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Nucleation of liquid from the vapor is a process of drop formation. When condensation does not 
proceed according to a nucleation process, another explanation for the formation of drops is required. 
In this paper it is shown that an adsorbed monolayer contains enough liquid to account for the number 
of droplets observed in condensation experiments. Furthermore it is shown that there are no thermo- 
dynamic objections against spontaneous drop formation on an adsorbed layer as a result of continued 
adsorption at a critical saturation ratio. An experiment is cited as evidence for drop formation on 
insoluble aerosol particles without nucleation. 

INTRODUCTION 

Usually condensation of liquid on insoluble 
surfaces is treated as a nucleation process but 
this results in great discrepancies between the 
actual value and the theoretical value of  the 
minimal  saturation ratio at which drop for- 
mation is observed (1). Therefore it has been 
recommended that condensation on insoluble 
surfaces be regarded as an adsorption process 
in which the liquid is deposited on the sub- 
strate as a layer. In that case the radius of  
curvature of  the l iquid-vapor interface must  
have a finite value at the initial stage of  con- 
densation and this allows comparatively low 
values of  the critical saturation ratios. This 
concept was shown to be supported by ex- 
perimental observations (1) and it was con- 
cluded that drop formation must  be consid- 
ered apart from adsorption as a liquid-liquid 
transition. This transition is the subject of  the 
present paper. 

CONDENSATION ON PARTICLES 

We can distinguish three classes of  con- 
densation on particles depending on the mo-  
lecular interaction between the material of  the 
particle and the liquid. 
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(1) When the particle is soluble the inter- 
action is considered to be strong. In the case 
where the particle dissolves completely the in- 
terface disappears and it is impossible to de- 
termine a contact angle. Liquid-vapor  equi- 
librium is represented by a K6hler curve (2) 
as shown in Fig. 1 curve b. A condition for 
unlimited drop growth is that the saturation 
ratio S exceeds a critical value Scat which is 
determined by the m a x i m u m  of the K/Shler 
curve for condensation on a soluble particle. 

(2) When the interaction is weak the par- 
t ide  does not dissolve. Adsorption and drop 
formation on the particle are both possible; 
there is a liquid-particle interface, and a con- 
tact angle 0 can be determined. Now the liq- 
uid-vapor equilibrium is represented by curve 
c in Fig. 1, but only the extremes of this curve, 
i.e., the end where S --~ 0 and the other end 
where S --~ l, are completely determined by 
general thermodynamic arguments. The curve 
itself and in particular Sent, the m a x i m u m  
value, depends on the strength of  the inter- 
action between the liquid and the sub- 
strate (1). 

(3) An intermediate class between strong 
and weak interaction is presented by conden- 
sation on an already existing drop of  the same 
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FIG. 1. (a) Kelvin curve; (b) Ktihler curve; (c) condensation on insoluble particle with radius R. 

liquid. Here cohesive interaction in the liquid 
is identical to the adhesion between the newly 
condensed envelope and the original drop. 
There is no interface and 0 = 0. This inter- 
mediate class is nothing else but homogeneous 
condensation, illustrated by the Kelvin curve 
a, in Fig. 1. 

The Kelvin curve represents the equilibrium 
at the interface of  a drop with radius r and 
its own vapor at the saturation ratio S(r) ac- 
cording to 

S(r) = e x p { 2 M a / p R T r }  [1] 

where M, a, and p, respectively, represent the 
molar mass, the specific free surface energy, 
and the mass density of  the liquid, and T 
= temperature, R = universal gas constant. 

For water at 293K, and measuring r in 
nanometers: 

S(r) ~ e 11/'. [21 

With regard to drop formation the curves 
a and c in Fig. 1 are relevant. Curve a deter- 
mines the chemical potential o f  the liquid in 
the drop and curve c is in fact an adsorption 
isotherm on a curved surface, determining the 

chemical potential of  the liquid in the con- 
densed layer around the particle. Drop for- 
mation must  depend on the relation between 
these potentials. 

To explain drop formation at low super- 
saturations we must  assume that the maxi- 
m u m  Scdt of  curve c lies very close to (within 
0.1%) of the Kelvin curve. This important  as- 
sumption will be illustrated in the following 
sections but first we must  discuss the concept 
of  a liquid drop in relation to bulk liquid and 
to adsorbed liquid. 

