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Chapter 1 

Introduction 

Seismological research is concerned with wave propagation in the Earth. An 
important application of this field is the estimation of ground acceleration, and the 
related assessment of earthquake hazards. Furthermore, seismologists determine source 
mechanisms of earthquakes, which are useful indicators of the local stress field. Most 
efforts in seismology (at least in terms of capital investments) are aimed at constructing 
images of the Earth's interior using elastic waves. The research presented in this thesis 
falls in this category, and describes the use of surface waves for probing the Earth's 
interior. 

Even though both exploration seismologists and global seismologists are con­
cerned with probing the Earth's interior with elastic waves, there exists a long standing 
dichotomy between these groups. In exploration seismics, large scale controlled seismic 
experiments are performed, leading to extremely large redundant data sets. These data 
sets are in practice processed with extremely crude methods. In general, the acoustic 
wave equation is used to describe elastic wave propagation, and virtually all migration 
schemes consist of linear inversions (often under the guise of names like "the exploding 
reflector model"). Nevertheless, these methods are very powerful, and they have pro­
vided-access to the majority of the oil reservoirs that are currently in production. 

In global seismology, data are sparse partly because one depends on natural 
earthquakes and nuclear explosions for the generation of elastic waves, and also 
because the density of seismic stations is still low. (The oceans are virtually devoid of 
seismic instruments.) This has forced researchers in global seismology to squeeze the 
last drop of information out of their valuable data. In general, elastic effects are taken 
into account and where necessary nonlinear theory is applied. Because of the scarcity of 
global seismological data, research is in practice aimed at obtaining a detailed insight in 
restricted information concerning the Earth (e.g. radially symmetric models, the source 
mechanism of a particular earthquake, etc.) 

This situation is changing, however, because the density of digital seismic sta­
tions is increasing rapidly, see the PASSCAL and ORFEUS (Nolet et aI., 1985) propo­
sals. With large amounts of high quality digital data, it will be possible to perform large 
scale inversions for the Earth's structure using complete waveforms. Paradoxically, 
handling these large data sets of complete waveforms on present day computers, calls 
for more simple minded inversion schemes. In practice, this amounts to making linear 
approximations tl? forward and inverse problems that are in reality nonlinear. 

In this thesis, linear scattering theory is formulated for surface wave propagation 
and inversion. This linear theory allows for an efficient waveform inversion of large 
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sets of surface wave data, using a method reminiscent to Kirchoff migration as used in 
exploration seismics. In this sense, the work presented here forms an attempt to close 
the gap between global seismology and exploration seismics. 

Up to this point, geometrical optics formed the basis of all surface wave inversion 
schemes. In the geophysical literature this is formulated as the great circle theorem 
(Backus, 1964; Jordan, 1978; Dahlen, 1979), or more accurately, the minor arc theorem 
(Romanowicz, 1987). Using the minor arc theorem one can either perform dispersion 
measurements (Dziewonski and Hales, 1972; Nolet, 1977; Kovack, 1978), linear 
wavefonn fitting surface wave data (Lerner-Lam and Jordan, 1983; Woodhouse and 
Dziewonski, 1984; Tanimoto, 1987), or nonlinear waveform inversion of fundamental 
mode (Nolet et al., 1986a) or higher mode (Nolet, 1987) surface wave data. 

However, the fact that all these techniques use geometrical optics (the minor arc 
theorem) limits the application to Earth models that are smooth on a scale of a horizon­
tal wavelength. In practice, this condition is often violated, especially in complex con­
tinental areas. A fundamental mode Rayleigh wave of 60 s., has a horizontal 
wavelength of approximately 240 km., which is of the same order as some of the lateral 
variations within the continents. In that case, ray theory breaks down, so that scattering 
and multipathing effects may be operative. One way to attack this problem is to per­
form finite difference of finite element computations. However, even with present day 
computers these computations are expensive when applied to three dimensional prob­
lems. Furthennore, brute force computational methods may tell us which phenomena 
are occurring, but not why they occur. 

There clearly was a need for a simple theory for scattering of surface waves in a 
layered, three dimensional medium with embedded heterogeneities. In chapter 2 such a 
formalism is presented. (The introduction of chapter 2 contains a historical survey of 
applications of linear scattering theory in seismology.) The problem with deriving such 
a scattering theory in the past was that no simple expression for the surface wave 
Green's function in a layered medium existed. It is shown in chapter 2 that the surface 
wave Green's function in a flat, layered 3D medium can conveniently be expressed as a 
dyad of polarization vectors. This facilitates a simple physical interpretation of this 
Green's function, and allows for a straightforward application of the Born approxima­
tion. This leads to a simple expression for the scattered surface waves, where the 
scattering and mode conversion coefficients are expressed as depth integrals containing 
the inhomogeneity and the modes under consideration. The resulting expression is sim­
ple enough to allow extensive mathematical manipulation. For example, it is shown that 
surface waves reflected by a continental margin satisfy Snell's law. Furthermore, a 
holographic method is proposed for the reconstruction of lateral heterogeneity using 
scattered surface waves. 

The derivation of chapter 2 is based on several limiting assumptions. It is 
assumed that the heterogeneity is weak, that the inhomogeneity is at least several 
wavelengths away from the source and the receiver (the far field limit), that interactions 
with body waves can be ignored, and that the heterogeneity is buried. This last restric­
tion is treated in chapter 3, where the effects of topography on surface waves is investi­
gated with the same scattering formalism as in chapter 2. 

There exists a close relation between the scattering coefficients for forward 
scattering of unconverted waves, and the phase velocity perturbations of these waves. 
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This connection, which turns out to be crucial for large scale inversions (chapter 8 and 
9), leads to the same expressions for the phase velocity perturbations as obtained from 
variational principles, see chapter 3 for details. 

Formulating a holographic inversion method for scattered surface waves is one 
thing, applying this to real data is unfortunately a different issue. In order to test the 
feasibility of the reconstruction of lateral heterogeneity from scattered surface waves, a 
field experiment has been performed in 1985 in Zeeland (Netherlands). In this experi­
ment, surface wave data were generated with a simple weight drop source on a tidal flat 
near a dam (The "Grevelingendam"). The surface waves reflected from this dam have 
been used successfully to reconstruct the location of this dam. The results of this experi­
ment are reported in chapter 4. 

The name "surface wave scattering theory" is deceptive, because this name seems 
to imply that the Born theory presented in the chapters 2 and 3 only describes truly scat­
tered waves. However, the theory presented in this thesis describes the full first order 
distortion effects of the wavefield due to the lateral heterogeneity. If the lateral inhomo­
geneity is abrupt, this implies that scattering effects are operative. Alternatively, if the 
lateral heterogeneity is smooth (on a scale of a wavelength) and weak, no scattering 
occurs and the heterogeneity manifests itself through ray geometrical effects such as 
focusing and phase shifting. The linear theory of the chapters 2 and 3 takes these ray 
geometrical effects implicitly into account. This is made explicit in chapter 5, where 
first order ray geometrical solutions are derived from the scattering integral presented in 
chapter 2. This has implications for the way we deal with surface wave data, because it 
means that Born theory can also be used to invert the direct surface wave which has 
been exposed to ray geometrical effects. 

In the chapters 2-5, it is assumed that the Earth is flat, which is clearly not the 
case. For surface waves that propagate ovcr distances of a few thousand kilometers (or 
more) the sphericity of the Earth might be important. Starting from an expression for 
the Green's function of the complete Earth in terms of normal modes, a derivation is 
presented in chapter 6 of the surface wave Green's function on a layered sphere. This 
Green's function has the same dyadic decomposition as the surface wave Green's func­
tion in a flat geometry, only the geometrical spreading is affected. With this Green's 
function for a layered sphere, the derivation of the scattered surface waves proceeds 
along the same lines as in chapter 2. 

Alternatively, one can give a similar derivation, but with the coupling terms 
between the Earth's normal modes (Woodhouse, 1980; Woodhouse, 1983) as a starting 
point. By applying the operator formalism of Romanowicz and Roult (1986) to these 
expressions, the interactions between the Earth's normal modes are expressed in 
chapter 7 in the same type of scattering intcgral as in the chapters 2, 3 and 6. As an 
additional advantage, the effects of gravitational pcrturbations, and of interface dis­
placements are obtained. Furthermore, it is shown in chaptcr 7 that the far field restric­
tion does affect the propagator tcrms, but not the mode coupling and scattering 
coefficients. This solves at least part of thc problem conccrning the far field limitation. 

With the formulation of linear theory for the effects of lateral heterogeneity on 
surface waves, large scale waveform inversions of surface wave data can be formulated 
as a huge system of linear equations. Thcse cquations can only be solved in the least 
square sense, and it is shown in chaptcr 8 how this solution can be constructed 
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iteratively. Several numerical examples are presented of this inversion method. Finally, 
in chapter 9, application of this scheme is shown for surface wave data recorded with 
the NARS array (Dost et al., 1984; Nolet et al., 1986b). Both the surface wave coda 
and the direct surface wave are analyzed with this inversion method. In this way, sys­
tematic waveform inversions of large sets of surface wave data are feasible. With the 
advent of dense networks of digital seismic instruments, combined with a new genera­
tion of computers, this technique can provide valuable new insights in the Earth's inte­
rior. 
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Basic principles of surface wave scattering 
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3-D linearized scattering ofsurface waves and a 

formalism for surface wave holography 

Roel Snieder Department of Theoretical Geophysics, University ofUtrecht, 

Budapestlaan 4, PO Box 80.021,3508 TA Utrecht, The Netherlands 
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Summary. Scattering of surface waves by lateral heterogeneities is analysed in 
the Born approximation. It is assumed that the background medium is either 
laterally homogeneous, or smoothly varying in the horizontal direction. A 
dyadic representation of the Green's function simplifies the theory 
tremendously. Several examples of the theory are presented. The scattering 
and mode conversion coefficients are shown for scattering of surface waves 
by the root of an Alpine-like crustal structure. Furthermore a 'great circle 
theorem' in a plane geometry is derived. A new proof of Snell's law is given 
for surface wave scattering by a quarter-space. It is shown how a stationary 
phase approximation can be used to simplify the Fourier synthesis of the 
scattered wave in the time domain. Finally a procedure is suggested to do 
'surface wave holography'. 

Key words: Born, inversion, scattering, seismology, surface waves 

1 Introduction 

The propagation of surface waves in a laterally homogeneous medium is nowadays well 
understood (Aki & Richards 1980). Unfortunately there is no exact theory yet for the 
propagation of surface waves in a three-dimensional laterally varying medium. It is desirable 
to have such a theory because there are several observations indicating that short-period 
« 20 s) surface waves are distorted severely by the lateral heterogeneities in the Earth. 
Levshin & Berteussen (1979) and Bungum & Capon (1974) give evidence of the scattering of 
short-period surface waves by lateral inhomogeneities. 

The classical approach used in the analysis of surface waves in a laterally inhomogeneous 
earth is to assume that the surface waves are only influenced by the heterogeneities on the 
great circle joining the source and the receiver. A theoretical justification for this assumption 
is given for weak and smooth heterogeneities by Backus (I 964). Jordan (1978) or Dahlen 
(1979). However, the observations of Levshin & Berteussen (1979) and Bungum & Capon 
(1974) show that in some cases an appreciable fraction of the surface wave energy 
propagates over non-great circle paths. 

The effect of lateral heterogeneities on surface wave propagation in two dimensions has 
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received considerable interest. Knopoff & Hudson (1964) investigated the transmission of 
Love waves through a continental margin using a representation theorem. They modelled the 
continental margin by a vertical interface between two media. Alsop (I966) and 
Malichewsky (1979) studied the same model by minimizing the stress mismatch or the 
energy flux mismatch across the continental margin. However, none of these models could 
handle a non-zero angle of incidence, so that conversions from Love waves to Rayleigh waves 
could not be described. Hudson (1977a) treated the effect of a heterogeneous snip by using 
a variational method. All these studies involved some form of approximation. Finally, 
Kennett (1984a) devised an exact theory for the propagation of surface waves in a 2-D 
laterally heterogeneous medium. 

The 3-D surface wave problem has received considerably less attention. Gregersen & 
Alsop (1974) and Alsop, Goodman & Gregersen (1974) considered the reflection and the 
transmission of surface waves in three dimensions by a vertical discontinuity. They did this 
by decomposing the surface wave in homogeneous and inhomogeneous body waves and 
using expressions for the reflection and transmission by an infinite discontinuity. However, 
their solutions did not satisfy the boundary conditions at the surface, so that it is not clear 
how useful their results are. Recently Its & Yanovskaya (1985) studied the 3-D reflection 
and transmission of surface waves at a vertical or weakly tilted discontinuity in a more 
rigorous way. 

For 3-D media with a smooth lateral heterogeneity, ray tracing (Babich, Chikhachev & 
Yamovskaya 1976) or Gaussian beams (Yomogida & Aki 1985) are suitable techniques to 
describe the propagation of surface waves. However, it is impossible to treat sharp horizontal 
heterogeneities with these methods. Therefore, the theory for surface wave propagation in 
3-D laterally heterogeneous media was restricted to lateral smoothly varying media, and to 
media consisting of two welded quarter-spaces. This was not very satisfactory since one 
would like to describe the scattering effects of an arbitrary distribution of scatterers in three 
dimensions. 

The Born approXimation is very useful in incorporating these effects. This approximation 
was first applied to the 2-D surface wave problem by Kennett (1972) who gave a derivation 
in wavenumber space. Subsequent papers used a similar theory to describe the scattering of 
body waves. see Hudson (1977b), Malin (1980), Malin & Phinney (1985) or Wu & Aki 
(1985). Herrera (1964) and Herrera & Mal (1965) used the Born approximation to describe 
3-D surface wave scattering, and gave an expression for the scattered surface wave using 
representation theorems. Their results did not receive much attention because no convenient 
form of the Green's function was available. Therefore the Born approximation has not been 
used yet to describe surface wave scattering by organized 3-D heterogeneities. The aim of 
this paper is to provide such a scattering theory. The theory, as it is presented here, applies 
to scattering in the far field in a plane geometry. 

In order to do this, a dyadic representation of the far field Green's function in a laterally 
homogeneous medium is presented in Section 2. The representation is similar to the dyadic 
form of the Green's function derived by Ben-Menahem & Singh (1968) for a homogeneous 
sphere, but is much easier to interpret. The Green's function for an elastic half-space consists 
of a surface wave part and a body wave part. In this study the body wave contribution to the 
Green's function has been neglected throughout. The reason for this is that the theory relies 
heavily on a dyadic representation of the Green's function. Unfortunately, there is no dyadiC 
representation of the body wave Green's function in a layered medium available. This 
problem can be overcome in two ways. One alternative is to use a locked mode approxi­
mation (Harvey 1981). Another option is to consider an elastic sphere instead of an elastic 
half-space. In that case both surface waves and body waves can be expressed in normal 
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modes. The generalization of the theory presented in this paper to a laterally inhomogeneous 
sphere is presented in Snieder & Nolet (in preparation). 

In Sections .3 and 4 the dyadic representation of the surface wave Green's function is used 
to derive the Born approximation for surface waves in the far field. The theory describes 
mode conversion in a natural way because the Green's function is a superposition of all 
surface wave modes. In Section 5 this theory is generalized for the important application of 
a background medium with smooth la teral variations. 

The second half of the paper deals with some examples and illustrations of the theory. 
These examples by no means exhaust the possibilities of the theory. In Section 6 the inter­
action terms and the radiation patterns are presented for surface wave scattering by a point 
scatterer which has a vertical structure similar to the root of the Alps. 

The advantage of the formulation using a dyadic representation of the Green's function is 
that the final expression for the scattered wave is quite simple. This enables one to use the 
formalism for the scattering of surface waves in realistic situations. Section 7 features two 
examples of this. Propagation. through a band-like structure is discussed. This leads to a 
'great circle theorem' in a tlat geometry. Furthermore the retlection by a quarter-space is 
treated as a simple example of scattering by a continental margin. 

All the derivations are given in the frequency domain, since surface waves are dispersive. 
In Section 8 it is shown how a stationary phase approximation leads to an efficient 
formulation in the time domain, which is useful for calculating synthetic seismograms. 

One would like to use scattered surface waves to invert for the location and the strHcture 
of the scatterers. This can in principle be done with an inversion scheme similar to the 
algorithm of Tarantola (1984a, b). It is shown in Section 9 how 'back propagation' of 
scattered surface waves can be used to invert for the scatterers. 

In this paper the summation convention is used unless stated otherwise. Latin indices are 
used to denote vector components, \vhile Greek indices are used for the mode numbers. The 
dot product which is used is defined by: 

(1) 

where * denotes complex conjugation. Double contractions are defmed by: 

[A: B] =Aij B j ;. (2) 

Finally, in order to see the limitations of the theory the assumptions which are used 
throughout the paper are listed. It is assu med that: 

there is a plane geometry; 
the interaction with body waves can be neglected; 
the far field approximation can be used; 
the heterogeneity is weak; 
the scattercrs are buried. 

2 The dyadic representation of the far field Green's fUllction of a laterally homogeneous 

medium 

The surface wave Green's function in the spectral domain for the excitation of a laterally 
homogeneous elastic medium with density p and elastic parameters A and J1. by a point force 
is given by Aki & Richards (1980, chapter 7). The Green's function contains a matrix, but 
this matrix can be rewritten as a dyad. The expressions of Aki & Richards include an 
azimuth angle <{), which depends on the positions of the source and the receiver. This 

20 
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azimuth dependence can be interpreted easily by rewriting the Green's function in a dyadic 
form. Both for Love waves and for Rayleigh waves the far field Green's function can be 
written as: 

_ v v' exp [i(kvX + IT/4)] 
Gij{r,rs)-Pi(Z,'{!)Pj (zs''{!) V(IT/2)k X (3) 

v 
For Love waves pV is given by: 

-If(z) sin '{! J 
pV(z,'{!)= 

[ 
lf~)cos'{! (4a) 

while for Rayleigh waves: 

rf(Z) cos '{!] 

pV(z,'{!)= rf(z)sin'{! . (4b) 
[ 

irHz) 

pV is called the polarization vector. The index v refers to the mode number; it should be 
remembered that modal summation is implied in (3). The functions If(z), rf(z) and rHz) 
are the surface wave eigenfunctions in the notation of Aki & Richards. It is assumed that the 
eigenfunctions are normalized in such a way that: 

8c v UvIf = I (no summation). (5) 

Here c v and Uv are the phase velocity and the group velocity of mode v. The integral If is 
for Love waves defined by: 

If = 1-fp(z) l~ (z) dz (6a) 

and for Rayleigh waves: 

v v:l v:l[JII ="2 p(z)(r[ (z)+r2 (z))dz. (6b) 

The polarization vectors can be interpreted by expressing them in the following vector 
form: 

pV(z, '{!) = IHz)(P for Love waves (7) 

pV(z, '{!) =rf(z) .& + irf(z) z for Rayleigh waves. (8) 

(See Fig. I for the definition of .& and (p.) It can now be understood why the p vectors are 
called the polarization vectors, since they describe the direction in which the displacement 
vector oscillates. In the far field, this oscillation is purely transverse for Love waves, while 
Rayleigh waves oscillate both in the radial and vertical direction. 

From this point pn, Love and Rayleigh waves are treated in a unified way, and the modal 
summation involves both Love and Rayleigh waves. Using the representation (3), the 
displacement excited by a point force F oscillating with angular frequency w can be written 
as: 

exp [i(kv X + IT/4)] 
UO (r) = pV(z, '{!) V(IT/2)k X [pV(zs, '{!) • F] . (9) 

v 
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1 

r s 

Figure 1. Geometry for the direct wave in a laterally homogeneous medium. 

It can be seen explicitly that the displacement oscillations are in the p v direction. The 
excitation is described by the dot product in the right side of (9). This means that only the 
projection of the force on the polarization vector contributes to the excitation. 

In subsequent sections the gradient of the Green's function is needed. The gradient is 
derived here in the far field limit, since the Green's function itself is already in the far field 
limit. The azimuthal derivative in the gradient can be neglected, since it is OO/kX) com­
pared to the radial derivative. The gradient with respect to the receiver position (index 1), or 
the source position (index 2) is in the far field limit: 

- _. A V v· exp [i(kvX + 1T/4)J
VjGij(rj,rz)-lkvI:iPi(Zj,'P)Pj (zz,'P) (lOa) 

vl.n /2 )kv X 

- _ • A V v· exp [i(kvX + 1T/4)J
VZ Gij(rj, rz) - -lkvl:iPi (Zj, 'P)Pj (zz, 'P) -------::======~ (lab) 

.j(1T/2)kv X 

v v* exp [i(kv X + 1T/4)Jaz GiNj, rz) = (az Pi (ZI, 'P))Pj (zz, 'P) (lac) 
" .j(1T/2)kv X 

_ v v'· exp [i(kvX + 1T/4)J 
az,Gi;(rj,r2)-Pi(Zj,'P)(az,p/ (Z2,'P)) . (1 ad) 

yf(ir/2)kv X 

In these expressions Vis the horizontal gradient operator. 
With these expressions the excitation by a moment tensor can be determined. The 

response to a single couple follows by superposing the response to point force Fat rs + 0 to 
the response to a point force - F at rs - O. The response to this single couple follows by 
Taylor expanding the superposition in 0, and using (10a-d) for the gradient. Interchanging 
the direction of F and 0 and adding the single couple displacement fields leads to the 
following response to the excitation by a moment tensor: 

(11) 

where !If is defined as: 

M =2(OF + FO). (12) 

Note that the factor -i coming from the horizontal gradient in the source coordinate is 
absorbed in the definition of the dot product. 

