘ZJ' J’ ng(u)B‘(.\‘~14)d.r=J’ B (y)B.(t—v)dy.

P vl

(2.19)
after some rearrangement of mtegrations; now compare (2.16) and (2.17).

Remark 2.3. In the special case that B(-) and B.(-) are negative ¢xponential

distributions. E[z}'z%:] has been obtained by Vainshtein e.a. [6]. In this case

1 1
O = "—-¢ "H“)/('“—)
B> B

A BiB2

C”\(”I- I‘J':*"

2B+ By

and

corrt L. L>) = 3(}}3;%—;.
- 1 2

Remark 2.4. Although the present model is one which allows overtaking of cus-
tomers at cach node (a fact which usually strongly complicates the analysis of
characteristic queueing quantities at succesive nodes), the fact that no customer
ever has to wait renders a complete analysis possible.

Fxpression (2.4 exhibits a nice svmmetry in Q and Q- (apart from the integral
w.r.t. Bii-0o this should not be surprising in view of the reversibility property of
thin maodel.
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A trivial extension of /Z.7) and (2.15) yields, with n, the number of custemers
in Q, at the arrival epoch of the tagged customer in Qy:

E[Zf' 2%22"2] = eAﬁl(zl—1)+ABZ(22—-1)+ABZ(2—1)

o
% I eA(1~zl)(1_22)ﬁlpl+t\(]—'22)(|"Z)32.D2 dB](t)$
0

|z =1, |za =1, |z]=<1. (2.20)

z=1 yields (2.4); z,=1 yields the well-known generating function of the joint
stationary distribution of the queue lengths at Q, and Q, at an arbitrary (or arrival)
epoch. z, =1 yields the generating function of the joint stationary distribution of
the queue lengths at Q, at the arrival epochs of the tagged customer in Q; and in
Q- respectively (an expression which is completely symmetric in z, and z); their
correlation coeflicient is given by

. 1 [® © - B ]
corr(L., n,) =— J B2p> dB,(1) =J’ B,(y) (w) dy=Pr{z"" < e'?}.
BZ 0 4] BZ
(2.21)
Further note that
. k
3 ! )
E[zg,Z!lek]=eAﬁ2(::—l)J eMl-z:)O(l)(l_(l_zz) O( )) dBl(t),
h B
1z2]=1, k=0,1,..., (2.22)

hence

E[L,|L,=k]=AB>+(k—AB)) J“"‘%t_)dﬁl(t)

0 1
=AB:+(’<—/\B,)Pr{g“’<—;‘”<0-“'+.,<2)}
= E[L))+ (k- E[L ) PrHoV < #V<agV+ 12} k=01,...., (2.23)

7" denoting the service time of the tagged customer in O,; similarly

E[Zg.zlnzzk]:e)\ﬁl(zz--l)-[ e)\ll"zz)ﬁzpz(l_(l_zz)pz).’\ T 1"),
(4]
lzo|=1, k=0,1,..., (2.24)
hence
* 1= By(y)
E[L;!n3=k]=ABZ+(k—ABJ)J‘ Bl(.Y)’“’“ELLdY
[§] 2

= E[L,)+ (k- E[n,]) PriF'" < o'}, k=0,1,....
(2.25)

The interpretation of (2.23) and (2.25) is obvious.
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The second terms in the r.h.s. represent the influence of L, and n.. resp. E.g.. in
(2.25) Pr{#'" < ¢'*'} is the probability that a customer, who is present in Q, at 0,
i» still in @, at the end of the service of the tagged customer in Q,.