ADSORPTION ISOTHERMS 

In condensation studies we are concerned 
with adsorption at saturation ratios near unity. 
A typical adsorption isotherm can be imagined 
as a continuous curve, starting at t = 0, S = 0, 
and approaching the asymptote S = 1 for 
t ~ ~ .  Here, the amount  of  material adsorbed 
on a unit surface is expressed by t, the thickness 
of  the adsorbed layer. The idea is that a thick 
plane-parallel layer of  liquid has bulk prop- 
erties and must, by definition be in equilib- 
r ium with vapor at S = 1. Theoretical ex- 
amples of  this typical shape are the BET iso- 
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therm, type II, and the FHH isotherm (3). 
These representations can be misleading be- 
cause they suggest that a bulk liquid layer may 
grow from an adsorbed layer in a continuous 
way, whereas in reality that is generally not 
the case. A macroscopic layer can only exist 
when the contact angle 0 of  the liquid on the 
substrate is zero. In all other cases where 0 
> 0, a bulk layer is an artificial concept. What 
is thought to be a layer is actually a large drop 
deformed by gravity or other external forces. 
Consequently, when 0 > 0 we must discard 
the idea of  a bulk layer with large values of  
t, and we must accept that the adsorption iso- 
therms breaks off at a critical value of t; tc 

~ .  This was already suggested by Derjaguin 
and Zorin in 1957 (4). 

Further condensation results in a situation 
where vapor must coexist with both an ad- 
sorbed layer and droplets, consequently S(r) 
> 1 for t = t~. This is not a postulate but an 
observation: it is an every day experience that 
a thin layer of water breaks up into drops on 
most surfaces. And although the relative hu- 
midity may appear to be below 100% during 
that experience, the actual saturation ratio in 
the immediate vicinity of  the drop must be 
above unity due to evaporation of  water from 
the curved surface. 

Now consider the equilibrium of  a drop 
with radius r on an adsorbed layer of thickness 
t in equilibrium with vapor of saturation ratio 
S. The drop geometry is determined by the 
equilibrium of forces along the solid surface 
as shown in Fig. 2. This equilibrium is ex- 
pressed by Young's law which is abbreviated 
here to 

tlrl v COS 0 --  f la .  [3] 

~lv is the surface tension of  the bulk liquid- 
vapor interface and aa is an effective surface 
tension which tends to spread the drop. Usu- 
ally ~a is expressed as asv - as~, the difference 
between the specific free surface energies of  
respectively the solid-vapor interface and the 
solid-liquid interface. 

Assuming that ~lv and 0 are constants, i.e., 
independent of  S and  r, aa must be a constant. 

~iv 

FtG. 2. Young's law for a drop with contact angle O on 
an adsorbed layer. 

However when t > tc the adsorbed liquid 
achieves bulk properties, the surface tension 
changes from a~ to ajv. We can try to under- 
stand this by assuming tc to be the working 
range of  the van der Waals adhesion forces 
between the substrate and the liquid. When 
t < t~, molecular motions in the layer are 
restricted by these forces but when t > to, the 
molecules at the top of  this layer no longer 
feel these restrictions, they can move as in a 
bulk liquid and consequently they form a liq- 
uid drop. 

Pashley (5) has shown that on hydrophobic 
surfaces the critical thickness of  an adsorbed 
waterlayer can be as large as 10 n m  for values 
of  0 between 20 and 80 °. 

D R O P  F O R M A T I O N  O N  A 

S P H E R I C A L  P A R T I C L E  

Thermodynamic aspects of  drop formation 
from an adsorbed layer are demonstrated 
conveniently on a spherical surface. Afterward 
the situation on a plane substrate can be 
treated as a limiting case of  the spherical sit- 
uation. 

We shall consider a spherical particle with 
radius R covered with an adsorbed layer of 
thickness t, forming a complete sphere with 
radius r = R + t. 

At first sight it would seem that a continuous 
transition from the curved adsorbed layer t to 
a bulk liquid sphere r = R + t must be possible 
because during all stages of  condensation Ar 
= At. But a closer consideration will show that 
a continuous transition according to curve c 
in Fig. 1 is impossible. Starting at r = R the 
equilibrium curve c in Fig. 1 approaches the 
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Kelvin curve a. First strongly because the ad- 
hesive interaction in a thin layer strongly de- 
creases the chemical potential of  the liquid in 
the adsorbed layer. At the particular stage of  
growth where the Kelvin curve is crossed the 
chemical potential of the liquid equals the 
chemical potential in a pure drop of  the same 
radius, i.e., the influence of the adhesive in- 
teraction on the chemical potential in the liq- 
uid is zero. Further growth along curve c in 
Fig. 1 would imply that with t increasing 
steadily, the adhesion begins to work again 
but now with a positive sign: short range 
adhesion changes to long range repulsion. This 
absurd implication is introduced by our at- 
tempt to comply with the requirements for 
equilibrium between the curved adsorbed layer 
and the vapor for every value of r and every 
value of  t; S = S(r) = S(O while Ar = At. An 
acceptable solution requires one extra degree 
of  freedom, and this is granted when t and r 
can vary independently, i.e., when drops ap- 
pear on the curved adsorbed layer like they 
do on a plane adsorbed layer. 