All the following sections deal with the excitation by a point force, but the results can be 



13 Basic principles 

generalized everywhere in case of excitation by a double couple by making the following 
substitution: 

(13) 

3 The Born approximation 

The effect of lateral heterogeneities is treated here in a linearized way by using the Born 
approximation for the scattered wave. Suppose that the structural parameters in the medium 
can be written in the following way: 

/J(X,Y,Z) =/Jo(Z) + eL~/J(x,y,z) (l4a) 

A(X,Y,Z)=Ao(Z)+ eL1A(X,Y,Z) (l4b) 

p(X, Y, z) =Po(Z) + e L1p(x,y, z). (l4c) 

The parameters 110, Ao and Po define a laterally homogeneous background medium, 
which has a Green's function as presented in the last section. The parameter e has been 
added to indicate that the inhomogeneity is weak, and serves only for bookkeeping 
purposes. 

The equations of motion of the laterally heterogeneous system can be written as: 

LijUj = F i (15) 

with 

L ij =- {jjjPW 2 
_ ajAaj - aj/Jai - 0ijak/Jak · (16) 

This opera tor can be written in the form L =L 0 + eL I by inserting (I 4a-c) in (15). The 
2displacement field can be expressed as a perturbation series: u =U

O + eu! + O(e ). If these 
expressions are inserted in (15), then the terms of zeroth order and first order in e lead to 
the relations: 

(17) 

(18) 

If we now assume that the heterogeneity does not affect the boundary conditions (which 
may be a very debatable assumption in realistic situations), then both (17) and (18) can be 
solved with the Green's function of the background medium. This leads to the following 
expression for the direct wave: 

(19) 

While the scattered wave is given by: 

u! =-GL!uO =-GL!GF. (20) 

The operator products in (19) and (20) imply both summation over matrix elements as well 
as integration over space variables of the Green's function. For example, (19) is an 
abbreviated notation for: 

(21 ) 

For the moment we shall only concern ourselves with excitation by a point force in f s and 
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scattering bv a point heterogeneity in ro: 

~Jl(r) =~Jl{j(r ~ ro) (22a) 

~A(r) = ~A{j(r - ro) (22b) 

~p(r) =~p{j(r - ro) (22c) 

F(r) =F {j(r - rs). (nd) 

Since the theory in this approximation is linear in the heterogeneity, as well as in the 
excitation, more general situations can be handled by integration over both the hetero­
geneity and the excitation. 

The unperturbed direct wave has been discussed in Section 2. The scattered wave is 
expHd tly: 

uf (r) = - d 3 r' Gi;(r, r')L}k (r')Gk/(r',rs)F/(rs). (23)J
where the heterogeneity operator is: 

Lf;(r') = _~pW2 {jij {j (r' - ro) (i) 

-~A a; {j(r'-ro)aj (ii) 

-~Jla; {j(r' -ro)a; (iii) 

-~{ji; a~ {j(r' - ro) a~. (iv) (24) 

The differentiations are all with respect to the r' coordinates. Note that the differentiations 
act both on the delta functions as well as on the Green's function at the right of L). The 
differentiation of the delta functions can be removed with a partial integration. For instance, 
the contribution of term (ii) to (23) can be rewritten: 

- fd3r'Gij(r,r')a; l~Al5(r' -ro)akGk/(r',rs)]F/ 

The partial integration leads to a surface integral, which is zero for buried scatterers. If 
partial integration is also applied to the terms (iii) and (iv) the scattered wave takes the 
following form: 

uf (r) = l~pw2GiI(r, ro)Gj/(ro, rs) (i) 

- ~A(a7 Gij (r, ro)) ca~Gk/(rO' rs)) (ii) 

- ~Jl(a~Gij(r, ro)) (a7 Gk/(ro, rs)) (iii) 

- ~Jl(a~Gi;(r, ro)) (a~Gj/(ro, rs))] F/(rs)' (iV) (25) 

This expression is not easy to interpret because of all the gradient terms of the Green's 
function. However, the expression may be simplified considerably by using the dyadic form 
for the Green's function (3) and its gradient (lOa-d). After some algebra it follows that in 
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Figure 2. Geometry for the scattered wave in a laterally homogeneous background medium. 

the nota tion of Fig. 2: 

where Vav is given by: 

VaV(ro) = Apw2 [pa(Zo,1P2) " pV(zo,lPd] (i) 

-AX[(-ika[pa(zo,1P2)"b.2] + [azopa(Zo,1P2) "£])(ikv[b. 1 'pV(zo,lPd] 

+ [£. a zo pV(zo, 1,01)])] (ii) 

-All [kakv[pa(zo, 1,02)" b.1] [b.2 "pV(Zo, 'Pd]
 

-ika [pa(ZO,'P2)' z] [&2 • a pV(ZO ,'PI)]
zo 

+ ikvlazo pa(ZO' 1,02) " b.1] [£" pV(ZO' 1,01)] 

+ [azopa(ZO,'P2)" £] [£" azopV(zo,IPI)]] (iii) 

-All [k ak v[b.2 "b. I ] [pa(Zo,1P2)" pV(zo,lPd] 

+ [az pa(Zo,1P2)·aZ pV(zo, 1,01)]]. (iv) (27)o 0 

The expression for the scattered wave (26) is now easy to interpret. If one reads (26) from 
right to left one follows the 'life history' of the scattered wave. The point force excites mode 
v. The surface wave then travels to the point of scattering ro, the phase shift and the 

geometrical spreading are determined by the propagation term exp i(kvX I + rr/4)/J(rr/2)kvX--;. 
Then the wave is scattered by the interaction matrix V av . After the scattering, which may 
include mode conversion since the modes a and v can be different, the wave propagates to 
the receiver. The oscillation at the receiver is finally given by the polarization vector 
pa(z, 1,02). Note that (26) implies a summation over all the surface wave modes, and that all 
the modes in principle interact with each other. 

4 Analysis of the interaction matrix 

The interaction matrix as given in (27) is very general, but is hard to interpret. However, 
(27) can be simplified by inserting the expressions (7) and (8) for the polarization vectors of 
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Love and Rayleigh waves. It turns out that even though the polarization vectors depend on 
the azimuthal angles l{J1 and l{J2 separately, the interaction matrix depends only on the 
scattering angle: 

l{J =l{J2 -l{JI. (28) 

As an example this is shown for the scattering of Love waves by the density variation: 

V~~ (i) =Apw2 /f(zo)/f(zo)[~2 • ~d =ApW 2/?(zo)/f(zo) cos l{J. 

Similar expressions hold for all the interaction terms. 
It can be seen that the Aheterogeneity does not affect the Love waves. The reason for 

this is that the incoming wave (v) enters the Ascattering term in the following way: 

ikl'[.&1 • pl'(zo,l{Jd] + azopK(zo,l{Jd. 

For a Love wave the polarization vector has no vertical component, and is perpendicular to 
the direction of propagation ('&1). Therefore both terms vanish if the incoming wave is a 
Love wave. If the outgoing wave (u) is a Love wave the same holds, so that Avariations do 
not affect Love waves at all. 

If the polarization vectors for Love and Rayleigh waves ((7) and (8» are inserted in (27) 
then the following expression for the interaction matrix results: 

V~~ = [/~ /~ Apw 2 
- (aI~)(a/~) AJl] cos l{J - kakl'/~ /~ AJl cos 2l{J (29a) 

V~~ = [r~ /~ APW 2 + (kar~ - ar~) a/~ AJl] sin l{J - kakl'r~ /~ AJl sin 2l{J (29b) 

(29c) 

V~~ = [r~r~ APW 2 
- (kar~ + ar~) (kl'r~ + ar~) AA - kakl'r~r~ AJl - 2(ar~) (ar~) AJl] 

+ [rfrf ApW 2 
- (kar~ - arf)(kl'rf - arn AJl] cos l{J - kakl'rf rf AJl cos 2l{J. 

(29d) 

For convenience the Zo dependence of the eigenfunctions is not shown explicitly. Vertical 
derivatives are denoted in the following abbreviated form: 

af
af= - (zo). 

azo 

Observe that the interaction terms depend in a very simple way on the scattering angle. 
There is no conversion from Love wave to Rayleigh wave or vice versa in the forward 
direction (l{J =0), or in the backward direction (l{J =1T). The interaction terms VRL and VLR 

differ only in sign, but have the same magnitude. 

5 Linearized scattering with a smooth background medium 

The theory of the previous sections can be generalized for a smoothly varying background 
medium with embedded scatterers. 'Smoothly varying' means in this context that the 
horizontal variations of the background medium are small on a scale of the largest horizontal 
wavelength under consideration. (There is of course no restriction on the vertical variations 
of the background medium.) 
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Bretherton (1968) showed that in this limit the surface wave modes decouple, and Babich 
et al. (1976) derived a ray tracing formalism for surface waves, as well as a condition for the 
amplitude variations along a ray. Hudson (1981) derived a parabolic approximation for 
surface waves, which Yomogida (1985) extended to a Gaussian beam formalism for surface 
waves. We shall proceed here with a derivation of the Green's function for Love waves in a 
smoothly varying background medium. (The derivation is completely analogous in the case of 
Rayleigh waves.) Since the surface wave modes are decoupled we will restrict ourselves to 
one mode, and modal summation is temporarily suppressed. 

According to Yomogida the Love wave displacement on a ray (i.e. n '= 0 in his notation) is 
in the far field: 

.p(s) II (s, z) 
UO 

'= ..;q[S . exp [iO(s)] ¢L' (30)
q(s)U(s)II (s) 

In this expression II is defined by the condition II (s, 0) '= 1, II (s, z) is a 'local mode' since 
the mode varies along the ray. The phase of the Love wave is given by: 

O(s)= JS K(s')ds' (31) 

° 
where k(s) is the local wavenumber, and the integral is along the ray. The geometrical 
spreading factor q(s) follows for a point source from the equations of dynamical ray tracing: 

asp = -c-2 (s)a nnc(s)q 

(32a) 

with starting values: 

p(O) = c:1 (0), q(O) '" O. (32b) 

In these expressions as denotes differentiation along a ray, while an is the horizontal 
derivative perpendicular to a ray. Finally ¢L represents the excitation of the Love wave. This 
factor follows from the consideration that the excitation depends only on the local 
properties of the medium, so that ¢L is the same in a smoothly varying medium as in a 
laterally homogeneous medium with the properties of the source region. For a laterally 
homogeneous medium (32a, b) can be integrated to give q(s) =s, so that in that case: 

(33) 

A comparison with (9), (7) and the normalization condition (5) shows that ¢L is determined 
by: 

exp (irr/4) 
II (z, S=0)[.p(0) • F]. (34)

¢L '= v/4rrw 

If II(Z, s) in (30) is normalized according to (5), and (34) is used for the excitation factor, 
then it follows that the Love wave displacement is: 

(35) 
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A similar result holds for Rayleigh waves, so that the Green's function for a smoothly 
varying background medium has the following dyadic form: 

(36) 

It should be stressed that the normalization condition (5) is crucial in obtaining the correct 
amplitude variations along the ray. The modal summation now includes both Love and 
Rayleigh waves. Note that quantities like the phase shift 11 v(s) or the geometrical spreading 
qv(s) are different from mode to mode. Also the ray paths are in general different for 
different modes, so that ray tracing has to be done for each mode separately. 

The expressions for the gradient of the Green's function (lOa-d) are unaffected by a 
smooth horizontal heterogeneity of the background medium, since the horizontal derivatives 
of the parameters of the medium are by assumption small compared to kv(s). The derivation 
in Sections 3 and 4 is therefore unaffected by the smooth variations in the background 
medium. Therefore the expression for the scattered wave is: 

I exp [i(l1 o (s) + 7T/4)J exp [i(l1v (s) + 7T/4)J 
u (r) =pO(z, 'P2(S), s) ..j(7T/2)k (s)qo(s) VOV(ro) ..j(7T/2)k (s)qv(s) [pV(zs, 'PI (0),0)· f]. 

o v 

(37) 

See Fig. 3 for the definition of the variables. In principle the length along the ray path (s) 
depends on the mode number, but this is not shown explicitly. The interaction matrix is 
given by (27) or (29a-d) with the local polarization vectors. The scattering angle is now 
determined by the angle between the incoming and the outgoing ray at the scatterer. There­
fore the scattering angle for a fixed source receiver pair is in general different for different 
sets of modes (a, v). 

r (5) 

r (5~o) 
s 

Figure 3. Geometry for the scattered wave in a smoothly varying background medium. 

Note that the expression for the scattered wave depends explicitly on the scattering angle. 
This makes it impossible to use a Gaussian beam formalism in this context, since one has to 
do the ray tracing from source to scatterer to receiver in order to obtain the scattering angle. 
This is a time-consuming procedure since it has to be repeated for every new set of modes 
(a, v). 

21 
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6 The interaction matrix for scattering by a mountain root 

In the previous sections the theory of surface wave scattering was developed. The subsequent 
sections deal with some examples to clarify the theory. In this section the depth integrals of 
the interaction matrix (29a-d) are presented for the scattering of surface waves by the root 
of the Alps. The heterogeneity consists of a light, low velocity anomaly between 20 and 50 
km, taken from Mueller & Talwani (1971). The M7 model or Nolet (1977) is used as a back­
ground medium. Both the background medium and the heterogeneity are shown in Fig. 4. 
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Figure 4. Density, P-wave velocity and S-wave velocity for the background medium (solid line), and the 
mountain root model (dashed line) used in the calculations of the interaction matrix of Section 6. 

It can be seen from (29a-d) that the interaction matrix for the scattering from Rayleigh 
wave to Rayleigh wave, or from Love wave to Love wave has the form: 

VRR or LL = V(O) + V(l) cos '/J + V(2) cos 2'/J. 

Here '/J is the scattering angle. In case a Rayleigh wave is converted to a Love wave, or vice 
versa, the interaction matrix takes the form: 

VRL or LR =V(I) sin '/J + V(2) sin 2'/J. 

In this section the 'sin n'/J' scattering coefficient for the conversion of the vth Love wave to 
the ath Rayleigh wave is denoted by VRa~L,,(n). A similar notation is used for the Love 
wave-Love wave scattering and the Rayleigh wave-Rayleigh wave scattering. 

In Fig. 5 the fundamental mode interaction terms VR , <--R,' VR , ~L, and VL , <-L, are 
shown as a function of frequency. The interaction terms are given per unit area because 
(29a-d) has only been integrated over z. In order to obtain the strength of the scattered 
wave one has to multiply by the horizontal area of the scatterer. For a scatterer of 100 x 100 
km the scattering coefficient is of order I. However, surface waves with a period of 20 shave 
a wavelength of the order of 100 km, so that one cannot consider a scatterer of 100 x 100 
km as a point scatterer. In that case one would have to integrate over the horizontal extent 
of the whole scatterer. In order to circumvent this complication the interaction terms are 
simply given per unit area. 

Note that the three types of fundamental mode scattering are of the same order of 
magnitude. Also observe that the scattering coefficients are strongly dependent on the 
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Figure S. Fundamental mode interaction terms for different azimuth numbers for scattering by the 
mountain root as a function of frequency. 

period. The interaction terms at 20 s are almost an order of magnitude larger than the 
interaction terms at 40 s. This agrees well with observations of scattered surface waves which 
show that 20 s Rayleigh waves are much more strongly scattered than 40 s Rayleigh waves 
(Levshin & Berteussen 1979). The reason for this is that for a period of 40 s the penetration 
depth of the surface waves is so large that the influence of the shallow scatterer on the 
propagation of the surface wave is relatively small. Mathematically this is realized by the 
normalization condition (5). 

The interaction terms for R1 +- R1 scattering and R1 +- L1 conversion decreases for 
periods shorter than 17 s. The reason for this effect is that for these high frequencies the 
surface waves are too shallow to be influenced by the heterogeneity. 

In order to appreciate the difference in the radiation patterns for the different funda­
mental mode scattering events, the scattering amplitude is shown in Fig. 6 as a function of 
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Figure 6. Radiation pattern for the scatterer of Fig. 5. The wave comes in from below. R, <- R, scattering 
is shown by a solid line, L

1 
<- L

1 
scattering by a dashed line and R, <- L, conversion by a dotted line. 
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the scattering angle for a period of 21 s. Note that there is no converted wave being radiated 
in the forward or in the backward direction. The R1 +- R1 scattering is much stronger in 
the forward direction than for backscattering, while L1 +- L1 has a much more symmetrical 
four lobe radiation pattern. 

Fig. 5 shows that the different azimuth terms V(n) in general behave in a different way as 
a function of frequency. Consequently, not only the strength of the radiation pattern 
depends on frequency, but also the shape of the radiation pattern is frequency dependent. 
This can be seen in Fig. 7 which shows the R1 +- R1 scattering for several periods. For a 
period of 40 s the scattering is very weak, and forward scattering and backscattering have 
almost the same strength. For larger periods the radiation pattern loses this symmetry. 

For periods larger than 20 s the interaction among the fundamental modes is in general 
much stronger than the interactions involving higher modes. For shorter periods this does 
not hold any more, because for these periods the fundamental modes are too shallow to be 
influenced by the heterogeneity. 
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Figure 7. Radiation pattern for R, +-R, scattering as in Fig. 6 for different perio<ls. The thin dashed line 
is for T =40 s, the dashed-dotted line for T =26 s, the solid line for T = 21 s and the thick dashed line for 
T =14 s. 

As a representative example the interaction terms VRN+-R (1) and V RN+- RN(1) are 
1 

shown in Fig. 8(a, b). Note that the coupling of the higher modes with the fundamental 
mode is stronger than the interaction of the higher modes with themselves. The only 
exception is the scattering of the first higher mode (N =2) to itself for short periods. This 
strong scattering is caused by the fact that for periods of 10-14 s the first higher mode 
behaves like a Stoneley mode on the Moho, and therefore carries most of its energy at the 
depth of the heterogeneity. 

One should be a bit careful with the conclusion that for periods larger than 20 s the 
higher mode scattering effects are negligible. It is true that this conclusion holds for the 
interaction terms V(n), but it is not necessarily true for all scattering angles since for some 
scattering angles the fundamental mode interaction terms vanishes. As an example the 
Rayleigh wave radiation pattern is shown in Fig. 9 for the coupling of the fundamental mode 
with itself, as well as with the higher modes. The scattering .amplitude for R 1 +- R1 

scattering vanishes for a scattering angle of 1060 This means that for this scattering angle • 

the coupling to the higher modes dominates the R1 +- R1 scattering. 
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Figure 8. (a) VRN....R (l) interaction terms for the mountain root scatterer as a function of frequency.
1

Numbers in figure are mode numbers N. (b) VRN....RN(l) interaction terms for the mountain root 
scatterer as a function of frequency. Numbers in figure are mode numbers N. 
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7 Application of stationary phase principles to the calculation of the scattered wave 

The theory presented in Sections 2-5 dealt with surface wave scattering by point scatterers. 
However, since the theory is linear(ized), more general inhomogeneities can be treated by 
integrating over the inhomogeneity. This integration can be simplified considerably by using 
the stationary phase approximation (Bender & Orszag 1978). Two examples are given for a 
laterally homogeneous background medium. 

7.1 PROPAGATION THROUGH A BAND-LIKE HETEROGENEITY 

Consider the propagation of surface waves through a band-like inhomogeneity confined 
between x = xL and x = XR (see Fig. 10). This heterogeneity is not unlike the model for the 
Central Graben in the North Sea, used by Kennett (I984b). The inhomogeneity is assumed 
to depend on y in a smooth way, compared with the horizontal wavelength of the surface 
waves. In that case the scattered wave is: 

(38) 

with 

(39) 

The y integral can be evaluated with the stationary phase apprOXimation. The point of 
stationarity is given by y =0 for all x and z, so that the phase function can be approximated 
by: 

Integration over y then leads to the following approximation for the scattered wave: 

(40) 

This means that in order to calculate the scattered wave one only needs to integrate over 
the line joining the source and the receiver. Equation (40) is a restatement of the 'great 
circle theorem' (Jordan 1978 or Dahlen 1979), but now in a plane geometry. The only 
difference is that in order to arrive at (40) we did not have to assume smoothness of the 
heterogeneity along the great circle, but only in the transverse direction. 

Equation (40) shows that the interaction matrix is only needed for a scattering angle 
'P = O. This means that mode conversions from a Love wave to a Rayleigh wave (and vice 
versa) vanish in this limit, since VRL vanishes for 'P =O. This reflects the fact that appreciable 
transverse gradients of the inhomogeneity are needed to couple Love waves to Rayleigh 
waves. 
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Figure 10. Geometry for surface wave scattering by a band-like heterogeneity. 

For Love waves the z integral of the interaction matrix term in (40) is given by: 

This expression is the linearized form of the interaction terms (2.21) of the 2-D theory of 
Kennett (I984a). The only difference with Kennett's result is the appearance of the 
geometrical spreading factor in (40), as well as a phase shift of 1T/4. Both differences are 
caused by the fact that in this theory the surface waves are propagating in two horizontal 
directions. 

7.2 SCATTERING BY A QUARTER-SPACE 

In the preVious section it was shown that only the heterogeneity on the source-receiver line 
influences the scattered wave if the inhomogeneity is smooth in the transverse direction. The 
next example shows what can happen if this condition is violated. Consider the situation 
shown in Fig. 11. The left half of the (x, y) plane consists of a different medium than the 
right half of the plane, where the source and the receiver are located. This situation models 
the scattering of surface waves by a sharp continental margin. The heterogeneity in the left 
half plane is assumed to be smooth in the horizontal direction (compared to the largest 
horizontal wavelength under consideration). This means that: 

(42) 

(Similar expressions hold for LiA and Lip.) Lastly, it is assumed that both the source and the 
receiver are located many wavelengths away from the continental margin. 