3. The general tandem case

Let x,(1),. .., x,(t) denote the queue lengths at Q,, ..., Q, at time ¢, and, under
the condition that x,(1)=1/,...,x, (=1, let ¢i",...,0!",...,0{",...,a!”
denote the residual service times of the customers in service. Analogously to
Theorem 2.1 one can derive the joint time-dependent distribution of x,(¢), .. ., x,.(1),
e o', the stationary distribution is, analogously to (2.2), given by:

If 8, <x,...,B,<cx, then

. _ _ . .
hm Pr{xl{t) - ’], PR x"([) = lm a-(l \Sx(l )’ e G;:)Sx(l:)}

- X

n [ MBS E ([ 1-By(x)
2,[-.'.[‘: Sy .«U,“(, 8, dx}]' (3.1

Starting from this expression one might investigate the joint distribution of
L..... L,. the queue lengths found in Q,, ..., Q, by a tagged customer upon his
course through those queues. Following Kreinin and Vainshtein [3] we shall restrict
ourself to the simpler matter of the determination of the joint distribution of L,
and L,. Analysis of the general case proceeds in a very similar manne-, but the
calculations become rather lengthy.

Theorem 3.1

=l dza.=1, m=23,..., (3.2)
with

OIM(,):':J (1 - B](T)){(B_‘* e "*B,,,.rl)(f“ T)_(Ijz* st *B,,J(I"T)]dT

¥

:B;Pr{ﬂ"“+7(l'+" _+T(m~"ll(k [ < (r(l)_*_‘r(_’)'{_ .. _+T(m)}‘ t??():

covi I‘|. I‘,,,) = /\;.Jr Om(lr)(i( l}]* cor *Bm |)L\t).
. ‘ (3.4}

Ccorr( LI~ Lnx) = —-:—:J' Om(” d(Bl* T *Bm- l){")
{

A ﬁle
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Proof. The proof will not be given in full detail, since it proceeds in the same way
as the proof of Theorem 2.2. Assume that the tagged customer arrives at Q, at
time 0, finding the system in equilibrium. Condition on the event that the sum of
his sojourn times ( =service times) in Q,, ..., Q,,_; equals . The essential cbserva-
tion is that x,,(¢) is composed of m+1 independent terms:

xm(t) = u()(t)+ ul(t) +ee 4 um(t),
with
uo(t) = number of customers in Q,, at t who were not yet

present in the system at 0;
(3.5)

u;(t) = number of customers in Q,, at t who were at Q; at
0,j=1,....m

Note that u;(t) depends op x;(0) and the residual service times at Q; at time 0.
Defining

!
p():=j Pr{f(”+‘ . ‘+1_(m-ll<x<7(1)+ .. ‘+T(m>}dx
0

=J {(Bl*' : '*anl)(x)_(Bl*. ‘ '*B",)(X)} dx'

]

(3.6
pj:: Pr{a[jl+1_(j+])+' . .+7(m/*1)<3<a_(j)+7(j+l)+_ . _+1_(m)} )
“1-B(x)
:J “'—“—‘—‘—3]( --)'{(B]Wl*'- '*Bm._[)(t—x)_(B_,‘l*' *Bm)(t‘_x)}dxs
0 ]

j=1,...,m—2,

' 1—Brn-»-l(x1(

P =Pr{e" V<i<a™ 45 =J‘ (1= By, (1—x)) dx,

0 6 -l

*1-B,,(:
m(ﬂdx
! Bm

one can now prove, analogously to (2.15), that

-

p'" = Pr{a(”])> t} - J

=X
L.[:fllzl'v’lm ] = J‘ d( [3144 « *B'” ) l)(t) C"’\pn(]“ 2,0 e"AH;"”—’l"HI et )
O
xe-—'\’}f’_k,\‘u?(l "[’:4';)22'") ..... ev'\ﬁxn+Aljm(] "Pvn+pmzm)’
]
|Z|[<l, {Z,"}Sl (37)

Note that

ﬁlpl:‘om(t)- (38)
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The theorem is proved if we show that
"'P()—szz_ e _'Bm*lpmwl +ﬁm(l _pm) = Om(t)- (39)

This is easily established, proceeding as in (2.19) and noting that the terms in the
left-hand side of (3.9) cancel out almost completely:

—J. ((Bl* e *B,_!, l)(x)_(Bl* e *B,")(JC)) dx

)

—J (1= Boyx)){((Bs* -+ *B, _)(t—x)—(By*- - *B,)(t—x)) dx

)

!

