
Stochastic Processes and their Applications 18 (1984) 153-164 
North-HoJand 

153 

M/G/m TANDEM QUEUES 

O.J. BOXMA 

Mathematical Instirute, University of Utrecht, The Netherlands 

Received 1 June 1983 

We consider a series of queues with Poisson input. Each queueing system contains an infinite 

number of service channels. The service times in each channel have a general distribution. 
For this M/G/m tandem model we obtain the joint time-dependent distribution of queue 

length and residual service tir?es at each queue. This leads to an expression for the joint stationary 
distribution of the number of customers in various queues at the arrival epochs of a tagged 

customer at those queues. 

M/G/a queue * queue length * tandem queue * correlation coeflicient * time-dependent 
analysis 

1. Introduction 

One of the main interests in present-day queueing literature concerns the analysis 

of queueing networks for which the stationary distribution of the number of cus- 

tomers at each queue is of a special type: the so-called product form (see e.g. 

Baskett e.a. [I], Cohen [2]). One of the models belonging to this class is the model 

of a network of M/G/a queues: queues with independent Poisson arrival processes, 

an infinite number of servers at each node and general service time distributions. 

Although analysis of the stationary queue length distribution in such product 

form networks is simple, a complete analysis of the relevant queueing characteristics 

is in general not easy. In particular, as is observed by Kreinin and Vainshtein [3], 

not much is known about the distribution of, e.g., the process (X,(k), 

X,(k), . . . , X,,(k)), where XjC k) is some characteristic of the jth queue at the arriuai 
epoch of the k-th custonler at that queue, like wfaiting time, response time or qucuc’ 

length. 

In M/G/a networks waiting time and response time distributions are clearly 

trivial; but the determination of the joint distribution of the queue lengths at the 

various nodes at the arrival epochs of a tagged customer in those nodes presents 

an interesting problem. The present paper is devoted to this problem. 

In order not to obscure the basic ideas we restrict ourself to the case of a tandem 

connection of n M/G/cc nodes with one Poisson input stream, at the first queue 
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(note that it is justified to speak of M/G/a nodes since the departure process of 

each queue again is a Poisson process). A remark at the end of the paper explains 

how our results can be extended to more general models. Section 2 is devoted to 

the case II = 2, and Section 3 to the case of arbitrary II. In both cases we determine 

the joint stationary distribution of the queue lengths at each node and the residual 

service times at each server. This leads to our main result: the joint stationary 
distriburion of the wccessiue queue lengths a particular customer finds at his arrival 
epochs (II two queues gc the tandem connection. 

We thus extend results in [6] (n = 2) and [3] (n arbitrary), obtained for the special 

cacc of a tandem connection of M/M/a queues. In [3] much use has been made 

of coml>inatorial arguments. We follow a different approach, which is more direct 

and which clearly expresses the meaning of the intermediate and resulting formulas. 

Fin&y some notation: Q,, . . . ~ 0, are f~ queues in series with an infinite number 

of xrvcrs at each queue. Customers arrive at Q, according to a Poisson process 

isiith intensity A. Service times at Q,, O:,. . . , Q,, are independent, identically dis- 

tributed stochastic variables 7:“. T’,“, . . . ( )1 1 
. 7; with distribution B, ( * ), 

!I\( - I.. . . . f3,,( - j with first moment p,, p-,, . . . , pIz. In the following it will be assumed 

that 14,(0+)=0 and P,K*x, i= I.. . . , II. 

2. I’wo 31/G/00 queues irn series 

lxt x,(t). x,(r) denote the queue lengths at 0, and O2 at time t and under the 

condition that x,(f) == I,. x,(.ri = P-, let cd,“, . , . , cpJi”_ CT’,“, . . . . CT):’ denote the 

rckh! servitrc times of the customers in service, i.c. the still required service times. 

( ‘Ic;irl~ 

lx,(r).x:(f). CT:“. . . . , cr:~:,,, &‘.. . . , It,‘,;,,, 

constitutes a Markov process. We shall analyse this process. following the elegant 

approach of Tak5cs [-I, 5] for the M/G/a queue. The results in Theorem 2. I below 

~FC of independent interest. but they also provide the basis for our further investiga- 

tions. 