Again, the scattered wave can be written as an integral over the inhomogeneity: 

(43) 

with f given by (39), and H is the Heaviside function. After a partial integration in x the 
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x, 

~ mode V 

+ 
Figure 11. Geometry for surface wave scattering by a quarter~pace. 

scattered wave can be rewritten as: 

, f 00 f 00 Iexp [i(kvX1 + k uX2)fuvH(-x) x=oo u (r)= dy dz _
 
_00 0 i[kv[(x - xs)(Xd + ku [(x - x r )(X2]J] x=-oo
 

uv+ i J4 00 dx f oodYf. 00 dz ax [ H(-x)f ] exp[i(kvX, + kuX2)] 
_00 -00 0 [kv[(x-xs)(Xd+ku[(x-Xr)(X2JJ] 

The first"term on the right side is zero if a small amount of damping is present; this can be 
realized by giving k u and k v a (small) positive imaginary component. The x differentiation in 
the second term produces three kinds of terms. Differentiation of the geof!1etrical factors 
yields terms of the relative order 0(1 (kvX, , l(ku(x - x r ), etc.) which are negligible in the far 
field compared to the original expression (43). The contributions of the derivatives of lip., 
li;\ and lip (which are contained in f) are also negligible compared to the original expression 
(43) because of the smoothness we assumed (42). Therefore the dominant contribution 
comes from the derivative of the Heaviside function. This leads to the following expression 
for the scattered wave: 

(44) 

The y integral can again be evaluated with a stationary phase approximation. The phase 
function is: 

(45) 

Let the minimum of8 u vCy) be attained for y, so that: 

(46) 
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It then follows from a stationary phase evaluation of the y integral that the scattered wave is 
given by: 

, ~ exp [i(kvXl + kaXz + 37T/4)] I 
u (rr) == J 7T O;v(y) [kv(xS/X ) +ka(xr/X )] y'kvX y'kaX pa(zr, \Pz) [pV(zs, \pd· F] J;:~

l z l z 

xJ	~ Vav(x == O,y == y, z)dz. (47) 
o 

Inspection of Fig. 11 shows that the stationary phase condition (46) is just Snell's law for 
the reflection of surface waves: 

sin iv sin ia 
(no summation) (48) 

Cv Ca 

where 

Cv == w/kv .	 (49) 

This means that for every set of modes (v, a) scattering by a quarter-space is equivalent to 
reflection by a point on the boundary between the two quarter-spaces which is determined 
by Snell's law. This means that the forward problem can be solved very efficiently because 
the cumbersome integration over the heterogeneity can be avoided. Unlike in Alsop et al. 
(1974) and Gregersen & Alsop (1974) the surface boundary condition is satisfied, since each 
mode satisfies the surface boundary condition. In contrast to previous studies it is not 
necessary to calculate the modes in both quarter-spaces in order to find the reflection 
coefficients. 

Unfortunately, it is not possible to consider the transmission of surface waves through 
a continental margin by locating the receiver in the heterogeneous quarter-space. The reason 
for this is that in that case the far field approximation cannot be used any more. 

The results derived in this section are applicable to a step-like continental margin. A 
smoother transition between two half-spaces can be treated numerically by dividing the 
transition zone into many small step discontinuities and by adding the scattered waves (47) 
from every step discontinuity. 

8 The scattered wave in the time domain 

Up to this point the theory was presented in the frequency domain. A Fourier transform 
makes it possible to find the scattered wave in the time domain. A stationary phase 
approximation of the frequency integral simplifies the final result considerably. In this 
section scattering by a point scatterer is discussed as an example. 

The scattered wave in the time domain is given by: 

ul(rr, t) == L: favCw) exp [i(kvXl + kaXz - wt)] dw.	 (50) 

Here, f is defined by (39). The frequency derivative of the phase function vanishes if the 
following condition is satisfied: 

Xl X2 
--+---==t (5 I)
Uv(W) Ua(w) . 



27 Basic principles 

In this expression Uv is the group velocity of mode v. This condition determines a frequency 
Wfor every Xl, X 2 and t. It is possible that (51) has more than one solution W, in which 
case one can simply sum over the contribution of every stationary frequency. A stationary 
phase evaluation of the W integral leads to the following result: 

(52) 

The prime denotes differentiation with respect to w. 
It is instructive to investigate the condition (51) in some more detail. If the modes a and 

v have the same group velocity, then (51) describes an ellipse, so that for a fixed time tall 
the points on the ellipse should be evaluated in (52) with the same frequency W (see Fig. 
12a). If Uv(w) *- Ua(w), then (51) defines an egg-like curve and, at a given time t, all the 
points on the egg can be evaluated at the same frequency w(see Fig. 12b). 

Figure 12. (a) Set of points which satisfy (51) for R, <- R, scattering for a period of 21 s. (b) Set of 
points which satisfy (51) for R 2 <- R 1 scattering for a period of 21 s. 

9 Least squares inversion of scattered surface wave data 

The theory for surface wave scattering is presented here in the Born approximation, so that 
there is a linear integral relation between the scattered wave (26) and the heterogeneity. 
(Remember that for a general configuration of scatterers (26) has to be integrated over all 
the scatterers, so that a ro integration should be performed.) This is convenient for solVing 
the inverse problem, since the inversion of (possibly ill-posed) linear integral relations in the 
presence of noise is well understood. Franklin (1970) showed how to invert a discretized 
linear relation if the covariances of all variables are prescribed. Tarantola & Valette (I 982) 
pOinted out that discretization can be postponed to the moment of numerical implemen­
tation. The application of this formalism to the acoustic reflection problem is shown by 
Tarantola (I984a, b). Here a similar inversion method is presented for surface wave data. We 
shall assume that the source parameters and the background medium are known. If necessary 
these properties could be included in a simultaneous inversion with the direct wave and the 
scattered wave. 
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In the surface wave inversion problem we try to reconstruct the elastic parameters and 
the density from surface wave data. This means that we want to find the following model 
vector (which is a function of the three space variables): 

(53)m=l ~l 
The a priori knowledge can be incorporated by prescribing the a priori value of the model 
vector, as well as a covariance matrix. It is assumed that the a priori knowledge of the 
heterogeneity is given by: 

mo =0. (54) 

The a priori model covariance is given by a matrix (operator) Cm(fl, (2)' which we shall 
leave unspecified. The data consist of the observations of the scattered wave, which in 
general consists of a superposition of different modes. It is possible that only one 
component of the scattered wave is measured, or that more components are measured. In 
general we will have data from many receivers, possibly also for different sources. We can 
put all these data in one data vector d: 

d -" 1 " - Uobs . (55) 

All the different observations are simply put below each other, so that d can have any 
dimension. If the inversion is done in the frequency domain the scattered waves for different 
frequencies are all entered in the data vector (55) as separate data. Here the inversion is 
presented in the time domain formulation. In that case the data vector consists of the 
displacement measurements as a function of time, hence the data vector is a function of 
time. The inversion can be started once the covariance matrix of the data vector (Cd) is 
specified. 

The inversion can be done in one step, since the theory is linear. This means that the 
stabilized least squares solution is given by (Tarantola 1984a): 

(56) 

In this expression A is the gradient of the data vector in model space, Le. 

(57)A= 

(The dots indicate that all the measured displacements are put on top of each other.) Note 
that A is a function of time, since u 1 is a function of time. 

The first step in the inversion entails weighting of the displacement components. The 
weighted data vector is defined by: 

li(t) = C;/ d(t). (58) 
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If one now inserts the time-dependent version of the scattered wave in (57), one obtains the 
following result for A Tu: 

avaV(ro) 

ail/l 

f aVav(ro)
ATu(ro) = L 

r. s ailX 

aVav(ro) 

ailp 

(59) 

where 

(60) 

The integration over time in (59) is performed because both A and uare functions of time, 
and a contraction over the time variable is implied by the operator product. All variables 
have the same meaning as in Fig. 2, for the appropriate sources and receivers. The symbol 

L indicates that a summation over all the sources and receivers is performed. For each 
r,s 

source-receiver pair and each value of t the value of w is determined by (51). If (51) has 
more than one solution one should sum over these solutions. The derivatives of V av can 
easily be obtained from (29a-d). 

Just as in Tarantola (l984a) the inversion consists of a back propagation, as well as a 
correlation with the source function. This can be seen in (59) because this expression is the 
temporal correlation of a surface wave propagating back from the source to the scatterer 
with a surface wave propagating from the receiver to the scatterer. Equation (59) therefore 
implies a summation in the horizontal plane over the ellipses or egg-curves of Fig. 12. The 
weight factor in this summation is determined by the geometrical spreading factors, the 
projection of the observed scattered wave on the appropriate polarization vector, and the 
source characteristics. 

In order to do the back propagation correctly the different modes have to be separated. 
In practice this is hard to realize. However, often the fundamental mode contributions are 
dominant, and higher mode scattering is relatively weak. Moreover, the fundamental mode 
wavetrain is usually separated in time from the higher mode contributions. In that case time 
windowing can be used to separate the fundamental modes from the higher modes, and the 
inversion can be done with the fundamental modes only. The fundamental Love wave and 
the fundamental Rayleigh wave are separated by projecting the displacement vector on the 
polarization vector (see (59)). 

At this point only qualitative statements about the resolution can be made. The 
horizontal resolution and the vertical resolution are controlled by different factors. The 
horizontal resolution is mainly dependent on the number of sources and receivers that are 
available, since this determines how well the scattered wave energy can be focused on the 
scatterer. The vertical resolution depends mostly on the bandwidth of the signal. Synthetic 
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examples, or scattering data from a well-known distribution of scatterers are needed to make 
these statements more quantitative. 

The inversion presented here can be called 'surface wave holography' because the surface 
waves which are scattered and reflected by the heterogeneity (the object) are projected back 
in space and are correlated with the source signal (the illumination) to give an image of the 
heterogeneity. 

10 Conclusions 

The scattering of surface waves has been treated in this paper in the Born approximation. 
This means that a linearization in the scattering effects is performed, so that the theory is 
only applicable for inhomogeneities which are weak enough. (See Hudson & Heritage (1982) 
for the validity of the Born approximation in seismic problems.) However, even if the 
heterogeneity is not weak, one might hope that the theory still gives a qualitative under­
standing of the scattering and mode conversion phenomena. 

For simplicity it is assumed in this study that the surface boundary conditions are not 
perturbed by the heterogeneity, so that the heterogeneity is assumed to be buried. This 
means that this theory cannot be applied to the important case of surface wave scattering by 
variations in the topography without making some modifications. 

The far field condition restricts the application of the theory. Because of this restriction 
it is impossible to consider scatterers close to the source or the receivers. This means that the 
theory cannot be applied if either the source or the receiver is located in a heterogeneous 
region. Moreover, the far field condition also makes it impossible to calculate higher order 
corrections to the Born approximation, since these corrections contain near field terms. 

The dyadic form of the far field Green's function for either a laterally homogeneous 
medium or a laterally smoothly varying medium shows that the polarization vectors playa 
crucial role. The polarization vector determines not only the depth dependence and the 
displacement direction of the elastic waves; the excitation is also conveniently expressed in 
terms of the polarization vectors. 

In the Born approximation the scattered waves are characterized by an excitation at the 
source, followed by an undisturbed propagation to the scatterer. Here scattering and mode 
conversion occur. These effects are described by the interaction matrix. After the scattering 
an undisturbed propagation to the receiver occurs. The 'undisturbed propagation' can be 
either in a laterally homogeneous medium, or in a laterally smoothly varying background 
medium. 

Stationary phase theorems are very useful in simplifying the resulting integrals over the 
heterogeneity. It is shown that if the inhomogeneity is smooth in the transverse direction, 
then only the heterogeneity on the source-receiver line influences the scattered wave. This 
is the analogy of the 'great circle theorem' in a plane geometry. 

The same principle holds for scattering by a quarter-space. It is shown that in the far field 
limit for each pair of incoming and outgoing modes the scattering is determined by a 
reflection point on the interface between the two quarter-spaces. The phase speeds of the 
incoming and the reflected surface wave determine this point by means of Snell's law. 

The linearized scattering theory can be used in conjunction with the inversion algorithm 
of Tarantola (1984a). The inversion is formulated in a way which is reminiscent of holo­
graphy techniques used in optics. This kind of inversion will be tested with data from the 
NARS array (Nolet & Vlaar 1982 and Dost, Van Wettum & Nolet 1984), but only a limited 
resolution can be expected with a small number of stations and a few source positions. A 
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dense network, as is presented in the PASSCAL proposal (1984), would be ideal for an 
accurate reconstruction of lateral heterogeneities with surface wave holography. 
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Snieder, R., 1986. The influence of topography on the propagation and scattering of surface waves. Phys. Earth Planet. 
Inlet., 44: 226-241. 

The efrecls of topography on three dimensional surface-wave scattering and surface· wave conversions is treated in 
the Born approximation. Surface-wave sC3ltering by topography is compared with surhce-wave scancring by a 
mountain root m~el. The interference effects between surface waves scattered by different pans of a heterogeneity 3fe 
analysed by considering FraunhoCer diffraction [or surface waves. For a smooth heterogeneity a relation is established 
between the interaction terms and the phase speed derivatives. The partial derivatives of the phase speed c with respect 
to the topography heighl h for Love (L) and Rayleigh (R) wave, are 

[ ~]R _4cV1,-P-I o[ 22 +r,'(' -4(I-:?{3') {3 2)]cah - r,c c 

Phase speed perturbations due to topography can amount to 1-2% and cannot be ignored in surface-wave studies. 

1.	 Introduction very complicated. Asymptotic results for a narrow 
mountain ridge on a homogeneous two-dimen­

Observations of teleseismic surface waves dem­ sional half-space are given by Sabina and Willis 

onstrate that surface-wave scattering is an im­ (1975,1977). A survey of numerical methods which 

portant process. Levshin and Berteussen (1979), have been used to study the effects of topography 

and Bungum and Capon (1974) showed, using on seismic ",aves is given by Sanchez-Sesma (1983). 

observations from NORSAR, that distinct multi ­ Bullit and Toksoz (1985) used ultrasonic Rayleigh 

pathing of surface waves occurs for periods below waves in an aluminum model to investigate the 

40 s. A formalism to describe the three-dimen­ effects of topography on three-dimensional surface 
waves. Because of the complexity of the problem 

erogeneities was presented in Snieder (1986). (This 
sional scattering of surface waves by buried het­

this paper is restricted to topography variations 
that are weak enough to render the Born ap­

There is, however, no reason to assume that proximation valid. 

surface waves are scattered by buried heterogenei­ The linearised scattering of elastic waves by 

ties only, since topography variations also cause 

is referred to as paper 1.) 

surface heterogeneities has received considerable 

surface-wave scattering. Even for very idealised interest. The basic theory for this is outlined in 

models the effects of topography turn out to be	 Gilbert and Knopoff (1960) for a homogeneous 

0031-9201/86/$03.50 © 1986 Elsevier Science Publishets B.V. 
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half-space, and by Herrera (1964) for a layered 
medium. Hudson (1977) applied the theory to the 
generation of the P-wave Coda, while Woodhouse 
and Dahlen (1978) considered the effect of topog­
raphy on the free oscillations of the Earth. A 
completely different approach was used by Steg 
and Klemens (1974) who analysed Rayleigh waves 
in solid materials, which they treated as a lattice 
instead of a· continuum. 

This paper provides an explicit formalism to 
analyse three-dimensional surface-wave scattering 
by topography in a continuous elastic medium. A 
formalism for the linearised scattering of three-di­
mensional elastic waves is presented in section 2. 
It is shown in section 3 how surface-wave scatter­
ing by topography can be accommodated in the 
theory of paper 1. (An appendix is added with a 
proof that the theory of paper 1 is unaffected if 
the heterogeneity is nonzero at the surface.) Be­
cause of the linearisations these results are only 
approximations. The validity of the Born ap­
proximation is discussed in Hudson and Heritage 
(1982). In the treatment of the scattering by 
topography the stress is assumed to behave lin­
early with depth over the topography. This impo­
ses another restriction on the validity of the results 
presented here, which is discussed in section 4. 
The interaction terms due to the topography are 
analysed in section 5, where they are quantita­
tively compared with the surface-wave scattering 
by a mountain-root structure. 

The expressions for the scattered surface waves 
contain integrals over the heterogeneity. Inter­
ference effects make the analytic evaluation of 
these integrals complicated, even for idealised 
scatterers. In section 6 a formalism is derived for 
Fraunhofer diffraction by surface waves, which is 
applied in section 7 to a Gaussian mountain. 

It is well known that smooth heterogeneities do 
not cause surface-wave scattering (Bretherton, 
1968), but they do cause variations in the phase 
speed and the amplitude. In section 8 a heuristic 
argument is used for the relation between the 
interaction terms and the phase speed variations. 
It is shown in section 9 that this leads to the 
partial derivatives of the phase speed with respect 
to the density, P-wave speed and S-wave speed as 
obtained from variational principles (Aki and 

Richards, .1980), Furthermore, the partial deriva­
tives of the phase speed with respect to the topog­
raphy are derived. 

The results presented here are valid under cer­
tain restrictions. Firstly. the heterogeneity must be 
weak enough to make the Born approximation 
valid (Hudson and Heritage, 1982). and to allow a 
linearisation of the stress over the topography 
height. Secondly, the far field limit is used 
throughout. Thirdly, a plane geometry is assumed, 
it is shown in Snieder and Nolet (in preparation) 
that this condition can easily be relaxed. Fourthly, 
the slope of the topography has to be small. 
Lastly, it is assumed that the interaction with the 
body-wave part of the Green's function can be 
ignored. Body waves and surface waves are shown 
to be coupled by strong topography variations in 
Hudson (1967), Greenfield (1971), Hudson and 
Boore (1980) or Baumgardt (1985). The locked 
mode approximation (Harvey, 1981) can in princi­
ple be used to take this coupling into account, 
without using the body-wave Green's function. 

Throughout this paper the summation conven­
tion is used both for vector or tensor indices, as 
well as for mode numbers. Vector and tensor 
componen ts are denoted by Roman subscripts, 
while Greek indices are used for the mode num­
bers. The dot product which is used is defined by 

[p.q] =p;q, (1.1) 

where' denotes complex conjugation. 

2.	 Derh'ation of lhe equations for the scattered 
wa\'e 

The equation of motion combined with the 
elasticity relations can be written as 

(2.1 ) 

In this expression u, is the i-th component of the 
displacement, and F, is the force which excites the 
wavefield. The (differential) operator L is defined 
by 

L,; = - p,,}o,; - d"C"'m;d", (2.2) 

where c is the elasticity tensor. The surface 
boundary condition is given by 

n,T,;=O atthesurface (2.3) 
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n is the normal vector pointing outwards from the 
medium, and Tij is the stress tensor 

(2.4) 

It is well known how surface-wave solutions 
can be obtained from (2.1) and (2.3) if the medium 
is laterally homogeneous and the surface is flat. 
Aki and Richards (chapter 7, 1980) treated this 
problem in great detail. They showed that in that 
case the solution was given by 

;:;0= GF (2.5) 

which is an abbreviated notation for 

u7U) = j GijU, f')FjU')dJr' (2.6) 

The Green's function (G) satisfies 

L?PjkU, f') = 8ik8U-f') (2.7) 

In this expression L O is the operator L for a 
laterally homogeneous medium. 

If lateral heterogeneities are present, or if the 
surface is not flat, scattering of elastic waves oc­
curs. These scattering effects are treated here in a 
linearised way, i.e., it is assumed that both the 
lateral inhomogeneities of the medium, and the 
topography variations are small. In that case the 
density and the elasticity tensor can be written as 

p(x, y, z)=pO(z)+(pJ(x, y, z) (2.8) 

c(x, y, z)=cO(z)+a"(x, y, z) (2.9) 

The (small) parameter ( is added to make explicit 
that the perturbations are small. Let the topogra­
phy be given by 

z = -fh(x, y) (2.10) 

c

The - sign has been added because z is counted 
positively downward, and h is the topography 
height above z = O. The functions CO and pO define 
together with a zero stress boundary condition at 
z = 0 a laterally homogeneous background 
medium, which is perturbed by the heterogeneities 

l and pl. Since the perturbations are small the 
wave field can be written as a perturbation series 
m(
 

;:;=;:;0+(;:;1+0«(2) (2.11)
 

In this expression ;:;1 denotes the Born approxima­
tion to the scattered wave. 

Hudson (1977) derived expressions for the 
scattered wave in the Born approximation. He 
showed that the wave scattered by the medium 
heterogeneities (pi and cl 

), and the topography 
variation is given by 

u:U) = {+ j G'j(r, f')p'(r')w 2Gjl (r', r,)dV' 

- j(omG'j(r, r'»)C;m"k'(r') 

X (o"Gk/U', f,))dV' 

- j(OmG,/i, i'»)h(i')cjOm"k(i') 

X (o"Gkl(i', iJdS')}F;(iJ (2.12) 

The volume integrals are over the volume of the 
reference medium (z > 0), while the surface in­
tegrals are to be evaluated at the surface of the 
reference medium (z = 0). The differentiations are 
taken with respect to the f'-coordinates. Hudson 
(1977) derived this result in the time domain, 
(2.12) is the same expression in the frequency 
domain. It has been assumed here that the wave 
field is excited by a point force F in r,. A more 
general excitation can be treated by superposition. 
It is shown in paper I how a moment-tensor 
excitation can be incorporated. 