In correspondence with the considerations 
in the preceding section we now ascribe a con- 
stant surface tension o-a to the adsorbed layer 
in the thickness range 0 < t < to. After ex- 
ceeding the critical thickness, the surface ten- 
sion changes to alv and the liquid starts flowing 
to form a drop with a contact angle 0 on the 
adsorbed layer around the particle. At this 
stage we are confronted with three interesting 
aspects of  drop formation which will be dis- 
cussed separately here. 

Flow Rate 

In the initial stage of drop formation, liquid 
flow is restricted to the top monolayer of  the 
envelope. Due to viscosity the flow rate must 
be extremely low. The problem which rises 
here is analogous to that in the classical theory 
of heterogeneous nucleation on an insoluble 
surface (2). One of  the weak spots in that the- 
ory is the calculation of a nucleation rate, 
which is the number of  visible drops appearing 
from the vapor on a unit surface in unit time. 

Application of the molecular kinetic theory 
of  gases results in calculated values of  the nu- 
cleation rate, many orders of  magnitude 
smaller than the observed values. Pound et al. 
(6) saved the theory by suggesting that the 
nucleating drops received their supply not only 
directly from the vapor but also by surface 
diffusion along the substrate, which was 
assumed to be a very effective process. 
Here adsorption sneaks in through the back 
door after it had been explicitly dismissed 
from condensation theory by Bangham and 
Razouk (7). 

In the present study we are not directly con- 
cerned with this problem. We have discarded 
the nucleation concept and so we do not re- 
quire a nucleation rate o r  a related kinetic 
parameter at this moment.  

Thermodynamics of  Drop Formation on a 
Spherical Particle 

Figure 3 shows the initial stage 1 and a later 
stage 2 of  drop formation on a particle with 
radius R. We assume an ambient saturation 
ratio S >~ S(r), where S(r) is the equilibrium 
value of S for a l iquid-vapor interface with a 
surface curvature determined by r. Conse- 
quently the drop cannot evaporate in stage 2, 
nor in the intermediate stages between 1 and 
2 where the radius of  curvature decreases 
steadily from the value (R + to) to r (we tem- 
porarily neglect the effect of  condensation). 
This steady decrease can be illustrated by vi- 
sualizing drop formation in an alternative way 
as an extrusion process during which the par- 
ticle is gradually forced out of the liquid en- 
velope, preserving its adsorbed layer. Initially 
0 = 0, and the final stage is reached when the 
contact angle has achieved its equilibrium 
value. In the most unfavorable case with regard 
to drop formation, i.e., when we neglect the 
effects of  further condensation, the radius of  
curvature of the liquid envelope will decrease 
from (R + to) to r as the particle emerges. Note 
the crucial difference with a nucleation pro- 
cess: during nucleation the drop radius must 
increase from 0 to r. 
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I 

stage I R stage 2 

FIG. 3. Stage 1: an adsorbed layer on a spherical particle 
with radius R. Stage 2: a drop with radius r has formed. 
I = surface covered with adsorbed layer in stage 2. II 
= outer surface of the droplet in stage 2. III = surface 
covered by adsorbed layer in stage 1. 

We must now prove that the postulated ex- 
trusion process actually occurs when S >1 S(r). 
This requires an investigation of  the variation 
in Gibbs free energy of  the system, consisting 
of vapor (v), adsorbed liquid (a), and bulk 
liquid (1) during the simultaneous occurrence 
of condensation and extrusion: 

AG = AG (condensation) 

+ AG (extrusion). [4] 

The first RHS term in Eq. [4] is always neg- 
ative or zero because S >i S(r) and S >- S(tc). 
Therefore AG < 0 when AG (extrusion) < 0. 