‘i’taeorem 2.1 



If PI <m,&<oo then 

lim Pr{x,( t) = I, 
I-ml? 
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X,(f) = 12, c:‘) 5 x1 1 . . . , a);’ d q, &’ s y,, . . . 7 u/2 (2’ s y,,} 

(2.2) 
and the limiting distribution is independent of the initial state. 

Proof. Assume that in the interval (0, t) n customers arrive (n 3 1, + I,). It is well 

known that under the condition that in the Poisson process n customers arrive in 

(0, t), the joiht distribution of the epochs of these arrivals agrees with the joint 

distribution of n independent random points distributed uniformly in (0, t) (see e.g. 

[4,5]). If a particular customer arrived at epoch t-x, then 

B, (x + x,) - B,(x) denotes the probability he is still in Q, at t, with residual service 

time at most xi; 

II({R,(x-rr+y,)~B~(x-~)}dB,(u) denotes the probability he has left 0,. but 

he is still in QZ at t. with residual service time at most yi; 

B,*&(x) denotes the probability he has left QZ before t. 

Hence the lefthand side of (2.1) can be written as 

f. ,j, (At)” n ! ‘1 
e -- 

,L -:;; + I, 4 J i ’ (H,(x+si)--B,(xjj dx 
n! 1,!/7!(11-1,-L)! ,.:_, t (, I 

(2.3) 

which easily leads to (2.1). If we let t -+ CC then we obtain (2.2) after some rearrango- 

ments of integrations. The argument can be adapted for general x,(.0), x,iO) to 

show that the limiting distribution is independent of the initial distribution. 0 

Remark 2.1. It follows from (2.1) that at any time t. x,(t) and x2( I) are independent 

Poisson distributed random variables. This is a result which has been known in far 

greater generality for some time, cf. Kingman [9, Section 41 and Harrison and 

temoine [X]. Observe that ( 2.2) yields the well-known product form for the joint 

stationary queue length distribution. Cohen [2] gives a detailed analysis of the joint 

distribution of queue lengths and attained (or residual) service times in networks 

of queues with the so-called generalized processor sharing discipline; (2.2) can be 

viewed as a limiting case of one of his models (cf. [2. Section 71). 

We are now ready to study the joint s!ationary distribution of the queue lengths 

L,, L,: which a particular customer sets in 0 , and in Q? at his successive arrival 

epochs at these queues. For simplicity of notation assume that the tagged customer 

arrives at 0, at time 0. finding the system in equilibrium. Applying Wolff’s [7] 
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PASTA property, which states that Poisson arrivals see time averages, it follows 

that rhe stationary joint distribution of queue lengths and residual service times just 

before the arrival epoch of the tagged customer at Q, is given by (2.2). 

Theorem 2.2. The generating function of the joint stationary distribution of the queue 
lengths L,, L-, is given by 

I 

x> 
Etz~,t~Z]=ehp,I;,-l)+AP,(Zz-l) eA”-‘I”‘-‘~)O(‘) dB (t) 1 7 lz,/ d 1, Iz,1 d 1 

0 

with 
(2:4j 

Q(t):= ,:(l-B,(r))(l-Bi(r-~))dr. 
J 

rao; (2.5) 

cov(L,, L,) = A Q(f) d&(t), corr(l,, L2) z=--=== Q(r) d&(t). 

Proof. (2.6) 

1 
x. 

X Pr{xl(tj=/,~~,(Oj=l,,~,(0)=n~,7=t,~(l”=x,,. . , ,a{:‘= _q,, 

Y” 2 -(I 

I’) - 
01 - y, I * * . 7 a,,, ‘2’ = J,,,). 

/Z)lS 1, Iz:jd I. (2.7) 

The essential observation now is that _K~(I) is composed of three independent terms: 

X.Jf)=U~,(f)S u,(r)+&(f), 

UJ t j := number of customers in 0, at t who wart’ not 

yet present in the system at 0; 

u,(t):= number of customers in 0: at I who were at 0, at 0; 

u,( fi := number of customers in VJ at I who u’crc at G, at 0. 
(2.X) 

Note that U,(T) depends on I, and a;“, . . . , WI,“, \Vhile u,(r) ciepcnds on II? :md 
t.?, 

fT j . . . . , a(,f.‘. 

Once more applying the arglument concerning the uniform dist;ribution of Poisson 

;lri%3ls in !O. rt we can write: 
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with 

IA):= 
I 

’ (B,(x)- B,*&(X)) dx; (2.10) 
0 

the interpretation is that a customer arrived at Q, at (t-x), got completely served 
in Q, in (t-x, t), but not yet in Oz. 