To derive this result three assumptions have to 
be made: 

(I) the heterogeneity is so weak that multiple 
scattering can be ignored, i.e., that the Born ap­
proximation is valid. 

(2) The slope of the heterogenei ty has to be 
small, since in Hudson's derivation it is assumed 
that ('Vh) = O(f). 

(3) The stress should behave linearly over the 
mountain height, i.e., it is assumed that 

(2.13) 

is a good approximation. 
Using the Dirac 8-function, we can rewrite 

(2.12) as 
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u)(r) = j GJr, r')[pl + hpOa(z')] 

X,,/G;I(r', r,)F;(r,)dV' 

- j(3mG'J(r, r'))[ C)mnk + hCJOmnka(Z')] 

X (3nGk/(r', ;=J)F/(rJdV' (2.14) 

The upshot of this calculation is that topogra­
phy variations in this approximation act on the 
scattered waves as if both the mass of the moun­
tain (hpo), and the total elasticity of the mountain 
(heo) are compressed to a a-function at the surface 
of the reference medium. For the mass term this is 
intuitively clear, because for surface waves which 
penetrate much deeper than the mountain height 
the precise mass distribution is not very im­
portant. For the elasticity term this is less obvious, 
because it is not clear what the implications are of 
'compressing' the total elasticity of the mountain 
in a a-function. 

3. A formalism for surface wave scattering 

Up to this point the theory was developed for 
an arbitrary elastic medium, and for the complete 
Green's function. This means that all sorts of 
complex scattering phenomena can be dealt with. 
(For example (2.14) could be used to describe the 
scattering of body waves by anisotropic regions, 
etc.) 

From this point on we restrict ourselves to the 
surface wave part of the Green's function in an 
isotropic medium. It is shown in paper 1 that the 
far field Green's function can conveniently be 
expressed as a dyad of polarisation vectors. Using 

x 

, 
s 

Fig. lao Geometry for the direct wave. 

mode v 

's
 

Fig. lb. Geometry for the scattered wave.
 

these polarisation vectors we can show that the 
direct wave is given by 

(3.1 ) 

and the scattered wave is for an arbitrary distribu­
tion of scatterers 

-1 ( - ) a ( ) _e:.-'_Ik_._X_,_+_~/_4_'j j 
U r = p Z, <1>2 ('TT ) '/2 

Zk o X 2 

(3.2) 

See Fig. (la,b) for the definition of variables. 
Because of the summation convention a double 
sum over excited modes (vl. and scattered modes 
(a l must be applied. The modes are coupled by 
the interaction matrix Va'. The only difference 
wi th the resul ts in paper 1 is that the depth 
integrals over the heterogeneity are included in the 
interaction terms Va'. 

The polarisation vector for Love waves is 

p'(Z,<I»='~(Z)~ (3.3a) 
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and for Rayleigh waves 

jj'(z, 1» = r;(z)3. + ir{(z)£ (3.3b) 

Where Ii' r l and r, are the surface-wave eigen­
functions defined in Aki and Richards (1980). 
These eigenfunctions are assumed to be nor­
malised according to 

8c,.U,.J; = 1 (no summation) (3.4) 

In this expression Ir is the kinetic energy integral. 
For Love waves 

II = 1/2 j p/~dz (3.5a) 

and for Rayleigh waves 

II = 1/2 j p( rl' + r,' )dz (3 .5b) 

It was shown in the previous section how surface 
irregularities could be trcated as a S-function het­
erogeneity at z = O. Therefore the expression for 
the interaction coefficients (va") of paper 1 can be 
used. (In paper 1, (3.2) was derived for buried 
scatterers. An appendix is added to this paper 
with a proof that perturbations at the surface do 
not affcct this result.) 

Since the scattered wave (2.14) consists of a 
contribution of the perturbation of the medium 
parameters, and of a contribution of topography 
variations, the interaction tcrms (va") can be de­
composed in the following way 

(3.6) 

BO> describes the interaction terms due to the pI 

and ('I heterogenei ty, while SO> describes the 
scattering due to the surface irregularities. The B a

" 

terms can be expressed in the surface-wave eigen­
functions I" r, and r,. BRt. is used to denote the 
scattering from the v-th Love wave to the (f-th 
Rayleigh wave by ('I and pI, and a similar notation 
is used for other pairs of interacting modes. It was 
shown in paper 1 that in this notation the interac­
tion terms for an isotropic medium are given by 

(3.7a) 

(3.7b) 

(3.7c) 

B~~ = jhOr{p''',2 - (kart + a,r2")(k,r; + a,r21>.t 

-k,k,rtr;/lJ - 2(a,r2
a)(a,r;)/l1]dz 

+ j[rt r;p'w2 -(kar2"-a,rn 

X(k,r;-a,r;)/ll]dz cos 1> 

-k,k, jrtr;/lldz cos 21> (3.7d) 

In these expressions a, denotes the depth deriva­
tive, and 1> is the scattering angle (Fig. 1b) 

(3.8) 

Since these relations hold for an isotropic medium 
the interaction terms are expressed in the per­
turbations of the Lame parameters (>.\ and /ll). 

The expressions (3.7a-d) can be used for the 
calculation of the interaction terms due to topog­
raphy by substituting 

pl(X, y, z)--->h(x, y)pO(z)S(z) 

and making the same substitution for>. and /l. In 
the depth integrals in (3.7a-d) the surface-wave 
modes then only have to be evaluated at z = O. At 
that point the vertical derivatives take a particu­
larly simple form. Aki and Richards (1980) showed 
that at z = 0 

a), = 0 

a,r l = kr, (3.9) 

-k>'Oa r =---r
" >.0+ 2/l0 1 

Using this, the topography interaction terms are 
given by 

Sf~=h(/f/;pOw2 COS1>-kak)f/~/lo cos 21» 

(3.10a) 

SJ',.~ =h(rtlrpOw' sin 1>- kak"rt/~/lo sin 2</» 

(3.10b) 
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(3.lOc) 

S., I ( • ,. 0 2 k k 0 3,,0 + 2JlO •• 
RR = 1 T2 r2 P (,) - 0 vM 0 r1 Tt,,0 + 2Jl 

• ,. 0 2 '" k k •• 0 2"') (3.lOd)+ r, riP'" cos 'Y - -. ,rl rlJl cos 'Y 

where all quantities have to be evaluated at the 
surface of the reference medium (z = 0). 

4. An error analysis of the stress Iinearisation 

The linearisation in the topography in the de­
rivation of Hudson entails two approximations. 
The Born approximation requires that the scattered 
wave is sufficiently weak, this is discussed in Hud­
son and Heritage (1982). The other approximation 
which is made requires that the stress behaves 
linearly over the topography height (2.13). An 
impression of the magnitude of this error can be 
obtained by verifying this condition for the unper­
turbed Love waves and Rayleigh waves. This of 
course gives only a necessary condition for the 
validity of the stress linearisation. and not a suffi­
cient condition. because the stress in the perturbed 
medium may behave differently. The error made 
by the linearisation is defined here as 

- h ) - ( - h ) a,T" (Z = 0) x 100% 
T,,(Z = -h) 

(4.1) 

The eigenfunctions are calculated for the M7 
model of Nolet (1977). As a representative exam-
pie, the error made by linearising T" for the 
fundamental mode as a function of period is shown 
in Fig. 2 for several values of the topography. The 
other stress components, and the error for the 
high~r modes behaves similarly. It is quite arbi­
trary to decide how large an error is acceptable. A 
relative error of 20% is used here as a maximum 
since the error made by the stress linearisation is 
only part of the total error. With this criterium it 
follows that for a mountain height of 2 km the 
error is unacceptably large for periods shorter 
than 12 s. In general, for realistic values of the 
large scale topography, the linearisation of the 

PERIOD (SEC) 

Fig. 2. Relative error for T" (defined in (4.1» for the funda­
mental Rayleigh mode for several values of the topography 
height (given in kilometers). 

stress poses no problems for periods larger than 
15 s. 

5. The topography interaction terms 

In this section the topography interaction terms 
per unit area (S·') are shown for a point topogra­
phy with a height of 1 km. Since the topography 
interaction terms are linear in the mountain height 
(3.10a-d), results for a mountain of arbitrary 
height can be found by rescaling. The M7 model 
of Nolet (1977) was used again as a reference 
medium. The topography interaction terms are 
a simple function of the scattering angle. and 
the same convention as in paper 1 is used to de-
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Fig. 3. Topography fundamental mode inleraction terms for a 
moun lain height of 1 km. 
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Fig. 4. Topogmphy Love wave interaction terms for a moun­
lam height of 1 km. 

note the different azimuth terms. For example, 
SR, _ L, (1) denotes the sin cp coefficient for the 
conversion from the fundamental Love mode to 
the first higher Rayleigh mode, SR, _ R, (0) indi­
cates the isotropic part of the scattering of the 
fundamental Rayleigh mode to itself. etc. 

Figure 3 shows the different azimuth compo­
nents of the fundamental mode topography inter­
action terms. These terms all rapidly increase with 
frequency. The interaction terms are given in units 
of (m- 2 

), and should be integrated in (3.2) over 
the surface of the topography to give the total 
scattering coefficien ts. 

Just as with surface-wave scattering by a moun­
tain root model (paper 1), the fundamental mode 
interactions dominate the interactions involving 
higher modes. As a representative example, the 
LN <- L, interaction terms are shown in Fig. 4. 

It can be seen in Fig. 3 that S L _ L (1) 
== - SL _ L (2), the same holds for the 'R, ~ R, 
interactions', and for the R 1 <- L, conversion. It 
turns out that a similar property holds for the 
interactions with higher modes too. This can be 
verified in Fig. 4 which shows the L N <- L, topog­
raphy interaction terms. Therefore, for each con­
version L N <- L, the 'cos cp' coefficient is almost 
opposite to the 'cos 2cp' coefficient. The reason for 

this can be seen by rewriting (3.IOa-d) in the 
following way 

S~~ = hkok.lf/[pO( coc. cos cp - /32 cos 2cp) 

(5.Ia) 

(5.Ib) 

S~';,. = S~';,.(O) 

+ hkok.r,Or{pO( coc. cos cp - f32 cos 2cp) 

(Hc) 

In these expressions c. is the phase speed of mode 
v, and f3 is the shear-wave velocity at the surface 
of the reference medium. For deep modes (long 
periods) the topography interaction terms are small 
(Fig. 4), while for shallower modes (shorter peri­
ods) the phase speed of both Love and Rayleigh 
waves is close to the shear-wave velocity in the top 
layer. This explains that for all cases of impor­
tance 

S(I) == - S(2) (5.2) 

This implies for Love waves 

S~~ == S~~ (I)(cos cp - cos 2cp) (5.3) 

which means that the L <- L radiation pattern has 
zero's approximately for 

(5.4) 

so that the scattering in the forward direction is 
weak, and back-scattering is favoured. 

For R <- L topography scattering, (5.2) implies 
that 

(5.5) 

which means that the radiation pattern for R <- L 
conversion by topography has zero's for 

cp=oo, cp==±60° and cp=180° (5.6) 

For Rayleigh waves a similar analysis cannot 
be made because of the isotropic term S~;"(O). 

However, it can be seen in Fig. 3 that (at least for 
the fundamental mode) this term is relatively small, 
so that the radiation pattern due to the topogra­
phy for R, <- R, scattering is not too different 
from L, <- L, scattering. 

That this is indeed the case can be verified in 
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SCATTERING AMPLITUDE (10-lO m -2) SCATTERING AMPLITUDE (10 -10 m -2 ) 

2. ,---------------­

·2 L.2.-~--.L--~---''----'-~--~-_=' 

Fig. 5a. Radiation pattern for R 1 +- R 1 scattering for a period 
of 20 s. Dashed line is scaltering by topography of I km height, 
thin line is scattering by a mountain root, thick line is the sum. 
The direction of the incoming wave is shown by an arrow. 

Fig. 5a-c, where the dashed line shows the radia­
tion patterns for the fundamental mode interac­
tions by topography for a period of 20 s. Note 
that the L, <- L, topography scattering and the 
R, <- R, topography scattering is very weak in the 
forward direction. The L, <- L, topography radia­
tion pattern has a zero near q, = 120°, while the 
R, <- L j topography radiation pattern has a node 
near q,= 60°, Observe that the R 1 <- R, topogra­

2. ,----,-...-~----_,_-~~,___-__, 

·1. 

.2. '-.1---,--~-,----t.----,---,--_-"-----, 
.,. 

Fig. 5b. Radiation pattern for L1+- R j scallering for a period 
of 20 s. Lines defined as in Fig. 5a. 

.' -, 
Fig. 5c. Radiation pattern for L 1 '- L 1 scatlering for a period 
of 20 s. Lines defined as in Fig. 5a. 

phy radiation pattern differs mostly from the 
L, <- L1 pattern in the weaker back-scattering. 
For other periods the topography radiation pat­
terns are very similar because the different azimuth 
terms behave similarly as a function of frequency. 

Figure 5a-c shows the relative importance of 
scattering by topography to the scattering by 
buried heterogeneities for a period of 20 s. These 
figures of course depend strongly on the type of 
heterogeneity which is considered, on the moun­
tain height, and on frequency_ Therefore these 
figures are only a rough indication of the relative 
importance in general. In this case a mountain 
height of 1 km is used, and the mountain root 
model shown in paper 1 is used for the buried 
scatterer. (The mountain root model is taken from 
Mueller and Talwani (1971), and consists of a 
light, low velocity heterogeneity between 30 and 
50 km depth, perturbing the medium in that re­
gion with approximately 10%. The structure of a 
mountain root depends in general hoth on the 
height of the mountain, as well as on the horizon­
tal extent. This dependence is ignored here hy 
using the same mountain root model, irrespective 
of the topography.) 

In all three fundamental mode interactions the 
topography scattering is of the same order of 
magnitude as the scattering by the mountain root. 
For periods shorter than 20 s the surface waves 
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are so shallow that the topography scattering tends 
to dominate. It can be seen in Fig. 5a-<: that 
usually the topography interaction (S), and the 
mountain root interaction (B) are of the same 
sign, because the sum of the two terms is larger 
than each term separately. (The only exception is 
L, <- L, scattering at a right angle.) It turns out 
that this is also the case for the radiation patterns 
involving higher modes. 

That the topography scattering and the 
scattering by the mountain root enhance each 
other is caused by the fact that both the topogra­
phy and the presence of the mountain root give 
rise to a thickening of the waveguide (the crust). 
Therefore, these effects are in a sense similar. The 
difference is that the mountain root heterogeneity 
results in a perturbation of the medium itself, 
while the topography affects the surface boundary 
condition. This gives rise to the different shapes of 
the radiation patterns, and shows that one should 
be careful in modelling subsurface heterogeneities 
with variations of the free surface, as suggested by 
Bullit and Toksoz (1985). 

6. Fraunhofer diffraction of surface waves 

The interaction terms which were calculated in 
the previous section were given per unit area. To 
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Fig. 6. Geometry lor Fraunholer diffraction. 

obtain the scattered wave (3.2), an integration 
over the heterogeneity should be performed. A 
crude estimate of the strength of the scattered 
wave can be obtained by multiplying the interac­
tion terms with the horizontal extent of the inho­
mogeneity. This will, however, overestimate the 
strength of the scattered wave because this proce­
dure ignores interference effects which tend to 
reduce the scattered wave. 

To incorporate these interference effects, let US 

consider a localized scatterer which has a horizon­
tal extension which is small compared to the 
source-scatterer distance, and the scatterer-re­
ceiver distance. This means that in the notation of 
Fig. 6 

Irl«X,oandlrl«X~ (6.1) 

In that case the phase of the integrand in (3.2) can 
be linearised in Ir I. Furthermore, the variation of 
the geometrical spreading factors over the scatterer 
can be ignored, because these varia tions are of 
relative order Ir 1/X,oor 2' In that case the scattered 
wave can be written as 

where To, is the total interaction coefficient 

TO' = Je,,«k.i,+k.i,).i'VO'U)dS (6.3) 
s 

This means that the total interaction term is given 
by the two-dimensional Fourier transform of the 
heterogeneity. 

The wavenumber of the incoming wave is given 
by 

k;n = -r,k, (6.4) 

and the scattered wave has wavenumber 

(6.5) 

Therefore the Fourier transform (6.3) is to be 
evaluated at the wavenumber corresponding to the 
wavenumber change in the scattering event 

(tl.k)O'=k~ul_k;n (6.6) 

The magnitude of this wavenumber can easily be 
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expressed in the scattering angle <I> 

Ak·' = (k; + k; - 2kJ, cos <1»'/2 (6.7) 

If the scatterer exhibits cylinder symmetry, the 
azimuth integration in the Fourier integral can be 
performed. If one uses the integral representation 
of the Bessel function it follows that 

T·' = 2w['"rJo(Ak·'r )V·'(r )dr (6.8) 
o 

So that for a scatterer with cylinder symmetry the 
total scattering coefficient is just the Fourier-Be­
ssel transform of the heterogeneity. 

7. Application to a Gaussian mountain 

In this section Fraunhofer diffraction by an 
idealised Gaussian shaped mountain is consid­
ered. This means that it is assumed here that 

(7.1 ) 

Of course a Gaussian mountain cannot satisfy the 
conditions (6.1). However, the tail of the scatterer 
contributes little to the integral, and this error is 
simply ignored. For a Gaussian mountain the 
integral (6.8) can be performed analytically. 
Abramowitz and Stegun (1970) gave an expression 
for the Fourier- Bessel transform of a Gaussian. 
Using this result one finds 

T·' = 7TL2V·' 

X exp[ - Hk; + k; - 2k.k, cos <1» L 2] 

(7.2) 

The term 7TL2V·' is the integral of the heterogene­
ity over the volume of the scatterer. The exponent 
term describes the interference effects of different 
parts of the scatterer. For interactions of the 
fundamental mode with the higher modes, k. and 
k, are different so that the exponent is always 
negative. This term therefore leads to a weakening 
of the interactions of the fundamental mode with 
the higher modes. 

It is interesting to consider this interference 
term in some more detail for unconverted waves 

k. = k, = k (7.3) 

(This condition is almost satisfied for the interac­

tion of the fundamental Love mode with the 
fundamental Rayleigh mode, since their wave­
numbers are usually not too different.) In that 
case the interference term is given by 

exp[ - HkL)2(1- cos <1»] 

If the scatterer is wide compared to the wave­
length of the surface wave (i.e., kL» I), this term 
is very small except for <I> = 0, s6 that the radiation 
pattern is strongly peaked in the forward direc­
tion. This effect is known in the theory of scattering 
of electromagnetic waves as the Mie-effect (Born 
and Wolf, 1959). In Fig. 7 this effect is shown for 
R, +-- R, scattering by topography at a period of 
20 s. To appreciate the dependence of the shape of 
the radiation pattern on the width of the moun­
tain, the radiation patterns are normalised. For a 
small mountain (L = 0), the forward scattering is 
comparable to the back-scattering. As the width of 
the mountain (2L) increases to values comparable 
to the wavelength of the Rayleigh wave (70 km), 
the radiation pattern has only one narrow lobe in 
the forward direction. 

The strength of the scattered wave for R I +-- R, 
scattering at a period of 20 s by topography of 1 
km height can be seen in Fig. 8. This figure 
includes the topography only, the contribution 
from the mountain root is not taken into account, 

NORMALIZED seATIERING AMPLITUDE 
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Fig. 7. N'JrmaJised topography scattering amplitude TR ] ~ R[ 

for a Gaussian mountain for a period of 20 s. Half width L is 
indicated in kilometers. Incommg wave j~ shown by an arrow. 
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Fig. X. Topogr;lphy scaLLering amplitude TRIo- R for a GJ.us­
l 

~i<lfl mountain lIf 1 kill height ~l a period of 20 ). HJ.lf \",iJth L 
is mdu:ated in kilomeler.s. Incllming wave is shown hy an 
'JfrllW. 

because the degree of compensa tion depends on 
the size of the mountain too. One should therefore 
he careful with the interpretation of this figure, 
since the presence of a mountain root affects the 
forward scattering drastically (Fig. 5a-c). Further­
more, the strength of the topography scattering 
depends on the mountain height. 

For this particular example it can be concluded 
that for mountains with a half width less than 30 
km the R, <- R, scattering at 20 s is extremely 
weak. However, for larger mountains the forward 
scattering increases rapidly with the mountain size. 
For mountains with a half width larger than 70 
km the total topography interaction coefficient is 
larger than 0.4. This means that the scallered wave 
(as it follows from this calculation) is not small 
compared to the direct wave, which signals the 
breakdown of the Born approximation. This con­
firms the NORSAR observations that surface 
waves with a period shorter than 20 s are strongly 
scattered (Bungum and Capon, 1974). It will be 
dear that a mountain complex like the Alps, which 
has a half width much larger than 70 km, and 
which has a pronounced root (Mueller and 
Talwani, 1971) will severely distort the propa­
gation of surface waves with a period shorter than 
20 s. 

8. Scattering by a band heterogeneity revisited 

The perturbation theory derived in this paper 
and in paper I is valid for 'weak inhomogeneities'. 
The inhomogeneity has to be weak because of the 
requirement that the scattered waves are small 
compared to the direct wave. Now suppose we 
want to apply the theory to a weak and smooth 
heterogeneity with a large horizontal extent. 
Smooth means in this context that 

(8.1 ) 

where 0" is a horizontal derivative, and k is the 
horizontal wavenumber of the mode under consid­
eration. A similar condition is assumed to hold for 
,\.J, p' and h. This condition implies that the 
heterogeneity varies little on a scale of a horizon­
tal wavelength. 