The free energy of extrusion can be cal- 
culated from data presented in Fig. 3, applying 
the abbreviated version of  Young's law as 
given by Eq. [3]. Starting from an initial stage 
where the spherical particle with a surface area 
III is completely covered with a layer which 
is ready to produce a droplet because it has 
just grown to a thickness with bulk surface 
tension ~1~, we reach a new stage (see Fig. 3) 
where part of the bulk layer has been skimmed 
to produce a drop. The skimmed surface area 
is given by I and it has a new surface tension 
aa while the liquid-vapor interface of the drop 
has an area II and bulk surface tension ~v. 
The free energy of  extrusion AGe is then given 
by G2 - G~ where G2 and G1 are the surface 
free energies in, respectively, the new stage 
and the initial stage. 

G2 = I ' a a  + I I 'a lv  

Gt = III-  air 

AGe = (I cos 0 + II - III)~1~ [5] 

Note that in Eq. [5] a l  = III .alv and not 
III .  ~a because in the first stage of  drop for- 
mation the adsorbed liquid has already 
achieved the bulk state. 

It can be shown that for tc ~ R, AG~ = 0 
for 0 = 0 and AGe < 0 for 0 > 0. The general 
derivation is quite extensive, but for the special 
case where r ~ R which interests us here in 
particular, 

I ~ 4 r R  2 - 7rr2(1 - cos 2 O) 

II = 27rr2(1 - cos 0) 

III = 4~rR 2 

AGe = (cos 0 - 1). {47rR 2 

+ (cos 2 0 + cos 0 - 2)~rr2} • a~v 

AGe ~- (cos 0 - I) .  4~rR 2" alv [6] 

which is negative for 0 4: 0. 
On a plane surface n drops appear per unit 

surface and each drop receives its supply of  
liquid from an area 1/n; Eq. [6] must then be 
modified to 

AGe ----- (cos 0 -- 1). n -~. ~v [71 

which is negative for every value of n > 0 
when 0 ¢ 0. 

The thickness of the extra layer At, depos- 
ited on top of  tc will determine the spacing of  
the drops. When n drops with a contact angle 
0 appear on 1 m 2 then 

7r/.3 

~At  = n .  ~ . f ( O )  [8] 

here, 0 < a < 1 is the fraction of  the surface 
that was covered by the extra layer and f (O) 
= 2 - 3 c o s 0 + c o s  30. 

Figure 4 shows drop formation of  water on 
a polyethylene ribbon. This experiment was 
performed in a small thermal diffusion cham- 
ber under a normal microscope. The optical 
resolution was not better than a few microm- 
eters but nevertheless it was possible to observe 
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We have repeated these experiments many 
times on various hydrophobic surfaces, liquid 
as well as solid, and water drops never failed 
to appear at a saturation ratio of  about 1.001. 
Therefore we feel justified in assuming that 
S(&), the value of  S at which the adsorbed 
layer becomes unstable on a plane substrate, 
must be below 1.001 for all hydrophobic ma- 
terials. 

FIG. 4. Water droplets, 30 sec old, on a polythene ribbon 
in a thermal diffusion chamber at a supersaturation 
<0.1%. 

smaller drops due to their sudden appearance 
in the field of  vision as black spots (centers of 
optical scattering). Under the circumstances 
of this experiment, 1 < Scat < 1.001, so ac- 
cording to Eq. [2] the drop size must have 
been equivalent to r > 1 ttm. After the drops 
had grown to sizes of about 0.1 mm the ribbon 
was rotated over 90 ° and the contact angles 
were measured by means of a rotating eyepiece 
on the microscope. We found 92 ° < 0 < 96 ° 
corresponding to 2.15 < f(O) < 2.36. Drop 
spacing was of the order ofn  = 108 m -2. Then, 
substituting f(0)  = 2.36 in Eq. [8] results in 

~At > 2.36 X 10 -z° m. [9] 

The thickness r of  a monolayer of  liquid 
can be found from the molar volume and 
Avogadro's number. For water 

r --- 3 X 10 -l° m. [10] 

Consequently we can state that one complete 
monolayer on top of the adsorbed layer is 
sufficient to allow for the number and size of  
the observed drops at the extremely low value 
of  1 < Scat < 1.001. 

At a supersaturation of  1%, S = 1.01 and 
according to Eq. [2] water drops with r = 0.1 
#m can exist. From Eq. [8] we found that 
under those conditions one thousandth of  a 
complete monolayer would contain enough 
water for 100 droplets per mm 2. 