Next consider ul( t): 

with 

p, := I ’ I -B,(x) 

PI 
{l-D,(t-x)}dx; 

0 
(2.12) 

the interpretation is that a customer has residual service time x < f in Q,, while his 

service time in OJ exceeds t-x. 

Finally consider u,(f): 

with 

= p;(l-pJ”-‘+= (1 -p~+y~z#, (i& 1, (2.13) 

(2.14) 

the intcrprctation is that a customer has residual service time in 0, exccedmg 1. 

Combining (2.7). (2.9). (2.11) and (2.131 yields: 
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Finally (2.4) follows from the observation that 

p,p,= ‘(l-R,lx))(l-~~(I-I))d*=Q(I), 
J 0 

(2.16) 

and 

f -p,,+Pd~ -pz) = - 
J 

(B,(~)--+,*B~(x))dx+ r(H3,(x))dx=Q(t). 
0 J 0 

(2.17) 

Expressions (2.6) for the caPvariance ;md correlation coefficient of L, and L2 are 

an immediate consequence of (2.4). cl 

Remark 2.2. According to (2.16) Q(f) has the following interpretation: 

Q(t) = j?, Pr{a”’ < t < u”‘+ 7(“}, (2.18) 

with u”’ a residual service time in Q, and 7”’ the successive service time in @. 

Equality of expressioris such as p,p, and -p,,+pz( 1 -pz) plays a central role in the 

;malysis of the r*asc of an arbitrnrv numb:: of queues in series. To prove such 

I 

I J 
I 

J 
I 

dH~(u)B,is-14,d.r= B,(y)B,(t - 1) d!,. 
\ 0 L, 0 v-.0 

(2. I(i) 

of integrations; now compare (2.16) and (2.17). 

Remark 2.3. In the special case that B,( + ) and B,( *) are negative exponential 

distributions. E[zflztA ] has been obtained by Vainshtein e.a. [6]. In this case 

Remark 2.4. Although the present model is one which allows overtaking of cus- 

tclmt’rs at each node (a fact which usually strongly complicates the aqillysis of 

klriictcristic queueing quantities at succesive ntdes). the fact that no customer 

C k C r h:l\ 10 b;iit rcntlcr\ ;L complete ;tnal} sis possible. 

t. ‘iprcG)n I.2.J I Aiibitx ;k nice s>‘mmctr-y in 0, ilnd 0, (apart from the integral 

1t.r.t. I$,( . 1 I: thi\ should not be surprising in view of the reversibility property of 

fhi4 modt’l. 
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A trivial extension of (2.7) and (2.15) yields, with n2 the number of customers 

in QZ at the arrival epoch of the tagged I:ustomer in QI: 

E[ztlr$z”2] = e AP,(z,-li+rPz(r,-l)+A~~(z-l~ 

I 
00 

X e ~(l-z,)(l-z,)P,p,+h(l-~~)(I-~)B~P~ 
d&(t), 

0 

jf,lQ 1, 1~~1~ 1, 121~ 1. (2.20) 

z = 1 yields (2.4); z2 = 1 yields the well-known generating function of the joint 
stationary distribution of the queue lengths at Q1 and C?? at an arbirrary (or arrival) 
epoch. zl = 1 yields the generating function of the joint stationary distribution of 
the queue lengths at Q2 at the arrival epochs of the tagged customer in Q, and in 
CL, respectively (an expression which is completely symmetric in z2 and z); their 

correlation coefficient is given by 

corr(L, nz) = -!- 
I 

LXI 

Pz 0 
PZPZ dB,(t) = j: B,(y) ( lm~~y’) dy=Pr(rL1)<c(Z)). 

Further note that 
(2.21) 

c x 

E[z:z) A, = k] = e’fiz(‘J-‘) eA(‘-z,)Q(r) a(t) 1 _ (1 _ z2) n ’ dB (t) 1 3 
J II \ PI / 

iz?Id 1, k =O,l,. . . , 

hence 

r” Q(t) 
E[&I&= k]=@+(k-hp,) o pd&(t) 

J 1 

=hp,+(k-~P~)Pr{rr”‘<?“‘<u”‘+~‘~‘} 

=E[L,]+(k-E[L,])Pr{o”‘<~“‘<a”‘f~’~’), k=O,l,.. 