For a heterogeneity with a large horizontal 
extent, the integrals for the scattered wave may 
diverge with the size of the heterogeneity, even if 
the inhomogeneity is relatively weak. This diver­
gence is an effect of the truncation of the per­
turbation series (Nayfeh, 1973), since the sum of 
all orders is necessarily finite. Physically this can 
be understood in the following way. If a wave 
propagates through a region with a weak and 
smooth heterogeneity, the only effect of the inho­
mogeneity is to perturb the local wavenumber. 
Instead of a solution exp (ikox) for a laterally 
homogeneous medium, the laterally heterogeneous 

~ 
modI! cr 
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Fig. 9. Geometry for surface wave scatlering hy a band hetero­
geneity. 
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medium has a solution exp ir(k o+ ok )dx. In 
that case it can be shown with WKBJ theory that 
reflections and wave conversions are negligible 
(Bretherton, 1968; Woodhouse, 1974). This means 
that the Born approximation, which splits the 
total wave in a direct wave and a scattered wave, 
does not make much sense physically because in 
reality there is just one phase shifted transmitted 
wave. 

We discuss this for the band heterogeneity 
model shown in Fig. 9. It was shown in paper I 
that the total wave in case of propagation through 
a band heterogeneity is given by 

el (k"X,.+1T/4) _ 

U(r,)=~Vk)(7T )1/2[V(0).F] 
"2 k •x , 

2i, fXR ]
X [1 + J:: XL V"(x)dx 

e,(k"X,.+7T/4) _ 

+ L 2i,p·(zJ 12[V(0).F]
."". ("!-kk)1

2	 • " 
j 

X fXR e,(k.-k. , 1/2 V"'(x)dx 

xl (k.(x,-x)+k.x) 

(8.2) 
Figure 9 defines the geometric variables in this 
expression. For convenience the modal summation 
has for once been made explicit. The unconverted 
waves are taken together with the direct wave. The 
last term in (8.2) describes the converted waves. 
The inter.i\ction terms are to be evaluated in the 
forward direction (ep = 0). 

From this point on we shall only concern our­
selves with the unconverted wave, since the last 
integral in (8.2) is negligible for a smooth hetero­
geneity. (This is becal".ie of the oscillation of the 
exponent term in the integrand.) For simplicity 
the index p will be suppressed, but it should be 
kept in mind that a sum over all unconverted 
modes is implied. 

If the heterogeneity is weak, and not too wide, 
we can approximate 

2i, J 2i. J (8.3)I+T V(x)dx=exPT V(x)dx 

so that the only effect of the heterogeneity IS a 
phase shift of the transmitted wave. 

If the heterogeneity is weak and smooth, but 
wide. the interval (x I.' x,,) can be divided in thin 
subintervals. By increasing the number of these 
subintervals they can be made arbitrarily thin, so 
that (8.3) can be used for each subinterval. How­
ever, the transmission coefficient of a combination 
of subintervals is in general not related in a simple 
way to the transmission coefficients of the subin­
tervals. 

Rayleigh (1917) addressed this problem by con­
sidering the reflection and transmission in a 
medium consisting of many layers with equal re­
flection and transmission coefficients. Let Tn and 
I n denote the reflection and transmission coeffi­
cient of 11 of these layers. Rayleigh (1917) showed 
that in that case 

tnt",
I =-- ­	 (8.4)
n+n1 }-r"rm 

Therefore the transmission coefficient of the com­
bination of two subs tacks is the product of the 
transmission coefficient of each substack. pro­
vided the reflection coefficients are small. 

For a smooth heterogeneity the reflection coef­
ficients are indeed small (Bretherton. 1968). so 
that the transmission coefficient of a stack of 
subintervals is the product of the transmission 
coefficients of each subinterval. Therefore the 
phase shifts introduced by each subinterval should 
be added. 

This means that. under the restriction that the 
heterogeneity is smooth, the (divergent) Born ap­
proximntion should be replaced by 

2i, f'R 2i, fX R 
1+ T . V(x)dx---> eXPT V(x)dx (8.5) 

\ I	 ·~I 

This renormalisation procedure. yields a finite re­
sult for a wide and smooth heterogeneity, and is 
consistent with results from WKBJ theory 
(Bretherlon, 1968). Morse and Fcshbach (1953) 
gave in paragraph 9.3 a rigorous proof of (8.5) for 
scattering by a potential in the 1-0 Schrodinger 
equation. 

9.	 The partial derivatives of the phase speed with 
respect to topography 

If the expressions (8.2) and (8.5) are combined, 
the following expression results for the uncon­
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verted wave 

(The modal summation is not made explicit, and 
the parameter f. is suppressed.) It follows from 
this expression that the interaction terms V are 
closely related to the wavenumber perturbation 
due to the heterOReneity 

2
8k=kV(x) (9.2) 

and the relative phase speed perturbation is given 
by 

[se] 2- =--V(x) (9.3) 
e k 2 

These results are derived for a smooth band het­
erogeneity. However, since the phase speed de­
pends only on the local properties of the medium, 
these results can be used for an arbitrary medium 
with heterogeneities which vary smoothly in the 
horizontal direction. 

The interaction terms V contain a contribution 
of the buried heterogeneities and a contribution of 
the topography variations. As an example, con­
sider the phase speed perturbation for Rayleigh 
waves by a buried heterogeneity. In that case V in 
(9.3) follows from (3.7d) with .p = O. 

[Beer = 4e~IJfdz[-pJw2(rJ2+rn 

+ (kr l + a,rJ2
>.., + (2k 2rJ

2+ 2(a,r2)2 

+(kr2-a,rJ2)flJ] (9.4) 

The factor 4eUIJ could be added because of the 
normalisation condition (3.4). Equation 9.4 is equal 
to expression (7.78) of Aki and Richards (1980), 
where the Rayleigh-wave phase speed perturba­
tions are calculated with a variational principle. 
The scattering theory thus produces the same re­
sult in a roundabout way, confirming that small 
variations in the phase speed are treated correctly. 
For Love waves a similar result can be derived 
from (3.7a). 

Since the interaction terms for topography 
scattering are known, the partial derivatives of the 
phase speed with respect to the topography height 
(h) can be calculated too. For Love waves one 
finds by inserting (3.10a) (with .p = 0) in (9.3) that 

[8
e r= -2pO/~(e2-/12)h (9.5a) 

e 

while (3.l0d) yields for Rayleigh waves 

2 2
[See r= -2pO[r22e2 + r]2( e - 4(1- ~: )/1 )]h 

(9.5b) 

In these expressions all variables are to be 
evaluated at the surface. With the normalisation 
condition (3.4), this finally gives the partial deriva­
tives of the phase speed with respect of the topog­
raphy height. For Love waves this leads to 

~.]L = ---=--!- O/2( 2_ /12) (z = 0) (9.6a)[ eah 4eUI p J e 
1 

and for Rayleigh waves 

~]R[ eah 

2 2 
= 4;~II pO [rle2 + r t - 4(1- ~: )/1

2 
( e )] 

(z=O) (9.6b) 

The partial derivatives of the phase speed with 
respect to topography height are shown in Fig. 10 
for the fundamental modes, calculated with the 

PERIOD (SEq 

Fig. 10. Phase speed derivative with respect to topography for 
the fundamental Love mode (L) and for the fundamental 
Rayleigh mode (R). 
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M7 model of Nolet (1977). It can be seen that the 
effect of topography on the phase speed is largest 
for periods of about 20 s. For large periods the 
penetration depth of the surface waves is so large 
that the topography has little effect. For short 
periods the surface waves only sample the top 
layer. In that case, a thickening of the top layer by 
topography does not influence the phase speed. 

The relative phase speed perturbation for a 
topography of 1 km is of the order of 0.5%. This 
means that for realistic values of the topography 
(up to several kilometers) this effect cannot be 
ignored. Since the topography is in general well 
known, this effect can easily be taken into account 
in inversions using phase speed observations 
(Nolet, 1977; Cara et aI., 1980; Panza et aI., 1980). 

10. Summary 

Surface-wave scattering by topography can be 
incorporated in the linearised surface-wave 
scattering formalism of paper 1. An error analysis 
shows, however, that for realistic values of the 
large scale topography (1-5 km) the theory breaks 
down for periods shorter than 15 s. Furthermore, 
steep slopes cannot be handled by the theory. 

The radiation pattern for scattering by topogra­
phy shows that the scattering in the forward direc­
tion is relatively weak. A comparison with the 
radiation pattern for a 'mountain root model' 
shows that scattering by topography, and scatter­
ing by a mountain root in general enhance each 
other. The reason for this is tha t both effects lead 
to a thickening of the crustal waveguide. 

For scattering by an extended heterogeneity, 
interference effects between waves radiated from 
different parts of the scatterer lead to an enhance­
ment of the forward scattering (Mie effect). Fur­
thermore, these interference effects lead to a rela­
tive weakening of the interaction of the funda­
mental mode with the higher modes, compared to 
the interactions among the fundamental modes. 

For a heterogeneity which is smooth in the 
horizontal direction a relation is established be­
tween the interaction terms and the variations in 
the phase speed. The partial derivatives of the 
phase speed with respect to the medium parame­

ters, as they are known from variational princi­
ples, can be obtained from the scattering theory 
too. In an analogous way the partial derivatives of 
the phase speed with respect to topography are 
obtained. 

This is important for the efficient calculation of 
surface-wave seismograms, and for applying 
travel-time corrections for the topography. Fur­
thermore, the phase-speed variations due to topog­
raphy could cause surface-wave focussing and de­
focussing effects. Ray-tracing techniques, as devel­
oped by Gjevik (1974), Babich et al. (1976) or 
Gaussian beams (Yomogida and Aki, 1985), could 
be used to investigate this. 

The equivalence between topography and 
surface perturbations of the medium parameters 
shows that (in this approximation) the inverse 
problem has a non-unique solution. This poses no 
problems for the holographic inversion scheme 
presented in paper 1, since the topography is in 
general well known. Therefore the surface waves 
scattered by the topography can be calculated, 
and subtracted from the recorded surface waves. 
The remaining scattered surface waves are 
scattered by the heterogeneity under the topogra­
phy, so that given enough data the inversion 
scheme of paper 1 could be used to map the 
heterogeneity under the topography. 
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Appendix 

Surface perturbations of medium parameters 

Suppose that the density and the elastic para­
meters are perturbed all the way up to the surface. 
but that there is a nat topography (h = 0). As 
shown in paper 1 the scattered wave satisfies in 
the interior 

(AI) 
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Linearising the boundary condition (2.3-4) yields 
for the perturbed quantities at z = 0 

(A2) 

The r.h.s. of (A1) can be considered as a surface 
traction exciting the scattered wave. With a repre­
sentation theorem (Aki and Richards, 1980), (AI) 
and (A2) can be solved for ill 

jG (- -') '" (-')a O( -')dS'- Ij r, r llII/em)nk r /lUJ.. r 

(A3) 

Using the representation (2.2) for L'. (2.6) for the 
direct wave, and applying a partial integration 
lead., to 

- j(a",G,p, r'))c~"'"k(r') 

x ( a,,ck/ (r', r,») f; (r, )d V' 

j "G (' -')' (-')+ n m 'I r. r clm'lJ.. r 

x (v"Gk/(r', r.))F,(r,)dS' 

J OG (- -') I (-')
- 11 m II r 1 r cm)nt.. r 

x (a"Gk/ (r', r,)) f;(r,)dS' (A4) 

The third term denotes the 'surface terms' which 
have been suppress"si in paper 1 by considering 
only buried scallerers. As ilturns out, this term is 
cancelled by the last term in (A4), which is the 
contribution to the scattered wave from the per­
turbed boundary conditions (A2). (This follows 
from the symmetry properties of the elasticity 
tensor: CJ"'''k = C"'Jnk') Therefore only the volume 
terms in (A4) contribute, and surface perturba­
tions of the medium can be allowed without any 
modification. 
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A field experiment for image reconstruction 

This chapter is published as: 

Snieder, R., Surface wave holography, in Seismic tomography, with applications in glo­
bal seismology and exploration geophysics. edited by G. Nolet, pp. 323­
337, Reidel, Dordrecht, 1987. 
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Chapter 14 

Surface wave holography 

R. Snieder 

1. Introduction 

Surface waves have proven to be very useful in determining the properties of the Earth's 
crust and mantle. The traditional surface wave analysis consists of two steps. First, from 
surface wave recordings, dispersion data (phase velocities or group velocities) are retrieved 
for each source receiver pair (Dziewonski and Hales, 1972; Nolet, 1977). Next, the 
information for different frequencies and many source receiver pairs is combined to yield 
an image of the Earth's interior (e.g. Woodhouse and Dziewonski, 1984; Montagner, 1986; 
Nataf et al., 1986). These methods implicitly use ray theory by resorting to the "great circle 
theorem" (Backus, 1964; Jordan, 1978; Dahlen, 1979). This theorem states that for a 
sufficiently smooth medium the surface wave data are only influenced by the structure 
under the great circle joining the source and the receiver. The great circle theorem is 
acceptable provided the inhomogeneity varies little on the scale of the wavelength of the 
surface waves. 

It turns out, however, that this condition is often violated in realistic situations. A 
Rayleigh wave with a period of 20 seconds has a horizontal wavelength of about 70 
kilometers. It is well known that, especially in continents, the lateral heterogeneity on this 
scale can be considerable. In fact, the models constructed from surface wave data using the 
great circle theorem sometimes vary strongly on a distance of one wavelength (panza et al., 
1980). In that case the constructed model is inconsistent with the ray theory used for 
producing the model. It is clear that in these situations one has to resort to a more complete 
wave theory which takes surface wave scattering and reflection into account. Since these 
effects are most sensitive to the horizontal gradient in the Earth's structure, scattered 

323 

G. Nolet (ed.), Seismic Tomography, 323-337. 
© 1987 by D. Reidel Publishing Company. 



53 Afield experiment 

surface waves could provide valuable independent information on the structure of the 
Earth. 

Surface wave scattering and reflection can be treated analytically in two dimensions 
(Kennett, 1984), but for three dimensional surface wave scattering no analytical solutions 
are available. In that case one either has to use numerical methods, or make some 
simplifying assumptions. The Born approximation has been used successfully for 
describing surface wave scattering in three dimensions (Snieder, 1986ab). A brief outline 
of this theory is presented in section 2. The Born approximation gives a linear relation 
between the scattered waves and the heterogeneity. This situation is closely analogous to 
the wave theories forming the basis of modem migration schemes in exploration 
geophysics (Clayton and Stolt, 1981; Tarantola, 1984ab; Bleistein et al., 1985; Bleistein 
and Gray, 1985; Ikelle et aI., 1986). 

It is therefore not surprising that an inversion scheme using scattered surface waves can 
be formulated along similar lines. In section 3 it is shown that this scheme can be derived 
using a least squares criterion, as in Tarantola (1984ab). Without making additional 
simplifying assumptions the resulting inversion scheme isn't very manageable. It is shown 
in section 4 how some simplifications result in a workable scheme for reconstructing an 
inhomogeneity using scattered surface waves. The resulting reconstruction method is 
similar to holographic techniques used in optics. 

In order to check if the method works with real data, a field experiment was conducted 
on a tidal flat, where surface waves were reflected by a dam. The results for this inversion 
are presented in section 5. A field experiment, as presented here, is an ideal tool for testing 
the feasibility of abstract mathematical inversion schemes. 

In this chapter the summation convention is used throughout for vector and tensor 
indices. The dot product which is used is defined by 

[p.q] == Pi *qi' (1.1) 

2. Linearized theory for surface wave scattering 

The equation of motion combined with the equations for linear elasticity lead to the 
following expression for the displacement field in the frequency domain 

Lj;u; =F i (2.1) 

where the differential operator L is defined by 

L i; = -PurOi; - an cinmjam (2.2) 

and F is the point force which excites the wavefield. 

Now suppose that the elastic medium (i.e., the density and the elasticity tensor) can be 
decomposed as follows: 
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1 

r 
s 

Figure 1 Definition of the geometric variables for the direct wave. 

p(x ,y ,z ) =pO(z) + p1(x ,y ,z) (2.3.a) 

£(x,y,z) = £O(z) + £l(X,y,z). (2.3.b) 

This means that the medium is viewed here as a laterally homogeneous reference medium, 
with heterogeneities superposed on it. This decomposition suggests the following 
decomposition of the displacement 

1u = uO + u . (2.4) 

uO is the displacement in the laterally homogeneous reference medium, this term is usually 
called the direct wave. u1 describes the effect of inhomogeneities, this term is usually 
labelled the scattered wave. 

In order to derive expressions for uO and u1 it is convenient to introduce the surface 
wave polarization vectors. For Love waves the polarization vector is 

(2.5.a) 

and for Rayleigh waves 

pV(z ,<j» = r~ (z) L1 + ir~ (z) Z. (2.5.b) 

In this chapter Greek indices are used to label the surface wave modes. A summation over 
these indices indicates a summation over both Love waves and Rayleigh waves, thus 
treating both kinds of waves in an unified way. The unit vectors L1, ~ and z point 
respectively in the radial, trans',;erse and down direction, see figure 1. The functions I ~ (z ), 
r ~ (z) and r~ (z) are the surface wave eigenfunctions as defined in Aki and Richards 
(1980). These eigenfunctions are assumed to be normalized according to: 

(2.6) 

Uv and cv are the group and phase velocity of the mode under consideration, and I ~ is the 
kinetic energy integral (Aki and Richards, 1980). 

The far field surface wave Green's function of the laterally homogeneous reference 
medium can conveniently be expressed as a dyad of the polarization vectors. As shown in 
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Figure 2. Definition of the geometric variables for the scattered wave. 

Snieder (1986a), this leads to the following far field expression for the direct wave in the 
frequency domain 

exp i (kvX+f) 
'Il (2.7) 

v (~ kvX) 

see figure 1 for the definition of the geometric variables. It is assumed here that the 
wavefield is excited by a point force F at location r s . Note that the direct wave is written as 
a superposition of modes (Love waves and Rayleigh waves), and that the modes don't 
interact with each other. Using the Born approximation, one can show that for sufficiently 
weak: scatterers the scattered wave in the frequency domain is given by 

exp i (kvX I+f) 
1t 'Il 

("2kvX I) 

(2.8) 

see figure 2 for the definition of geometric variables. This expression is derived in Snieder 
(l986a) for buried scatterers in an isotropic medium. It is shown in Snieder (1986b) that 
scattering due to surface topography can also be described by (2.8). Reading (2.8) from 
right to left, one follows the "life history" of the scattered wave. At the source (in r s), mode 
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v is excited by the projection of the point force F on the polarization vector pV. Then, a 
propagation to the scatterer occurs. This gives a phase shift and amplitude decay due to

';' 

geometrical spreading, described by the term exp i (k yX1+ :)I( ~ kyX 1) . At the scatterer 

(in r o), scattering and mode conversion occurs. This is described by the interaction terms 
V crv• This term gives the coupling between the incoming mode v, and the outgoing mode <r. 
After this, the mode <r propagates to the receiver, which is shown by another propagator 
term. Finally, the oscillation at the receiver (in r) is described by the polarization vector pO". 
An integration over the scatterer, and a summation over all outgoing and incoming modes 
(<r,v) superposes the different parts of the scattered waves u1

• 

The interaction terms vcrv are a linear function of the perturbations in the density (p1), 
the Lame parameters O} and Ill), and the surface topography h. It can explicitly be seen 
that in (2.8) a single scattering approximation is used, since the interaction terms appear 
only once. For buried inhomogeneities the interaction terms are given in Snieder (1986a), 
while the interaction terms due to surface topography are derived in Snieder (1986b). For 
example, the Love wave-Love wave interaction for buried heterogeneities is given by 

Vlf = J[ (l fl rp1o:,z- (d. 1n(d. 1n1l1
) cos <1>- kakvl flrIII cos 2<1>] dz. (2.9) 

In this expression ljl=<I>r<l>l is the scattering angle, and kv is the wavenumber of mode v. 
The interaction terms are a very simple function of the scattering angle <1>. 

At this point we can already conclude that in inversions using scattered surface waves, 
V crv•we can only obtain information of the scatterers through the interaction terms 

Information at different frequencies (and possibly different modes) is needed to obtain the 
depth dependence of the inhomogeneities. The dependence of vcrv on the scattering angle 
can in principle be used to unravel the contributions from· the density and the Lame 
parameters. 

The theory is presented here for a point force excitation in a plane geometry. The 
excitation by a moment tensor is discussed in Snieder (1986a), and the formulation of this 
theory in a spherical geometry is shown in Snieder and Nolet (1987). In both cases only 
minor changes in the theory have to be made. 

3. A formalism for surface wave holography 

Scattered surface waves can be used to map the inhomogeneities in the Earth. The theory 
in the previous section is linear(ized), therefore least squares inversion techniques can 
conveniently be used for this. Least squares inversion for variables depending continuously 
on one or more space variables has been discussed in detail by Tarantola and Valette 
(1982). Suppose we want to find the following model vector 

p1(r)]
mer) = ,}(r) (3.1)

[ 1l1(r) 

and suppose we describe the a-priori knowledge of the heterogeneity with the vector mo(r). 



57 Afield experiment 

Let the vector u denote all available data in the time domain. With "data" we mean here the 
difference between the recorded signals, and the synthetics produced by the a-priori model 
mo(r). We shall assume here that the a-priori model is zero (mo(r)=O). This means that the 
data (u) consist of the difference between the recorded signals, and the synthetic 
seismograms of the laterally homogeneous reference medium. 