CRITICAL SATURATION RATIO 

The result of  the preceding section is derived 
under the conditions that the ambient satu- 
ration ratio S allows the equilibrium or the 
growth of  an adsorbed layer with thickness t 
on a particle with radius R, S > S(t), as well 
as the existence of  droplets with radius r, S 
> S(r). As we are unacquainted with the value 
of S(t) we are forced to make an assumption 
here which must be verified by experiments 
later. We assume that S(t) for the adsorbed 
layer on a particle with radius R is very close 
to S(R), the equilibrium value of  S for a drop 
with radius R. Initially r < R --~ S(r) > S(R) 
and therefore S >I S(r) remains the only con- 
dition for drop formation. 

To find S(r) for some specific values of  R 
and 0, consider a droplet with volume V on 
a spherical particle with radius R (see Fig. 5). 
Assume again that & ~ R and that the droplet 

e 

FIG. 5. A drop with radius r and contact angle 0 on a 
spherical particle with radius R + &, R -~ R + tc because 
tc~R. 
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is formed by the contraction of  one complete 
monolayer, % which enveloped the particle. 
Then 

V = 47rRET. [1 1] 

From Fig. 5 

7rr 3 
V = ~ (2 - 3 cos q~ + cos 3 ~) 

7rR 3 
- - - ( 2 - 3 c o s t + c o s  3 i )  [121 

3 
and 

¢ = 0 + t [131 

r = R sin if/sin 4~. [14] 

From these equations [11], [12], [13], and [14] 
we have calculated values of the drop radius 
r for r = 0.3 nm and for three values of  R. 
The results are presented in Table I. Note that 
the outer radius r of  the resulting droplet is 
of the same order of magnitude as R of the 
original particle for all values of  0 in this size 
range below R = 100 nm. Consequently we 
expect that the critical saturation ratio for drop 
formation on a small particle depends strongly 
on R and only slightly on 0. Substitution of 
the r values from Table I in Eq. [2] results in 
critical values for the saturation ratio S(r) nec- 
essary for drop formation on the insoluble 
particles. These are presented in Table II to- 
gether with the values Sn, calculated by 
Fletcher (8) for corresponding cases of  het- 
erogeneous nucleation on insoluble particles. 
The S(r) values are maximum values, repre- 
senting the most unfavorable case for drop 
formation with t~ ~ R, where r is only one 

TABLE I 

The Radius in Nanometers of a Single Drop, Grown 
from One Complete Monolayer with ~ = 0.3 nm, En- 
veloping a Spherical Particle with Radius R nm, for Var- 
ious Contact Angles 

R 0 = 0 ° 0 = 40  Q 0 = 90 ° 

100 100 42 24 
28 28 16 10 

9 9.3 8.3 4.9 
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TABLE II 

Critical Saturation Ratio's for Condensation of 
Water on Insoluble Particles with Radius R and Contact 
Angle 0 ~ 

0 = 0  ° 0 = 4 0  ° 0 = 9 0 "  

R & S(r) & S(r) & S(r) 

100 1.01 1.01 1.35 1.03 3.59 1.05 
28 1.04 1.04 1.49 1.07 3.84 1.12 

9 1.13 1.13 1.56 1.13 >4 1.25 

a S,, according to the nucleation theory; S(r), according 
to the present paper. 

monolayer and where the effect of  continuing 
deposition of  more liquid from the vapor dur- 
ing drop formation is neglected. We are now 
able to describe the complete condensation 
process on an insoluble particle with a uniform 
spherical surface as follows (see Fig. 6). 

Adsorption proceeds on the particle with 
radius R according to curve c until S = S(t¢), 
then drops are generated with radius r and 
drop growth proceeds along curve a, if S 
> S(r). 

When S(t¢) is very close to the Kelvin curve 
or when r > R, which may occur for very 
small values of  R, then it is possible that SCn~ 
= S(r) < S(R), a possibility which is totally 
inconsistent with nucleation theory. 

DROP FORMATION ON SURFACE 
IMPERFECTIONS 

When a droplet grows on a hydrophylic 
contamination of a hydrophobic substrate, the 
equilibrium of surface forces and the drop ge- 
ometry are different from that in Fig. 2. First 
because the hydrophylic site need not have a 
circular shape and secondly because the drop 
does not have a constant contact angle. Unlike 
the situation sketched in Fig. 2, the drop's 
boundary is not free to move along the sub- 
strate because it is defined by, and even iden- 
tical to, the boundary of the site. Outside the 
site 0 > 0 and we shall assume that inside the 
site 0 = 0. In this case the development of r 
during drop growth is similar to the devel- 
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FIG. 6. Condensation and drop formation on an insoluble particle with radius R. The process proceeds 
along the drawn parts of  curves c and a. Note that here, Serit < S(R) because the m a x i m u m  of curve c lies 
close enough near curve a (see also Fig. 1). 

opment of  r during the extrusion process. Ini- 
tially the curvature of the l iquid-vapor inter- 
face is identical to the curvature of  the sub- 
strate as determined by R. 