?” denoting the service time of the tagged customer in 0,; similarly 

I- 
~[~~?In~=k]=e”“~‘~?-‘) e”“~~‘~‘“~“~(l-(l-zZ)~~~)~ ’ = ,>), 

!z:+ 1, k=O, l,..., 

hence 

E[L)nr,!= k]=@,+(k-A&) 
1 -B,(Y) dv 

B,(Y) p_ - 
1 

=E[L,]+(k-E[n,])F’r{i”‘<rr’~‘}, k=O,l,.. 

The interpretation of (2.23) and (2.25) is obvious. 

. 3 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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The second terms in the r.h.s. represent the influence of f,, and n,. resp. E.g.. in 

(2.25) Pr{ ?“’ < a”‘} is the probability that a customer, who is present in Oz at 0, 

if, still in IQ, at the end of the service of the tagged customer in 0,. 

3. The general tandem case 

Let X,(f), . . . , x,( 1) denote the queue lengths at Q1, . . . , 0, at time t, and, under 

the condition that x,(t) = I,, . . . ,x,(t) = f,,, let u\“, . . . , o\,!‘, . . . , a:“), . . . , ui:” 

denote the residual service times of the customers in service. Analogously to 

Theorem 2.1 one can derive the joint time-dependent distribution of x,(t), . . . , x,(t), 
(IV 

PI l - . - 9 -r,,tr, * “” -the stationary distribution is, analogously to (2.2), given by: 

If P,<N . . . . . Pn<a, then 

lim Pr{x,(t) = C,, . . . , x,,(i) = l,,, u\“S xi’), . . . , ui,:‘s xi:‘} 
f--L 

(3.1) 

Starting from this expression one might investigate the joint distribution of 

d ‘,. . . . . L,,, the queue lengths found in Q,, . . . , Q, by a tagged customer upon his 

course through those queues. Following Kreinin and Vainshtein [3] we shall restrict 

ourself to the simpler matter of the determination of the joint distribution of L, 

and L,,,. Analysis of the general case proceeds in a very similar Inanne:, but the 

calculations become r‘rther lengthy. 

Theorem 3.1 

(3.2) 

i.3.4) 
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Proof. The proof will not be given in full detail, since it proceeds in the same way 

as the proof of Theorem 2.2. Assume that the tagged customer arrives at Q, at 
time 0, finding the system in equilibrium. Condition on the event that the sum of 
his sojourn times ( = service times) in Qr, . . . , Qm_1 equals t. The essential observa- 
tion is that x,(t) is composed of m + 1 independent terms: 

x,,,(t)= %(t)+~rW+~ . *+%A~), 

with 

uo( I) := number of customers in Q,,, at t who were not yet 

present in the system at 0; 
(3.5) 

Ujir) := number of customers in Q, at t who were at Qi at 

O,j=l,..., m. 

Note that Uj(t) depends oc Xi(O) and the residual service times at Qi at time 0. 
Defining 

r 

PO := pr[q-(‘)+. . . + rcrn- ” 
I 

<x<T”‘+ . . -+@}dx 
0 

’ 1 - Bj(X) 

= 

J Pi 

.{(B,+,*. a . *B,,_,)(t-x)-(I$,,*. . . *B,)(+x)}d.u, 
0 

j==l,...,m-2, 

p,,,_,~~pr(~(~‘~-‘)<t<~o~‘-‘~+71~~)}~ I ’ 1 -S,,...,(x) 
- (1 -&At-x)) d-v 

0 Pm - I 

PW := pr(fl”“‘> t}= J x 1 -H,,(x) dx 

I Pm ’ 

one CHII n(iW prove, c ~nal~goasly to (2.15), that 

Note that 

PIP, = QJ t). 
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The theorem is proved if we show that 

--PO - p2p2 - * * - - m& - I P,,, -~ I + Pm t 1 - pm ) = Q,,, ( I). (3.9) 

This is easily established, proceedi.ng as in (2.19) and noting that the terms in the 

left-hand side of (3.9) cancel out almost completely: 