The inversion scheme of Tarantola and Valette (1982) requires the a-priori covariances 
of the model (Cm (r,r')), and of the data (Cu )' If the a-priori cross covariances between the 
model and the data (Cum) are assumed to vanish, the least squares solution of the model is 
given by (Tarantola, 1984a): 

(3.2) 

with 

M = Cm GT C;;-I G + I (3.3) 

and G is the gradient of the data with respect to the model parameters. 

In principle, (3.2) can be used to compute the model m(r) at every point in three 
dimensional space. In practice one shouldn't be too optimistic about a straightforward use 
of (3.2), since three different kinds of inversion are implied in (3.2): 

[1] The surface wave energy should be focussed in the horizontal directions on the 
scatterers. 

[2] The contribution of the three parameters pi, III and Al should be unraveled. 

[3] The depth dependence of these parameters should be reconstructed. 

It shall be clear that with band limited, noisy data for a limited range of scattering angles, 
the goals [2] and [3] can never be fully reached. As a simplification it is therefore 
appropriate to expand the depth dependence of pI, III and Al in a suitably chosen set of 
basis functions bp (z). The subscripts p and q are used throughout this chapter to denote 
these basisfunctions. The basisfunctions are used to parameterize the depth dependence of 
the heterogeneity, and w separate the contributions from pi, III and AI. From now on, we 
assume that the inhomogeneity can be decomposed as follows 

m(r) =L hp(x) bp(z) (3.4) 
p 

and the aim of the inversion is to reconstruct the fields hp (x). The vector x shall be used to 
denote the horizontal components of r (x=:=r-(r.z)z) this convention will be followed 
throughout this chapter. 

In order to obtain a workable formalism, more notation needs to be introduced. A 
superscript "rs" shall be used to denote the source receiver pair which is considered, thus 
u rs (t) is the time signal of the recorded scattered surface wave for source "s" and receiver 
"r". Furthermore, let the synthetic seismogram for source receiver pair "rs", basis function 
bp (z) and a scatterer at location x be denoted by s;S(x,t). Since the theory is linear, this 
synthetic seismogram is precisely the contribution of source receiver pair "rs" to the 
gradient (G) of the data at location x and basisfunction p. 
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Now let us assume that the data are uncorrelated, but that the autocorrelation of 
different seismograms may be different 

C;s,rs'(t,t') =0r.r' (\ ....,O(t-t')O',; (3.5) 

Inserting this in (3.2-3), and working out the implied operator products yields 

hp(x) = L fd 
2
x 1 fd2X2Mp;~ (x,xI) Cm,p,p.(XbX~ Hp.(x~ (3.6) 

P"p. 

where 

Hp(x) = L ~ f s;S(x.t) urs (t) dt (3.7) 
rs (]'rs 

and 

Mpq(x,x') = L f d2XI Cm.pp,(X,XI) L ~ f s;: (xI,t) s;S(x',t) dt + 0pqo(x-x'). (3.8) 
p, rs O'rs 

It can be seen from (3.6) that the inversion consist of three steps. The data (u rs (t» enter the 
inversion through the "holography term" Hp(x). After this, an integration with the model 
covariance (Cm ) is performed. Finally, a contraction with the inverse operator M-1 

completes the inversion. Now let us focus on the holography term (3.7). 

This term can be interpreted most easily by converting (3.7) to a frequency integral 
using Parseval's theorem (Butkov, 1968). Inserting (2.8) for the synthetic seismogram 
s;S(x,w) we get 

1 expi(kaX2+E-) expi(kvXI+E-)
4 4

Hp(x)=2LfdWL[Urs.pO(zr)] '1. Vp(1V(x) '1. [pV(zs}F] 
1t rs 

(J.V (~kaXii (~kvXI) 

(3.9) 

It is understood that all quantities at the right hand side are evaluated in the frequency 
domain, and that the geometric variables are to be considered for each source receiver pair 
separately. The interaction terms Vp 

ov(x) are for scattering (and conversion) by basis 
function bp (z) at location x. Equation (3.9) can be interpreted by considering the terms on 
the left and on the right of the interaction matrix. The term 

'1.1 

exp i (kvX 1+ : )/(~ kvX I) [pV(zs ).F] describes the waves excited by the point force F, 

which travel to the scatterer. In optics this term would be called "the illumination", since 
this term describes how much energy emanating from the source reaches the scatterer. The

'I. 

term [urs .pO(zr)] exp i (kaX 2+ : )/(~ kaX~ can be interpreted as the backpropagation of 
rsthe data u , into the medium. This can most easily be understood by noting the symmetry 

rsin (3.9) in the excitation F and the data u . The holographic term (3.9) depends on the 
correlation between the illumination and the backpropagated signal. A summation over all 
source receiver pairs completes this term. This procedure is similar to holographic 
techniques in optics, where an image is reconstructed using the interference between the 
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Figure 3. Ellipsoidal area over which the contribution of one source-receiver pair to the holographic term (3.7) 
is spread out in the absence of mode conversions. 

illumination, and the light which has (back)propagated from the hologram to the area of 
reconstruction. 

This holographic reconstruction procedure amounts to smearing out the recorded 
scattered energy over ellipses, or egg shaped curves in the medium. For instance, if mode 
conversions are absent, the recorded scattered wave for one source receiver pair is smeared 
out over an ellipse with the source and the receiver as focal points (figure 3). Using many 
different source receiver pairs, these ellipses are superposed to reconstruct the 
heterogeneity. Virtually all migration schemes used in exploration seismics use the same 
principle (either explicitly or implicitly). Insufficient data, or an inadequate reference 
model for the propagation leads to an imperfect reconstruction, producing the characteristic 
"smiles" in migrated seismic sections (Berkhout, 1984, chapter 5). 

After applying the holographic operator in (3.6), an integration with the model 
covariance em is to be applied. This covariance operator makes it possible to impose a­
priori knowledge on the spatial scale of variation in the medium. The integration over X2 

with this operator implies a smoothing of the holographic image. One should be careful not 
to apply too much smoothing. The reason for this is that the scattering effects are most 
sensitive to the horizontal gradients of the inhomogeneities. Smoothing scatterers over one 
wavelength of the surface waves eliminates virtually all scattering effects. Therefore it is 
crucial to allow sufficiently horizontal abrupt variations of the inhomogeneities. 

The last step in the inversion (3.6) entails the inversion of the operator M (3.8). After 
discretizing the model in cells, this inversion amounts to inverting a huge matrix. The 
matrix is in general very large, since the cell size should be much smaller than a 
wavelength. In order to do an inversion on a continental scale using surface waves with 
periods less than 100 seconds, several thousands of cells are required. A direct inversion of 
such a matrix is not feasible, but iterative techniques such as steepest descent, or conjugate 
gradients can be used for this, see chapter 1.2. Alternatively, one can complete the 
reconstruction (3.6) by making strongly restricting assumptions on the matrix M, which 
allows for a more convenient, but less accurate inversion of this matrix. 
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4. A simplified reconstruction procedure 

In this section a simplified version of the reconstruction (3.6) is proposed. It is assumed 
that the heterogeneity can be described by one basisfunction bp (z) and the subscript "p" is 
therefore dropped. Furthermore, it is assumed that the heterogeneity has a zero correlation 
length 

Cm (x,x') =: cr~ o(x-x') (4.1) 

and that all data have the same covariance cr;. Lastly, and this is the most restricting 
assumption, we ignore the off-diagonal elements of the operator M (x,x'). In this 
approximation 

h (x) =M-1(x,x) H (x) (4.2) 

with 
2cr 

M (x,x) =1 + ~ ~ f S7S (x,t i dt. (4.3) 
cru 7S 

Assuming the operator M to be diagonal means that one assumes that for each point x, all 
the scattered waves for all source receiver pairs are generated by a single scatterer at 
location x. This assumption clearly breaks down when different scatterers collectively 
generate scattered waves for all source receiver pairs. In that case (4.2-3) cannot be 
expected to give results which are quantitatively correct. However, it is shown in section 5 
that this simplifying assumption is able to produce qualitatively meaningful results. In fact, 
many migration schemes used in exploration geophysics implicitly use this assumption. 
(As an alternative, the system (3.2-3) could be solved iteratively, as shown in Tarantola 
(1984ab). In that case the substitution (4.3) specifies a preconditioning parameter for the 
iterative inversion (Tarantola, 1984c), and the final model is insensitive to the choice of this 
parameter. An explicit inversion of the operator M can then be avoided.) 

Combining (3.7) and (4.2-3) the image reconstruction is in this approximation 

~ f S7S (x,t) u7S (t) dt 
h (x) = _7S-::-- _ (4.4) 

cr-+2

+ ~ f S7S (x,ti dt 
crm 7S 

The numerator is simply the holographic term. The denominator contains two terms. The 
autocorrelation of the synthetic seismograms in the denominator serves to normalize the 
reconstructed heterogeneity. The cr;Jcr~ term serves to suppress the contaminating 
influence of noise. 

It is shown in Snieder (l986ab) that the radiation pattern for surface wave scattering 
usually has one or more nodes. For one source receiver pair, near a node of the radiation 
pattern, the autocorrelation of the synthetic seismograms in the denominator approaches 
zero faster than crosscorrelation in the numerator. This might lead to a numerical 
instability. The regularization term cr;/cr~ damps this instability. 
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Figure 4. Layout of the field experiment. 

5. A field experiment for image reconstruction with scattered surface waves 

A field experiment was carried out in order the test the feasibility of surface wave 
holography. Surface wave measurements were done on a tidal flat in the Netherlands. A 
cross shaped array of 24 (10 Hz.) geophones was placed 50 meters from a concrete dam 
(the "Grevelingendam"). A weight drop source (of 30 kg.) was used to generate surface 
waves at severa11ocations 50 meters from the dam, see figure 4. A description of the field 
equipment is given by Doornenbal and Helbig (1983). The reference model 
(Po(z), llo(z), "'-o(z)) used in the inversion was determined using standard surface wave 
dispersion analysis, using the fundamental Rayleigh modes and five higher modes (Gabriels 
et al., 1987). 

An example of the geophone records for one shotpoint is shown in figure 5. Note the 
relatively strong higher mode signal before the arrival of the fundamental mode. It can be 
seen that the direct fundamental mode arrives simultaneously at the geophones on the 
transverse leg of the array (geophone 13-24), confirming that this wave propagates parallel 
to the dam. After this, the scattered fundamental mode arrives. On both the parallel 
(geophone 1-12), and the transverse (geophone 13-24) leg of the array this wave has a 
slanted lineup, indicating that this part of the signal comes from the direction of the dam. In 
this inversion the signal was muted until just after the arrival of the direct fundamental 
mode, so that only the scattered fundamental Rayleigh mode was used in the inversion. 
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Figure 5. Field record for a shotpoint 168 meters from the geophone array. 
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Figure 6. Radiation pattern for the basis function employed for the scattering of the fundamental Rayleigh 
mode to itself. The direction of the incoming wave is indicated by an arrow. The numbers indicate the 
scattering amplitude 1m2

• 

(The Love wave contribution to the data and the synthetic seismograms is zero, because a 
vertical"force excites only Rayleigh waves, and vertical component geophones don't 
register Love waves.) 

The sediments composing the tidal flat have a shear wave velocity of "100-300 m/sec 
(depending on depth), and a density of approximately 1500 kg 1m 3. In the dam, shear wave 
velocities of several kilometers per second are possible, and the density can be as large as 
2500 kg 1m 3• It will be clear that the dam cannot be considered a "small perturbation", so 
that we cannot expect to obtain quantitatively correct information. However, the geometry 
of the scatterer isn't favourable to multiple scattering, which explains why this linear 
reconstruction technique can be employed. 

As a basis function, a constant relative shear wave velocity perturbation of 500%, and a 
constant relative density perturbation of 25% was assumed down to a depth of 12 meters. 
The radiation pattern for fundamental mode Rayleigh wave scattering is shown in figure 6. 
Note that the radiation pattern has a node for a scattering angle of approximately 90 
degrees. 

The image reconstruction was performed with a straightforward numerical 
implementation of (4.4). The synthetic seismograms S7S(X,t) were computed in the 
frequency domain using (2.8), and then Fourier transformed. Imaging experiments were 
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Figure 7a, Envelope of the reconstructed image h (x) in the undamped case (cr. =0), using only 4 geophones of
 
the array. The true location of the edge of the dam is shown by the vertical dashed line. The shotpoints and the
 
geophone array are marked with dots and a cross.
 
Figure 7b. As figure 7a, using only 8 geophones of the array.
 
Figure 7e. As figure 7c, using all 24 geophones of the array.
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Figure 8a. Envelope of the reconstructed image h (x) in the damped case (cr. ;to), using only 4 geophones of
 
the array, The true location of the edge of the darn is shown by the vertical dashed line. The shotpoints and the
 
geophone array are marked with dots and a cross.
 
Figure 8b. As figure 8a, using only 8 geophones of the array.
 
Figure 8e. As figure 8c, using all 24 geophones ofthe array.
 

perfonned for geophone spacings of 6 meters (using 4 geophones), 3 meters (using 8 
geophones). and 1 meter (using all geophones). (The dominant wavelength of the 
fundamental Rayleigh mode is 6 m.) In all cases five shotpoints were used in the inversion. 
The reconstructed inhomogeneity is a highly oscillatory function of the space variables, 
since the reconstructed inhomogeneity h (x) consists of the temporal correlation of two 
dispersed wavetrains. In the results presented here, the envelope of the function h (x) is 

I 
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Figure 9. Cross sections of the reconstructed image h (x) along the line AB for the solution in figure 8a (top 
panel), figure 8b (middle panel) and figure 8c (bottom panel). 

therefore shown. In the figures 7a,b,c the reconstructed image is shown in the undamped 
case (cru=O) for different geophone spacings. The dam is not reconstructed very well, and 
the reconstructed heterogeneity is dominated by a sickle shaped body near the geophone 
array. This is caused by the fact that for the basis function employed here, the radiation 
pattern has a node near 90 degrees, see figure 6. Therefore, all the points near the circle 
with the source and the receiver as antipodal points produce a scattered wave srs (x,t) with 
ve.y small amplitude. Since the denominator in (4.4) goes faster to zero with srs (x,!) than 
the numerator, this leads to an unrealistic inhomogeneity where these circles for different 
source receiver pairs overlap. This happens close to the geophone array. Taking more 
geophones into account gives some improvement, but the result isn't very good. 

If the damping is nonzero (cru=FO), the results are considerably better, as can be seen in 
the figures 8abc. The sickle-shaped "ghost heterogeneity" has disappeared, and in all cases 
a clear image of the dam is visible at the correct location. In all cases a mirror image of the 
dam (at the left side of the shotpoint-geophone line) is visible, but if more source receiver 
pairs are taken into account this mirror image weakens. The reason for this is that only the 
geophones on the transverse leg of the array contribute to a determination between "left and 
right" for the incoming waves. Taking more geophones into account leads to a better 
determination of the direction of the incoming wave. 
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Note that with a geophone spacing comparable to the dominant wavelength (as in figure 
8a), the inhomogeneity can still be reconstructed. This is fortunate, because in global 
seismology the station density is usually so small that the stations are more than a 
wavelength apart. Apparently, spatial aliasing effects don't affect the reconstruction 
strongly. 

Cross sections of the field h (x) along the line AB in figures 8abc are shown in figure 9 
for the three geophone spacings employed. Note the oscillatory character of the 
reconstructed image, which is a by-product of the correlation technique used here. The 
image of the dam can clearly be seen at 50 meters. The mirror image of the dam is also 
visible, but it can be seen that using more geophones leads to a weakening of this mirror 
image. Unfortunately, it is not possible to determine the sign of the heterogeneity from 
figure 9. In reality, the inhomogeneity is certainly positive because both the shear wave 
velocity and the density are much higher in the dam than in the tidal flat. Due to the 
oscillatory character of the reconstructed image this cannot be determined from figure 9. 
This experiment has shown the fcasibility of locating lateral heterogeneities in the Earth 
using scattered surface waves. Application of this technique to seismological data recorded 
with the NARS array (Dost et a!., 1984) is currently in progress. 
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Chapter 4 

On the connection between ray theory and scattering theory 
for surface waves 

Roel Snieder 

A proof is presented of the first order equivalence of ray theory for surface waves, and 
surface wave scattering theory, for the case of smooth lateral heterogeneity. 

1. Introduction 

Recently, a formalism was developed for linearized three dimensional surface wave 
scattering by buried heterogeneities (Snieder, 1986a), or by surface topography (Snieder, 
1986bc). In this theory the Born approximation is used, a plane geometry is assumed, and 
the far field limit is used throughout. These simplifications lead to a scattering formalism 
which is simple enough to allow mathematical manipulations, and provides an efficient 
method for computing synthetic seismograms for scattered surface waves. 

The resulting expression for the scattered surface waves contains an integral over the 
inhomogeneity. By using a stationary phase approximation for this integral one selects (at 
least for a smooth medium) the ray geometrical solution from this scattering integral. In this 
way, the first order ray geometrical effects (focussing, ray bending and phase shifting) can 
be determined by computing simple great circle integrals. This allows for an efficient 
scheme for computing synthetic seismograms in a smoothly varying medium. Furthermore, 
the fact that ray geometrical effects are contained in the scattering integral has 
consequences for the way we analyze surface wave data. 

2. Scattering theory for surface waves 

Suppose that the total displacement field in a laterally heterogeneous medium is 
decomposed as follows: 

NJ. Vlaar, G. Nolet, M.J.R. Wortel & SAPL. Cloetingh (eds), Mathematical Geophysics, 77-83. 

© 1987 by D. Reidel Publishing Company. 
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(2.1) 

where UO is the displacement in a laterally homogeneous reference medium, and u1 

describes the effect of the lateral heterogeneities. Using a dyadic decomposition of the 
Green's function, the wavefield UO excited by a point force fin r s is given by (Snieder, 
1986a): 

exp i(kvX+~) 
uO(r) =L pV(z ,<1» 11>4 (pv

o 
(zs,<I»'f) . (2.2) 

v (~ kvX) 

~ 

r 

Figure 1. Definition of lite geometric variables for lite direct wave gO. 

(See figure 1 for the definition of the geometric variables.) The pV vectors are the 
polarization vectors, the Greek indices indicate mode numbers. These are for Love waves 

and for Rayleigh waves 

(2.3) 

(2.4) 

In these expressions Ii, r i and r I are the surface wave eigenfunctions as defined in Aki 
and Richards (1980), normalized as in Snieder (1986a). 

Reading (2.2) from right to left one follows the life history of the direct wave uO. At the 
source the wave field is excited, the excitation is given by the projection of the point force f 
on the polarization vector pV(zs ,<1». (In Snieder, 1986a, the extension to a moment tensor 
excitation is shown.) After this, the wave travels to the receiver, experiencing a phase shift 
and a geometrical spreading. Finally, the oscillation at the receiver is given by the 
polarization vector pV(z ,ep). A summation over modes (index v) superposes the 
contributions of different modes. 

The distortion of the wavefield (u1) can be expressed in a similar way (Snieder, 1986a): 
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exp i (k.;x l+f) 
1t ih 

("2k.;x I) 

(2.5) 

'. 
Figure 2 Definition of the geometric variables for the wave distortion u1• 

(See figure 2 for the geometric variables.) In Snieder (1986a) a "single scattering 
interpretation" of this expression is presented. Note that we now have a double sum over 
modes (cr,v), and that mode conversion and scattering is described by the interaction terms 
V ov . For buried scatterers the interaction terms are simple depth integrals containing the 
heterogeneity and the surface wave eigenfunctions (Snieder, 1986a). For perturbations in 
the surface topography the interaction terms contain the topography height and the surface 
wave eigenfunctions at the surface (Snieder, 1986b). 

In Snieder (1986b) it is shown with a simple renormalization technique that the 
interaction terms for unconverted waves and forward scattering are closely related to the 
phase speed perturbations: 

v 
Be -2 - = - VW(forward) (2.6)

[ e ] k; 
3. The relation with ray theory 

Now consider a smooth medium, i.e., let us assume that the horizontal scale at which the 
heterogeneity varies is much larger than the wavelength under consideration. In that case 
the surface wave modes decouple (Bretherton, 1968; Woodhouse, 1974). We shall 
therefore consider one mode, and drop the index v. We take a coordinate system as shown 
in figure 3. The expression for the wave distortion can be written as 

ul(sr.n =0) = II R(s,n) V(s,n) eik(X1+X2
) dsdn , (3.1) 

with 
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(3.2) 

In general, the phase in (3.1) is rapidly fluctuating except near the "great circle" (n=O) 
where 

XI +X2:::: Sr + Yz [ -l + _1_] n2 . (3.3) 
S Sr-S 

If the heterogeneity (V) is smooth, the n -integral in (3.1) can be solved with the stationary 
phase approximation. Only a zone around the great circle contributes to the n -integral, the 
width of this zone is determined by the condition that the phase change (with n) should be 
less than 1t. This leads to the width of the Fresnel zone 

21t S(Sr-S )] 'h 
Inl < - . (3.4)[ k sr 

Ls 
"GREAT CIRCLE" 

5_".0 

Figure 3 Definition ofthe geometric variables used in the stationary phase evaluation of (3.1). 