For a plane surface r0 = R = oo. As the 
droplet starts to grow 0 increases but the drop 
radius decreases. On a plane substrate this 
continues until the droplet forms a complete 
hemisphere; then r is equal to r the radius of  
the hydrophylic site which is now assumed to 
be circular. From then on, further conden- 
sation will cause r to increase again. This im- 
plies that the equilibrium saturation ratio for 
the droplet with r = r must be the critical 
saturation ratio for drop formation on a hy- 
drophylic site with 0 = 0 and with a diameter 
of  2r and, according to Eq. [2] when we are 
considering the condensation of  water: 

So,it = e ~'l/" [15] 
with r in nm. 

The assumption of  a hydrophylic site with 
0 = 0 could in practice correspond to a mi- 
cropore in the substrate, filled with capillary 
water on which further condensation proceeds. 

But in other cases the interaction between wa- 
ter and the site surface can be much stronger, 
e.g., when the site surface consists of  molecular 
groups of a strong polar nature (10). In those 
cases Sent may have a lower value than pre- 
dicted by Eq. [15]. 

Simultaneously with drop formation on the 
site, the adsorbed layer develops around it and 
obscures the sharp boundary of  the site where 
0 changes so suddenly. There may be situations 
where the drop's base is free to expand over 
the obscured boundary before the hemispher- 
ical shape has been attained. This would be 
another cause for Scat to have a lower value 
than predicted by Eq. [15]. 

DROP F O R M A T I O N  ON REAL PARTICLES 

The surface of  a real particle is usually not 
spherical, not smooth and not homogeneous 
in a chemical sense. Condensation of  water 
on surface imperfections, e.g., capillary con- 
densation or condensation on surface con- 
laminations of a polar nature, has been studied 
by various authors. A review on this subject 
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is presented by Pruppacher and Klett  (2). 
There is general agreement that drop for- 
mation on small surface imperfections must  
be described as a nucleation process, the initial 
droplet being a cluster o f  perhaps only some 
10 or 100 molecules. In those cases a relatively 
high saturation ratio is required for the for- 
mation of a macroscopic drop. On a clean 
surface the imperfections are expected to be 
small in number  and small in size, conse- 
quently the critical saturation ratio is expected 
to be high. 

The present study does not intend to contest 
the theory of heterogeneous nucleation but  it 
attempts to explain why the actual critical sat- 
uration ratios for drop formation on hydro- 
phobic surfaces are in general much  lower than 
the values predicted by the nucleation theory. 
Suppose that on a real particle hydrophylic 
contaminations cover one percent of  the sur- 
face. When these contaminations are large 
they may well be preferential sites of  mac- 
roscopic drop formation before an adsorbed 
layer can grow to a critical thickness. But when 
the contaminations are small, heterogeneous 
nucleation can hardly interfere with drop for- 
mation from an adsorbed layer. In both cases 
the critical saturation ratio is relatively low. 

On very small particles the size of  the con- 
tamination can be of the same order of  mag- 
nitude as the particle diameter. In that case 
drop formation may be dominated by hydro- 
phylic contaminations on the particle. But 
even then the depression of  the critical satu- 
ration ratio due to these contaminations is 
limited because the contamination is always 
smaller than the particle. 

In an experiment by Liu et al. (9) conden- 
sation of  water on a DOP aerosol has been 

studied. DOP (dioctyl phtalate) is a hydro- 
phobic liquid on which 0 > 40 ° for water. It  
is a stable compound with a low vapor pressure 
and it is available in a high grade of  purity. 
The surface of  the DOP droplets in this ex- 
periment can be assumed to resemble an ideal 
surface very closely; r ~ R and, with regard 
to Eq. [15], S(r) > S(R) .  For condensation of 
water on DOP particles it was found that SAt 
= 1.035 for R = 28 nm and Sc~t = 1.12 for 
R = 9 rim. These values coincide exactly with 
the theoretical values of  S(r) in Table II for 0 
= 0, implying that water condenses on these 
oil drops just as readily as if  they were water 
drops. Apparently the large contact angle for 
water on these oil drops is no impediment  for 
condensation, contrary to the predictions of  
the classical theory of heterogeneous nucle- 
ation. 
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