- I I((B,* ’ - - *I3 I- ,)(x)+3,* - - - *i&,)(x)) dx 
0 

( 1 - BAc))((Bp * * ‘*B,,-,>(t-x)-(g3*...*B,,,)(f-x))d_~ 

!-’ 
I.. .- J ( 1 - 67, 1 (x))(l -B,,,(t-x)) dx+ (1 -&Ax)) dx 

0 

I 
I 

=-- (B,*. - * *&- ,)(-u) dx+ (B1* 1 * * *B,,,)(x) dx 
0 

I 

+ I 
I 

(Bp--* *B,,,- I)(-x) dx- I (&* - - . *B,,,)(x) dx 
0 0 

f’xprcssions (3.4) for the covariance and correlation coefficient of L, and f,? are 

an immediate consequence of (3.2). El 

Remark 3.1. In the special case that B,( - ) is a negative exponential distribution 

for all i, r~[-_~Iz!;;~] h* ns b een obtained by Kreinin and Vainshtein [3], using a different 

method. If, moreover, all nt service time distributions are identical. they show that 

the cc:.relation coefficien: of L, and L,,, tends to zero as l/Jnr for w + W. If all 

service times are identical constants p, then it is immediately clear from (3.4) that 

corrtl,. L, i = I (as it should be). 

Remark 3.2. Since the arrival process at each queue is Poisson with intensity h, it 

can bc proved that a similar expression as (3.2) holds for E[z~~z~~~J I]; cf. [3]. 

Remark 3.3. It follows from (3.4) that if j3, =p,,, then (see also (3.3)). 

- lf ‘I’+ p+ , . . 7_ $““}, (3.10) 

i’ ” dcnotin!: fhc 3,crvice time of the tagged customer in Qj, j = 1, . . . , m - 1. 



0.i Boxn:a / Tandem queues 

It follows from (3.2) that (cf. (2.22) and (2.23)). 

I 

T 
E[*f;;,, IL, = k] =e*LVY, -1’ eA”-WW’) 

0 

x ( Qtno) 1 - ( 1 - z,,, ) - 

Pl > 

k d(f),* - - - *B )(t) ml 7 

It,& 1. k=O,l,. . . , 

hence 

E[L,,,iL,=kl=AP,,,+(k-AP,) -- 
I 

* a, ( t) 
() p, ~(~,**~~*&I...,)( 

=E[L,,,l+(k-E[L,]) Pr{a”‘+7(‘)+. . .+T’“’ 

-1 I I <7 +. . .+7”n-‘,(~(“+7(:!)+. . .+#‘TJ)}* 

with an obvious interpretation. 

t) 

-I) 

163 

(3.11) 

(3.12) 

Example. Consider the case that the service times in all queues are Wang-k 

distributed wit‘h mean p. A straightforward calculation yields 

corr(L L ) = I ‘f’ km ’ a I - ,P, 
k ~ ,z (;)cm 3lk tIsj+ I 

I 0 J 0 c 

(Zm-3)k+i+/ 

1 (wl-l)k-1 ’ 

Some numerical recults are presented in Table 1. Note that for k --, c~i the Erlang- k 
distribution approaches the deterministic distribution, and indeed corr(l,, IL,,,) 

approaches the value 1. For fixed k, and nz + W, it easily follows using Stirling’s 

formula, that corr( f,,, I,,,,) -+ 0 as m ” ‘. 

Table 1 corr(l,, &,,I for the case that all service times are El, distributed with mean p 
-_--- -- _______ ~______._.__..___ ___._-_-.~..__-_~____. -__ 

A. 
‘l, !i 
m “, 1 2 3 5 5 ‘S __ 125 

I! 0.250 0.375 0.449 0.50 I 0.540 0.77h 0.8YY 

5 (1.137 ().I’)4 o.:3i 0.771 0.300 0.567 0.70x 

10 0.092 0.131 0. I ho (1. I x1 (1 ‘(‘5 0.423 O.h4K 

Remark 3.4, The derivation of Theorb:m 3.1 shows that ;I is possible to obtain the 

joint stationary queue length distribution of a tagged cusromt‘r at his arrival epochs 

at two queues of a general rtmvork of Al/ G/m queues; one may even allow 

independent Poisson arrival processes at each queue. The basic steps aie the Sam,;3 

as before: 

(i) determine a product-form expression of the type (3.1 1; 

(ii, use the PASTA property; 

(iii) decompose the queue length x,,,(t) into independent terms corresponding to 

the position of a customer at time 0. 

In fact one may even allow different classes of customers. 
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