This means that 

n]2 1 
[- < 21t -

Sr-S 
- «1 , (3.5) 

S Sr ks 

because of the far field assumption. A similar relation holds for (n I(sr-s ))2. 
The fact that only small n -values contribute to the scattering integral (3.1) allows a 

Taylor expansion of the terms R and V in the transverse coordinate n. If one just assumes 
the great circle values for these functions (setting n =0) one obtains the traditional great 
circle theorem (Jordan, 1978; Dahlen, 1979) in a flat geometry. Focussing and ray bending 
effects are retrieved, if second order expansions are made in the transverse coordinate n. 

The interaction terms for unconverted waves have the following form (Snieder, 
1986ab): 

V = V(O) + V(1) cos <1> + V(2) cos 2<1> , (3.6) 

where <1> is the scattering angle. Ignoring terms of relative order lIksr , the cosines can be 
replaced by 1. Using (2.6), the interaction term can then be expanded as 
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V(S ,n) =-~e [ (k)(s ,0) + nail (k)(s ,0) + lhn 2a (k)(s ,0)] (3.7)M e e e 

Likewise, the polarization vectors at the source and the receiver are in the far field limit 
given by: 

Ps =Ps°- -;n q.:° , (3.8.a) 

Pr = Pr°+ --n qr° . (3.8.b)
Sr-S 

In these expressions pO is the polarization vector for propagation along the great circle, 
while qO is the rotated polarization vector: 

qO = Zx pO (3.10) 

Inserting (3.7),(3.8ab) and (3.3) in (3.1), using the stationary phase approximation for the 
n -integral, and adding the reference wavefield UO, one obtains for the total wavefield 

exp i (ksr+E..) [ ~ 
U= --1t----,-,-'/.- (l+l<I>-Z)Pr(Ps 'f)+Drqr(Ps ·f)+DsPr(q.: .f) (3.10)4 . F ° 0" ° 0. ° 0. 

(Zksr ) 

In these expressions c1J, Ds' Dr and F are great circle integrals: 

s. a 
=-k J(-.-£) dsc1J 

° 
(3. 1l.a) 

e 

Ds 

s. Sr-S 
=­ J-° Sr 

be 
a,,(-) ds 

C 
(3.11.b) 

s. 

Dr = J~ a" (be ) ds
° Sr e 

(3.11.c) 

F = -
s. ( )S s-sJ r

° 
d"" (be) ds , (3.1 1.d) 

Sr e 

where the phase velocity and it's derivatives are to be evaluated at the great circle (n=O). 
Up to first order in the heterogeneity, (3.10) can be rewritten as: 

exp i (kX +c1J+ : ) 
U = (p~+Drq,?) 'Ii «PsO"+Ds~·)·F) (3.12) 

(~ ksr(l+F» 

Note the similarity between this expression, and the expression for the direct wave in the 
laterally homogeneous medium (2.2). The only difference is the great circle integrals 
appearing in (3.12). The phase integral <I> is just the phase shift due to the phase velocity 
perturbation at the great circle. (In Snieder (1986b) arguments are presented why it is 
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Figure 4 The relation between the ray deflection and the perturbation of the polarization vectors, for the 
horizontal component of the Rayleigh wave polarization vectors. 

actually better to use e iill instead of l+i<1>.) The surface wave polarization vectors p~ and 
p~ are perturbed by the deflection integrals Ds and Dr. These integrals simply describe the 
ray bending effects, leading to an apparent rotation of the source and the receiver. As an 
example, this is shown in figure 4 for the horizontal component of the Rayleigh wave 
polarization vector. Finally, the focussing integral F describes the focussing due to the 
transverse curvature of the velocity profile. 

The results (3.11) and (3.12) can also be obtained by applying perturbation theory to the 
ray tracing equations, as showed by Woodhouse and Wong (1986). For a straight reference 
ray their theory leads to the same expressions. Romanowicz (1987) derived a similar result 
in a spherical geometry using normal mode theory. 

It is instructive to compare the order of magnitude of the terms (3.11.a-d) with the 
terms trolt have been ignored in the derivation. Suppose the velocity varies on a horizontal 
scale L , a simple scale analysis then shows that 

1<1>: F : Drs: N :::: 1 : _1 [!!...] 2: _1 [!!...] (3.13)
kSr L kSr L kSr 

where 'N' stands for the terms that have been neglected in the calculation. Note that the 
phase term is larger than the other terms by a relative factor ksro but that for the focussing 
and deflection terms this factor is reduced by the cumulative effect of the transverse 
velocity derivatives ( the sr/L terms). As a numerical example, consider a wavelength of 
100 kIn, an epicentral distance Sr of 2000 kIn, and a horizontal length scale L of the 
velocity perturbation of 400 km. In that case 

<1> : F : Drs: N :::: 1 : 0.21 : 0.04 : 0.01 , 

which means that the focussing term, and possibly the deflection terms, can be significant. 

4. Discussion 

The importance of the derivation presented here, is that it shows that ray geometrical 
effects like ray bending and focussing are contained within the expression for surface wave 
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scattering (2.5). This has consequences for the way we deal with surface wave data. 
Up to this point, it was customary to (implicitly) divide the lateral heterogeneity in a 

smooth part and a rough part. The smooth part gives rise to ray geometrical effects, and 
formed the basis for the measurement of the dispersive properties of surface waves. The 
rough part of the heterogeneity generates scattered and diffracted surface waves, thus 
producing the surface wave coda. This part of the signal is usually regarded as noise, and is 
filtered out. 

The separation between the smooth part of the heterogeneity and the rough part is 
highly artificial, and is not really necessary. The derivation in the previous section showed 
that both the ray geometrical effects, and the scattering effects are described by the same 
expression for the wave distortion (2.5), provided these effects are small. Since (2.5) 
constitutes a linearized relation between the inhomogeneities and the distortion of the 
wavefield, this expression can be used to invert for the inhomogeneities in the earth. As has 
been shown by Spakman (1986), extremely large noisy linear systems can be inverted 
sucessfully. This makes it possible to use a large data set of "surface wave residuals" for a 
reconstmction of the heterogeneities in the earth, incorporating ray geometrical effects and 
scattering effects in a unified way. 
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Abstract. Recently, a formalism for three-dimensional sur­
face-wave scatlering in a plane geometry was derived. Since 
telescismic surface-wave data arc generally recorded at epi­
central distances large enough to be innuenced by the sphe­
ricity of the Earth, it is necessary to find the eITects of a 
spherical geometry on surface-wave sealtering. The theory 
of surface-wavc scattering relies heavily on a dyadic decom­
position of the Green's function, and a new derivation is 
given for the (dyadic) Green's function of a spherically sym­
metric Earth. This new derivation employs Poisson's sum 
formula and is more rigorous than previous derivations. 
Using the dyadic Green's function, a relation is established 
with the scattering theory in a nat geometry. This finally 
leads to a linearized formalism for three-dimensional sur­
face-wave scattering on a sphere. Even for shallow surface 
waves the eITects of sphericity are important and necessitate 
a modification of the propagator terms in the expression 
for the scattered surface waves. 

Key words: Seismology - Normal modes - Surface waves 
- Scattering - Inversion 

Introduction 

Mapping the lateral heterogeneities in the Earth is a major 
task of modern seismology. This problem has been attacked 
with two types of methods. The first method utilizes the 
great circle theorem for surface waves (Backus, 1964; Jor­
dan, 1978; Dahlen, 1979a). This theorem states that if the 
heterogeneity varies smoothly in the horizontal direction, 
the surface wave is only innueneed by the Earth's structure 
on the source-receiver great circle. By combining the infor­
mation of many source-receiver great circles an image of 
the Earth can in principle be obtained (e.g. Woodhouse 
and Dziewonski, 1984; Montagner, 1986; Nataf et aI., 1986). 
The second method consists of the tomographic inversion 
of large data sets of body-wave delay times. This can be 
done on a global scale (Dziewonski, 1984), on a continental 
scale (Spakman, 1986) or on a more local scale (Nercessian 
et ai., 1984). 

None of these methods is able to cope with true body­
wave or surface-wave scattering, so that a large part of 
the seismic signal is not used. Scattering of body waves 
has been treated by several authors in the Born approxima­
tion (Hudson and Heritage, 1982; Malin and Phinney, 1985; 
Wu and Aki, 1985). However, up to this point none of these 

OjjpTlnL requesls 10: R. Snieder 

techniques could cope with a layered reference medium, 
and they have not yet been used for systematic inversions 
in global seismology. 

Apart from scatlering body waves, lateral heterogene­
ities also scatler surface waves and give rise to the coupling 
of normal modes of a laterally homogeneous Earth. That 
surface-wave scattering occurs in reality is shown by the 
observations of Levshin and l.lerleussen (1979) and l.lungum 
and Capon (1974). Scattering of surface waves is caused 
by sharp lateral inhomogeneities, and therefore scatlered 
surface waves can provide valuable information on these 
heterogeneities. These heterogeneities may be located far 
from the plane of the source-receiver great circle. Unlike 
other ~ypes of waves, scatlered surface waves enable us to 
investigate upper mantle heterogeneities even in regions de­
void of adequate seismic instrumentation such as oceans, 
continental margins and large parts of the continents. It 
is therefore important to develop a workable method for 
the interpretation of these waves which. so far, by necessity 
ha ve been regarded as 'noise'. 

Kennett (1984) devised an exact theory for the effects 
of lateral inhomogeneities on surface waves in two dimen­
sions. This theory employs invariant embedding and there­
fore relies heavily on the fact that surface waves in two 
dimensions propagate in only one horizontal direction. At 
this point there is no exact theory for surface-wave scatter­
ing in three dimensions. Snieder (1986a) developed a pertur­
bation theory for the scattering of surface waves in a n~t 

geometry, for buried inhomogeneities. He showed how dif­
ferent modes arc coupled, and how this gives rise to surface­
wave scattering. As an example, a "great circle theorem" 
in a nat geometry was derived, and it w~s shown that Snell's 
law holds for the renection of surface waves by a vertical 
interface between two media. Furthermore, an inversion 
procedure was presented for the reconstruction of the medi­
um from scattered surface-wave data. In Snieder (19B6b) 
a similar theory is presented for surface-wave scattering by 
surface topography, and it is shown there that the restriction 
that the inhomogeneity should be buried is not necessary. 

One limitation of the theory presented by Snieder 
(1986a, b) is that the theory is formulated for a !lat geome­
try. This paper serves to show how the theory for a nat 
geometry can be generalized for a spherical geometry. It 
is shown here that even for shallow surface waves the theory 
has to be modified, since the propagator terms are anected 
by the sphericity. 

Paradoxically, the major part of this paper is devoted 
to a spherically symmetric Earth. The reason for this is 
that in order to give an efficient derivation of the scattering 
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effects of lateral heterogcneities, it is necessary to have a 
simple dyadic representation of the Green's function of a 
laterally homogcneous Earth. In principle, this problem is 
already solved. Gilbert and Dziewonski (1975) and Vlaar 
(1976) present the response of a layered Earth, while Ben­
Menahem and Singh (1968) give a dyadic representation 
of the Green's function of a homogeneous sphere. However, 
none of these theories provides an expression for the Green's 
function which is convenient for analytical work, and which 

. also has a simple physical interpretation. It is for this reason 
that a new derivation is given in this paper, leading to a 
simpler dyadic representation of the Green's function. 

In order to do this, the response of the Earth is written 
as a sum of normal modes. The far-field limit of the Green's 
function and its gradient is derived in the following two 
sections. It is shown in the Appendix how the sum of all 
normal modes can be reduced to a sum over radial mode 
numbers only. Then a theory is derived for the scattering 
by lateral heterogeneities. In the subsequent section it is 
shown that the scattering coefficients on the sphere are simi­
lar to the scattering coefficients in a Oat geometry. 

In order to be able to derive this theory, sevcral restric­
tive assumptions have to be made. It is assumed throughout 
this paper that: 

1. The heterogeneity is weak enough that a linearization 
in the heterogeneity can be performed. 

2. The modes which are excited have a horizontal wave­
length small compared to the circumference of the Earth. 

3. The far-field limit can be used, i.e. the scatterer is 
several wavelengths removed from both the source and the 
receiver. 

One word about the notation in this paper. The summa­
tion convention is used both for vector and tensor indices. 
Latin indices are used for vector components, while a Greek 
index is used for the radial mode number of surface waves. 
(for normal modes we retain the conventional "n".) The 
dot product in this paper is defined 9Y 

[AB]=A; B; (I) 

and the double contraction by 

(2) 

The response of a radially symmetric Earth in terms 
of its normal modes 

The eqllation of motion for the excitation of an elastic inho­
mogeneous sphere by a point forcc F oscillating with fre­
q uency w is given by: 

(3) 

where, 

(4) 

and C;omj is the elasticity tensor. 
In subsequent sections an expression is derived for the 

wave which is scattered by lateral heterogeneities. This ex­
pression contains the Green's function of a reference model, 
for which a spherically symmetric Earth is taken. For the 
moment we will restrict ourselves, therefore, to the excita­
tion of a radially symmetric non-rotating Earth. 

The response can conveniently be expressed as a sum 

over normal modes s·lm (n, I and m are the conventional 
quantum numbers of the modes). According to Gilbert and 
Dziewonski (1975) or Vlaar (1976), the response to this point 
force is: 

(5) 

If a small amount of damping (ao ') is introduced this can 
be wri tten as: 

-i 
s(r) = L 'w w;, Co'(w) Solm (r)[sO'm (r,) . F] (6) 

".I,m 

with 

For the moment we shall assume the source to be located 
at the pole. furthermore, we shall restrict ourselves to the 
far-field response of the Earth. This means that the receiver 
is assumed to be located at such a colatitude that: 

m 
(8)sin O~ (/+1)' 

Furthermore, we will only consider modes with a horizontal 
wavelength much smaller than the circumference of the 
Earth, i.e. 

/~ l. (9) 

A point force or a point moment tensor only excites modes 
with 

Iml~2 (10) 

so that (8) is satisfied several wavelengths from the source. 
As shown by Dahlen (I 979 a), the toroidal (Tl and sphe­

roidal (5) modes in the far field, for m~ 0, behave as: 

ss'm(r)=~(Sl~ O)f {wo,(r) cos [(/ + l) 0 +(;'_~) 11] 

-0(/ + 1) v",(r) sin [(I + lJ 0+ ('~ -~) 11]} e'm". (12) 

f, 0 and <i> are unit vectors pointing in the direction of 
increasing r, 0 and rjJ. W, U and Vare the radial eigenfunc­
tions defined in Dahlen (l979a). For negative m, the modes 
follow from the symmetry properties of the spherical har­
monics, which leads to: 

(13) 

The bilinear formula (6) also requires the normal modes 
at the source position (the pole). As shown by Ben-Mena­
hem and Singh (1968), the normal modcs close to the pole 
behave as: 



80 Chapter 6 

(15) 

The m-summation in the modal sum can now be pcrformed 
analytically by inserting Eqs. (11), (12), (14) and (15) in Eq. 
(6). For sphcroidal modes this leads to: 

-i (1);/ (1+ !)ts,(r () rjJ)=L-C (w)----r-­
" (J)" 11 (Sill 0) 211

'.' 
·{[ru",(r) cos[(I+~lo-i]+O(l+~) V,,(r) 

· cos [(I + )) () +~]] [1',. f] U,,(r,) 

+[ -I' U,,(r) cos [(1+ 110+ij+O(l+!) V.,(r) 

· cos [(I + 1) 0 -: j] [0, F] (/ +~) V,,(r,)}. (16) 

The I-summation can be converted to an integral by means 
of Poisson's summation formula. This integral can be evalu­
ated with a contour integration; this procedure is described 
in the Appendix. For the first orbit this yields, after some 
rearrangement, the following result for the sum of the sphe­
roidal modes: 

1,+t)1 W _ ., 

(s.d,.,O,rjJ)=~ 21r-- 2u;[0(/,+1)V,.(r)~,rU,(r)] 

eXPi[(/,+l)O+i-J _ 
·---(Sli17J)1-- [(0,(1, + j) V,(r,)- iI', U,(r,)· F). (17) 

In this expression v is the radial mode number, and u~ is 
the angular group velocity of the ,·-th mode. I, is related 
to the horizontal wavenumber (k,) of the surface-wave mode 
v through the relation k, (/ = (I, + 1), where a is the Earth's 
radius. The horizontal wavenumber (k,) depends contin­
uously on frequency, thcrefore I, is not necessarily an in­
teger. 

For toroidal modes a similar result can be derived in 
the same way. These modes give the following contribution 
to the displacement: 

_ (I, + 1)1 UJ J 2 ­
sr(r,0, qi)-L --2 ?,(/,+,) </JW,(r) 

~ 7l. _1I.~ 

The expressions (17) and (I R) for the spheroidal and toroidal 
mode displacements depend only on the epieentral distance 
and the source-receiver direction. This means that the 
choice of the pole position is irrelevant. In order to make 
this more explicit we shall denote the epicentral distancc 
by ,1. thc unit vector along the source-receiver great circle 
by J, and the horizontal unil vector perpendicular to this 
great circle by 4>. see Fig. I. 

The spheroidal and toroidal mode contributions to the 

Fig. t. Definition of the geometric variables for the direct wave 

displacement can both be accommodated in the following 
expression: 

1,+ l)t W 
s(r) =L -2- -2' p'·(r, </i)(

~. 'IT fig .. 

exp '[(1,+ 1) ,1 +i] , 
. (sin ,1)! [p (r.. <P). F]. (19) 

The modal summation now includes both the toroidal and 
the spheroidal modes, and both types of modes are treated 
in an unified way. The p veetors are called the polarization 
vectors (Snieder, 1986a) since they describe the direction 
of oscilla tion of every mode. For spheroidal modes the po­
larization vector is: 

p'(r, 'P)=(I,+!) V,(r) J-iU,(r) r. (20) 

While for toroidal modes: 

p'(r, <P)= -(/,+!) w,.(r) 4>. (21) 

In these expressions <P denotes the source-receiver great cir­
cle. Note that for toroidal modes the polarization vector 
is purely transverse, while for spheroidal modes the polar­
ization vector has components both in the epicentral direc­
tion and the vertieal direction which are 90° out of phase. 

Up to this point the normalization of Dahlen (l979a) 
has been used implicitly, that is: 

2w 2 /;=I. (22) 

[In Dahlen (1979a) this expression is used with the normal­
mode eigenfrequency (w,.) instead of the frequency of excita­
tion (0»). However, as shown in the Appendix, the dominant 
contribution to the contour intcgral comes from the point 
(J) = w" so that wand W,. can freely be exchanged after 
the surfacc-wave limit is taken.] The integral I; for spheroi­
dal modes is: 

I; = 1Jp(r)( U} (r)+ 1,(/, + 1) V,> (r)) r 2 dr. (23 a) 

While for toroidal modes: 

I; = 1Jp(r) 1,.(1,.+ 1) W}(r)r 2 dr. (23 b) 



81 Scattering on a spherical Earth 

Inserting Eq. (22) in Eq. (19) yields: 

(l,+!), 1 
s(r)= ~ 21r 4wu;J~ p'(r, <P) 

eXPi[(I,+DLf+i] , 

. (sinLf)-r-[P (r,,<P)·F]. (24) 

The presence of the normalization integral J~ in Eq. (24) 
makes it possible to renormalize the eigenfunctions V, V 
and W in the polarization vectors. For convenience we im­
pose the following normalization: 

J'. (/,+t)' /4 ' ,= 21r I WlI. (25) 

which leads to 

, eXPi[(I,+!)Lf +i] , 
s(r)= ~P (r, <P)- (sin Lf)t-~ [p (r" <P).F]. (26) 

So that the Green's function for the displacement at r, due 
to a point force at r2 has a very simple form: 

, eXPi[(I,+!)Lf+i] " 
Gij(r"r2)=~Pi(rI'<P) (sinLf)t Pj(r 2 ,<P)· (27) 

This is a similar dyadic expansion of the Green's function 
to that in Snieder (1986a). Apart from the geometrical 
spreading factor, the Green's function has the same form 
on the sphere as in a l1at geometry if the higher orbits 
are neglected. This can be seen by using the correspondence 

w=k"c" k,=(I,+D/r, Vx'=lI;r, 

l~(z) .... -(1,+ 1) W,(r), r~(z) .... (1,+ 1) V,,(r), (28) 

a a 
r2(z) .... V,,(r), az .... -Dr' 
so that 

Gij(rl,r2)=(~Lf ,)12:: 8' VI 'J' pi(r,,<P)
SIn LJ v (.V l< 1 

(29) 

Apart from the (Lf/sin Lf)l term, this is expression (3) of 
Snieder (l986a). It rel1ects the well-known travelling-wave 
character of the Earth's normal modcs for large angular 
quantum number I. 

Expression (29) only takes the first orbit into account, 
but higher orbits can easily be included by adding similar 
terms to (29). The phase factors for the polar phase shift 
are given by Dahlen (1979 a). For brevity we will neglect 
the contribution of the higher orbits. 