1= B, (x)(1 - B, (1—x)) dHJ (1-B8,,(x)) dx

0

__...,_Jr'
|
|

== OIH( ’)'

&

!

- *B, )(x) dx+J (By* - - %B,)(x)dx

{]

(
(B

&
(By* - *Bnr’)(x)dxhj- (By* - --+B,)(x) dx

!
)]
t
) (1]

Expressions (3.4) for the covariance and correlation coefficient of L, and L, are
an immediate consequence of (3.2). [

Remark 3.1. In the special case that B,(-) is a negative exponential distribution
for all i, E[ z{'z % T has been obtained by Kreinin and Vainshtein [3], using a different
method. If, moreover, all m service time distributions are identical. they show that
the cerrelation coefficient of L, and L,, tends to zero as 1/vVm for m -, If all
service times are identical constants 8, then it is immediately clear from (3.4) that
corr{(L,, L, =1 (as it should be).

Remark 3.2. Since the arrival process at each queue is Poisson with intensity A, it
can be proved that a similar expression as (3.2) holds for E[z{z 5 1 ]; of. [3].

Remark 3.3. It follows from (3.4) that if 8, = 8,, then (see also (3.3)),

: Om(t) ;
(.‘()rr(Ll,L,,,}:J _d(Bl*'.'*Bm~l)(t)
0 Bl
=Pr{a""+‘r""+' i .+T(m ~l)<1~_(l)+_ . _+1';lm..1)
L (3.10)

7' denoting the service time of the tagged customer in Q;, j=1,...,m—1.
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It follows from (3.2) that (cf. (2.22) and (2.23)).

x
E[Zﬁ}'”| —'k] e Bz, III eA(l—zm)()m(l)
{

k
X(] _(1_'2,,,) O;;(t)) d(BI* e *Bm- l)(t)-«

1

lz st k=0,1,..., (3.11)
hence

E[LmiLl = k]zABm*—(k*ABl) J’ Qﬁ.(ﬁd(B‘* e *Bm-»-l)(t)
0 1

= F[L,J+(k—E[L,]) Pr{aV+ 7@+ - .4 7™ D
<7l TN N (3.12)

with an obvious interpretation.

Example. Consider the case that the service times in all queues are Erlang-k
distributed with mean B. A straightforward calculation yields

‘ ()("m 1|k¢,+,*|<(2’n—3)k+l-+i)

[
corr(L,. L,)=— =
orrtly Ly)=p 22 (m-Dk—1

Some numerical results are presented in Table 1. Note that for k - c¢ the Erlang-k
distribution approaches the deterministic distribution, and indeed corr{L,,L,,)
approaches the value 1. For fixed k, and m - o0, it easily follows using Stirling’s
formula, that corr(L,.L,,)=>0asm "

Table 1 corr(L,, L,,) for the case that all service times are E, distributed with mean g8

~_  k
mo | 2 3 4 5 25 125
\’ — e —
2 0.250 0.375 0.449 0.501 (.540 0.776 ).899
S 0.137 0.194 0.236 0.271 0.300 0.567 0.798

10 0.093 (131 0.160 0.184 (L.20% 0.423 .668

Remark 3.4. The derivation of Theorem 3.1 shows that it is possible to obtain the
joint stationary gueue length distribution of a tagged customer at his arrival epochs
at two queues of a general network of M/G/o¢ queues; one may even allow
independent Poisson arrival processes at each queue. The basic steps aie the same
as before:

(1) determine a product-form expression of the type (3.1);

(i1) use the PASTA property;

(i11) decompose the gueue length x,,. (1) into independent terms corresponding to
the position of a customer at time 0.

In fact one may even allow different classes of customers.
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