The gradient of the Green's function and the excitation 
by a moment tensor 

In the derivation of the scattered wave, the gradient of the 
Green's function is needed. For the moment let us once 

more assume that r2 in Eq. (27) is located at the pole. The 
expression for the gradient of the Green's function is some­
what more complicated in spherical coordinates than in 
Cartesian coordinates due to the affine terms in the deriva­
tive (Uutkov, 1968). However, for the far-field Green's func­
tion the vertical derivatives and the derivative in the epieen­
tral direction are of relative order (I + j)/r, while the azi­
muthal derivative and the affine terms are of relative order 
l/r and cot V/r. This means that under the restrictions (8) 
and (9) the gradient tensor is given by: 

(30) 

If this expression is used, the far-field r 1 gradient of the 
Green's function takes the following form if one resubsti­
tutes .J =0: 

11)' "(a ,((+1)-,,) )V G;j(rI,r2)=~ i' ,Pi+I·-rLJ.Pi (r i 

exp i [(I, + lJ .1 +i] 
.~~~~ ...- \1---~ p"'(r2)' (31 a)

(Slll .1) J 

The gradient with respect to the r2 coordinates follows by 
complex conjugation: 

12) _" eXPi[(I,+!).1+i] 
r G,j(r l' r 2) - ~ Pi (r.J --.----(siii,Jjl~~ 

0 ' " . (I, +!l 1 "') ( ) (31 b)-IO,Pj-I···--"---'LIPj f 2 _ 
( 

These expressions can be used to determine the response 
to an excitation by a moment tensor. The response to a 
single couple follows by adding the response to a point 
force Fat 1,+<5 to a point force .,.-F at [,-<5 and Taylor­
expanding the result in <5. If the directions of F and <5 are 
interchanged and the results are added, the response to a 
double couple couplc is obtained. Taking the limit i5 --> 0 
while keeping F I) constant and adding these results yields 
the following response to a moment tensor: 

, eXPi[(I,+!)H;j -, 
s(r)=LP (r)·-- .... r-- [I<: .M], (32) 

" (Slll .1) 

where the moment tensor is 

M=2(IiF+FO) (33) 

and the excitation tensor (1<:) is 

E" (- 1 . (I,+!) .1) ,.= fL,+I-','-- p. (34) 

This means that the response to a moment tensor can, ev­
erywhere in this paper, be obtained by making the following 
substitution: 

[p-F] .... [E:M]. (35) 
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In can be shown that apart from terms of relative order 
1/[, the excitation term [E:M] is equivalent to the "I-ex­
pressions" of Dahlen (1979 b). The excitation terms of Dah­
len (1979 b) can be written in the form [E: M] by considering 
them in a coordinate system with the O-axis along the 
source-receiver great circle. This particular choice of the 
coordinate system docs not affect the excitation, since the 
double contraction is invariant under rotations. In this deri ­
vation, terms like V(r)/r have been neglected because la, VI 
is of the order 1(/ + l) V/rl ~ IV/rl. This is consistent with 
the assumptions (8H (0). 

The response of a laterally inhomogeneous Earth 

The previous sections dealt with a dyadic formulation for 
the response of a spherically symmetric Earth to a point 
force or moment tensor excitation. This section features a 
perturbation theory to treat the effect of lateral heterogene­
ities. Suppose that the density and the elasticity tensor have 
the following form: 

p(r, 0, ,p)=pO(r)+1: p'(r, O,,p) 
(36) 

e(r, 0, ,p)=eo(r)+ce'(r, 0, ,pl. 

The density 1'0 and elasticity tensor eO define a radially 
symmetric reference medium which is perturbed by the lat ­
eral heterogeneities 1" and e '. The parameter c is introduced 
to indicate that the perturbation is small, and facilitates 
a systematic perturbation approach. 

The equation of motion is given by Eqs. (3) and (4). 
If the decomposition (36) is used, the differential operator 
L can be written as: 

(37) 

The displacement can be expressed as a perturbation series 
in c: 

(38) 

In this way the displacement field is divided into a direct 
wave (so) and a scattered wave [the Ole) terms of sJ. Insert ­
ing Eqs, (37) and (38) in Eq. (3), and taking the terms propor­
tional to eO and [;, together gives: 

LOsO= F (39) 

LOs' = -L'so (40) 

The direct wave can be expressed in the Green's function 
of the spherically symmetric rderence medium. for a point 
force excitation at f, one finds: 

s?(r)= Gi;(r, r,) [oj(r.). (41) 

Hudson (1977) showed that in the absence of topography 
variations Eq. (40) is solved by: 

s,' (r) = (J Gi;(r, r') p' (r')",2 Gll(r', rJ Y r' 
- J [am GiJ(r, r')] "),,,",(r') [D" G,,(r', rJ] d J r'} F;(rJ. (42) 

This expression IS hard to interpret due to the presence 
of the gradient of the (ireen's function. If the dyadic form 
of the (jreen's function (27) and its gradient (31) is inserted 
in Eq. (42), and if an 'so tropic medium is assumed, the 
scattered wave takes after quite a bit of algebra, the follow-
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Fig. 2. Definition of the geometric variables for the scattered wave 

ing form: 

expi (/,+1).1 2 +'41f][
sl(r)= 2.: J Jp'(r, <P 2 ) (sin L1 )t V'"(O', ,p')

2

eX Pi[(I.+l)L1,+-i] " . , , ,
 

(
.
 1 )t [p (rp <PI)·F] sm 0 dO d</J. (43)

SIn L 1 

In this expression .1 I is the epieentral distance between the 
source and the seatterer, while <P, denotes the souree-scat­
terer great circle. .1 2 is the epieentral distance between the 
seatterer and the receiver, and <1>2 denotes the seatterer­
receiver great circle. See Fig. 2 for the defmition of variables. 
Note that the scattered wave is expressed as an integral 
over the horizontal extent of the heterogeneity. The depth 
dependence of the inhomogeneity is contained in the V'· 
term. The coefficients V'· are related to the perturbations 
in the density (1'1) and in the Lame parameters (A' and 
/II) : 

V"· = J 1" w 2 [P'(<1>2)' p.(<1> j)J r 2dr 

- S;.' (i[a,p'(<1>2).r]+£1,·;1) [p'(<P 2 )·A,]) 

(1.+1) - ) 2 . (-i[f·c,p·(<P I)]+ -r--[.1 j ·p"(<P I)]) r dr 

- J Il' [[a, p"(<1>,P] [r. a, p.(<P,)] 

- i (l4,E [P"(<1>2)r] [A 2 A P"(<!'I)] 

+ i ~_::Jl [u, p'( <1>2)' AI] [I'. p"(<1> , )]
r 

(1.+ ~)(/"+~) [ "(" ) '] [' .(" )]] 2 I+ ,1 P ,1,12 ·LJl LJ2"P ... ~l r {r 

- J III ([(1, p"(cP2)· <I, p" (<1>,)] 

(/,+ ~)(I.+!) - - ) 2+---;:2'-- [.1 2. .1 1] [P"(<1>2)·P·(cP,)] r dr. (44) 
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The expressions (43) and (44) can be interpreted in a simple 
way, despite their complicated form. Reading Eg. (43) from 
right to left one follows the "life history" of the scattered 
wave. At the source, mode (T is excited. The excitation is 
described by the projection of the force on the polarization 
vector of mode (T. The wave then travels from the source 
to the scatterer, the phase shift and the geometrical spread­
ing being described by the term 

After this, scattering occurs at (0', <p'). This is described by 
the term V'·, which will be called the interaction matrix. 
The scattering also involves mode conversion to mode v 
since a summation over all modes v and (T is performed 
in Eg. (43). The wave then travels to the receiver, which 
is described by another propagator term. Finally, at the 
receiver the direction of the displacement oscillation is given 
by the polarization vector p'. 

The expression for the scattered wave (43) closely resem­
bles the expression given by Woodhouse and Girnius (1982) 
for clastic waves on a laterally inhomogeneous elastic 
sphere. Both their results and Eg. (43) express the scattered 
wave as an integral over the horizontal extent of the hetero­
geneity. However, Woodhouse and Girnius present their 
result in the time domain which, in the Born approximation, 
leads to a divergence for large times. The formalism pre­
sented here does not have this problem, thus making it 
possible to consider scattered waves with shorther periods. 
Furthermore, their formalism does ·not handle interactions 
between modes, which arc fully taken care of in the theory 
presented here. 

Equations (43) and (44) are obtained for a point force. 
Since the expressions are linear in the excitation, a more 
general excitation can be treated by integrating over the 
source coordinate r,. Excitation by a moment tensor can 
be incorporated with the substitution (35). It is shown in 
Snieder (1986 b) how topography variations can be treated 
within the same formalism. 

Analysis of the interaction matrix 

The most interesting part of Eq. (43) is of course the interac­
tion matrix V'·, because this matrix determines how the 
modes interact with each other. Unfortunately, Eq. (44) is 
not easy to interpret because this expression is extremely 
complicated. However, comparing Eg. (44) with the interac­
tion matrix in a Oat geometry [sec (27) of Snicder (l986a)], 
using the correspondence (28), one finds that these expres­
sions are equivalent. (The only difference is that here the 
depth integral is absorbed in the interaction terms.) The 
interaction terms are analysed in great detail in Snieder 
(1986a). 1t is shown there that even though V'· depends 
on the polarization vectors of the incoming and the outgo­
ing waves, v'· depends in a very simple way on the scatter­
ing angle IjJ defined by: 

(45) 

(sec Fig. 2). As in Snieder (l986a), the interaction matrix 
takes a simple form if analysed for toroidal and spheroidal 
modes separately: 

Vi~ = (I, + 1) (I. + 1) J(W' w· p' (JJ2 
-(a, w')(a, w·) Il') ,2d, cos If' 

-(I,+1)2(1.+~)2 SW'W·'I' d, cos 2.jJ, (46) 

vs; =(1,+1) (1.+ M (- v' w·pI (JJ2 

V;s= - v~\I;, (48) 

Vs's=S{V'V· pI W
2 

-((1,+ ~r. v'-a V') ((1.+12.'. v·-v V·)),I. r " r r 

-(~ 1):~1. +J.l.'. v' v· +2(iJ, V')(D, va») Il'} ,2d, 

+ (1,.+ 1) (1.+ 1) S(V' v· pi w 2 

-(I,+1)'(I.+~)2SV'V·Il' d,cos21jJ. (49) 

VFi describes the coupling between the toroidal mode v 
and the toroidal mode (T, Vr~ describes the conversion from 
the spheroidal mode (T to the toroidal mode v, etc. Snieder 
(l986a) gives calculations of these terms for a Oat Earth 
structure. It is shown there that the interaction terms are, 
in general, a strong function of frequency. Since for high 
I the modes of a sphcrical Earth arc not dramatically differ­
ent from the modes in a Oat Earth structure, this conclusion 
remains valid III the spherical case. 

Discussion, general inversion with surface waves 

The scattering theory developed in the previous sections 
makes it possible to calculate the surface waves scattered 
by lateral inhomogeneities in a spherical earth. It is shown 
in Snieder (l986a) how this theory can be modified for the 
situation that the scatterers arc not embedded in a laterally 
homogeneous medium, but in a reference medium with 
smooih lateral heterogeneities. The effect of surface pertur­
bations on surface waves (Snieder, 1'186 b) can be taken into 
account in the same fashion as in the previous derivation. 

In general, the (unknown) heterogencities will have a 
wide range of horizontal spatial scales. Inhomogeneilies 
with a horizontal scale of the order of the horizontal wave­
length are efficient scatterers. This can' be described with 
the theory of the two previous sections. Heterogeneities 
which vary on a horizontal scale much larger than the hori­
zontal wavelength do not give riSe to scattering, but they 
do affect the propagation of the surface waves. The great 
circle theorem (Jordan, 1978; Dahlen, 1979a) can be used 
for this type of heterogeneity either wllh linearized inver­
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sions using dispersion data (Nolet, 1977), or with a wave­
form fitting technique which can bc cith~r linearized 
(Lerner-Lam and Jordan, 1983) or nonlinear (Nolet et ai., 
1986). 

It would be desirable to have an inversion scheme with 
can cope with all the scales of the heterogeneity. This algo­
rithm should be able to handle both the scattering effects 
of the small-scale inhomogeneities and the effects of the 
large-scale heterogeneity on the propagation of surface 
waves. This can, in principle, be achieved along the follow­
ing lines. 

Let us designate the data (which consist of a large set 
of seismograms) by "d". The lateral heterogeneity can be 
expanded in a set of basis functions (which might be func­
tions dcfining a cell model), so that the heterogeneity can 
be represented by a model vector" Ill" of expansion coeffi­
cients. The lateral heterogeneity" m" is superposed on a 
laterally homogeneous background model" M". Further­
more, we shall usc "s" to designate the synthetic seismo­
grams for this model: 

s=s(m). (50) 

The relation between the model perturbation and the 
changes in the synthetic seismograms is, in general, strongly 
nonlinear because small perturbations in the wavenumber 
k, are multiplied by the epicentral distance rLl. However, 
this nonlinearity is only important in modelling the propa­
gation effects on surface waves. We can hopefully treat the 
scattering amplitudes in a linearized way with the single 
scattering theory presented in this paper. In that case the 
synthetic seismograms can be written [using Eqs. (38), (41) 
and (43)] symbolically as: 

(51) 

In this expression F denotes the excitation, while go, g;n 

and gou' denote the propagator terms and polarization vec­
tors for the direct surface wave, the surface wave propagat­
ing to the scattercr and the scattered surface wave, respec­
tively. The interaction terms V are given in Eq. (49). Since 
we assumed that the scattering is linear, the interaction 
terms can be written as: 

(52) 

The synthetic seismograms then depend on the model in 
the following way: 

(53) 

The inversion can now proceed by fitting the synthetic se­
ismograms to the data. This can be done by minimizing 
the misfit (S): 

S= Ils(m)-dll +y Ilmll· (54) 

A regularization parameter y is added to ensure stability, 
11. II denotes a suitable measure of the misfit. The inversion 
can therefore be treated as a (nonlinear) optimization prob­
lem. These problems can be solved iteratively. 

However, these iterative schemes need the gradient of 
the synthetic seismograms with respect to the model param­
eters. This gradien t can be determined from Eq. (53) by 

varying the model by a small amount om, and linearizing 
the change os in om: 

iJ gO iJV) .os(m)= -,-F+gout - g'nF bm. (55)( om iJ In 

(Here we tacitly assumed that terms of the order mom in 
the scattering term can be ignored, this is consistent with 
the Born approximation.) The derivatives aV/am can be 
obtained from Eq. (49) analytically, so that only the deriva­
tives of the propagator iJgo/am of the direct-wave term have 
to be determined. These derivatives can be obtained by di­
rect calculation of the Frechet derivatives using ray tracing 
(Babich et aJ., 1976) or Gaussian beams (Yomogida and 
Aki, 1985). A faster, but less accurate way to estimate the 
derivatives is to combine the great circle theorem with re­
sults from WKB theory, as in Nolet et aL (1986). 

In principle, it should therefore be possible to invert 
for heterogeneities with a large range of horizontal spatial 
scalcs. The price one has to pay is that the number of un­
knowns is extremely large. The cell size (or the minimum 
wavelength of the basis functions in which the heterogeneity 
is expanded) has to be smaller than the wavelength of the 
scattered waves. This means that several thousands of un­
knowns have to be determined for an inversion on a conti­
nental scale, requiring a huge data set. With the continuing 
growth in power of even moderate machines, this is no 
computational problem. However, if insufficient data are 
available. widely different models may give an equally rea­
sonable fit to the data. A broad-band digital seismic net­
work with a density that matches the length scale of the 
lithospheric heterogeneities, as proposed in the ORFEUS 
(N olet et aI., 1985) and PASSCAL (1984) proposals, is neces­
sary to make this type of inversion feasible. 
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Appendix 
The evaluation of the sum of normal modes 

The sum of normal modes (16) can be evaluated by simple 
summation over I, but for high frequencies this summation 
becomes rather expensive. A modified approach to the cal­

culation of the Green's function for surface waves in a spher­
ical Earth was given by Nolet (1976), using the FFT, and 
by Lerner-Lam and Jordan (1983) using the Filon quadra­
ture algorithm. Here we describe the FFT method. 

This philosophy of the FFT method is to extend the 
f-summation from 1=0 to 00 to a summation from 1=-00 
to 00, after which Poisson's sum formula and a contour 
integration make it possible to evaluate this sum. Now first 
consider the sum 

(56) 

and assume that under the transformation 

/ ..... -I-I (57) 

the b+ coefficients behave as follows: 

(I <0). (58) 

By expanding the cosine in Eq. (56) in two exponentials, 
and making the substitution (57) for 1 in the term with the 
negative exponent, one finds with Eq. (58) that 

(59) 

Likewise, if S _ is defined by 

(60) 

and if h _ has the following symmetry property 

(I <0), (61) 

then S_ satisfies: 

(62) 

These results can be used to evaluate the modal sum (16). 
In ordcr to do this, the symmetry properties of the I-depen­
dent coefficients in Eq. (16) under the transformation (57) 
have to be determined. It is shown in Aki and Richards 
(1980) that the spheroidal modes depend only on 1(1 + 1). 
This quantity is invariant under the substitution (57), and 
therefore en!> U'n" Unl and Vnl are invariant under this trans­
formation. [A similar result holds for toroidal modes, which 
depend on I only through the combination (1-- I) (I + 2). This 
quantity also does not change under (57).J Apart from terms 
which are invariant under (57), the coefficients of the 
cos[(f+ J)-rr/4J Ierms in Eq. (16) arc proportional to 

(1+ J); or (1+ ))J. Likewise, the cos[(/+ Jl+rr/4J coefficients 

in Eq. (16) are proportional to (/ + ) );. 
The square root in these expressions has to defined with 

SOme care. In the subsequcnt dcrivation we W'lI1t to do 
a contour integration with thc variable I'. = {+ 1. We want 
to avoid a bra;lch cut in the complex up'per pl;ne, so that 
wc takc thc branch cut for the square root in thc lower 
plane. This means that for (/+ )1<0 

(I + 1) I = + i [ - (I + J)J I 
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and therefore 

(63) 

This means that the I-dependent coefficients of the 
cos [(/+ 1)-11/4] term in Eq. (16) satisfy Eq. (61), while the 
coefficients of the cos [(I + 1) + 11/4] term satisfy Eq. (58). 
Using Eqs. (59) and (62) we can write Eq. (16) then as: 

s,,=l L L
00 

Anl(r, ())Cnl(",)e'[(/ijIO>~] (64) 
n l~ - <JJ 

with 

. [( - ifUn,(r,) + 0(1 + 1) v",(r,))' F]. (65) 

Application of Poisson's sum formula leads to: 

ss=lL(-IY r An(r,O,()Cn(",,()ei((o+~+2,(j)d(. (66) 
i. n 

If we restrict ourselves to the direct arriving wave (j = 0) 
this reduces to: 

(67) 

For one value of w, say 0)0' the function Cn("'o, () is sharply 
peaked around ("' where "'n(C) =Wo. Thus, the integral 
may be approximated by: 

(68) 

where 

(69) 

Because of Eq. (7), the integrand in Eq. (69) has two poles, 
one in the first quadrant and one in the third quadrant. 
Since the integral (69) is only needed for 0> 0, the contour 
should be closed in the upper half plane so that only the 
pole in the first quadrant gives a contribution. This contri­
bution can easily be evaluated by a Taylor expansion 
around '">0: 

j 

W(()=W o +((-(,,) II~ + ... 

dw 
where u; = d~ is the angular group velocity of mode n(in 

radians per second), evaluated in (n' The pole is located 
in 

(~= (n + io:(U/u;, (70) 

which gives a residue 

-11 
211 iRes (( = (~) =u" exp [i (n - 0:((,,)/11;] 0, (71)

• 
We then find 

-11 
Dn(",o)= (0- exp [i(n-O:((,,)/,,;] 0, (72) 

which gives for the contribution of the spheroidal modes 

11 
ss(r, w)= - LAn(r, 0, (n)-2n exp [i(n-O:((")/II;] O. (73) 

n ug 

This finally proves Eq. (17). 
For toroidal modes, the derivation is completely analo­

gous. The derivation can also be applied directly to the 
excitation by a moment tensor given by the" L-expressions" 
of Dahlen (1979 b). In the normal-mode sum of Dahlen 
two types of terms can be scen to occur after using relation; 
like sin (x + 11/4) = cos (x -11/4). The first kind of term is pro­
portional to 

(/+ l)t(/+ ltddnumb" cos[U+ l) O+~-l 

while the second type of term is proportional to 

(/ + 1)\ (I + I)",n numh" cos [(I + I) 0 -i-]­
Therefore, the coefficients of the cosine terms satisfy Eqs. 
(58) and (61) and the same derivation can be used to evalu­
ate thc I-summation. 

Thc evaluation of the I-summation, as it is presented 
here, leads to the same results as in Dahlen (1979 a). How­
ever, Dahlen makes three approximations which are not 
needed. Firstly, Dahlen ignores the pole in the third quad­
rant. Secondly, he extends the lower bound of the (-integra­
tion from 0 to - 00. Thirdly, he ignores the incoming wave 
term. This incoming wave term could only be ignored be­
.cause Dahlen also ignored the pole in the third quadrant. 
The derivation presented here gives a more rigorous proof 
of his result. 
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Chapter 7 

Surface wave scattering derived from normal mode 

interactions 

Abstract 

Lateral heterogeneities in the Earth produce a coupling of the normal modes of a laterally 
homogeneous Earth model, and lead to mode interactions for surface waves. Traditionally, this 
problem was treated by expanding the heterogeneity in spherical harmonics, and was thereby 
reduced to a complicated algebraic problem requiring the use of Wigner 3j-symbols and gen­
eralized spherical harmonics. However, due to the global character of this theory, the resulting 
equations are not convenient for obtaining physical insight into the problem, and are cumber­
some to manipulate. In this paper, the effects of lateral heterogeneity in density, bulk modulus, 
shear modulus, interface displacements and gravitation are treated without a global expansion 
in spherical harmonics. Using a simple operator formalism, the coupling coefficients between 
the Earth's normal modes can be expressed by an integral over the horizontal extent of the 
inhomogeneity. The integrand can be expressed by a set of 17 local frequencies of interaction, 
and some simple geometrical variables. The mode coupling depends in a simple way on the 
scattering angle, even for modes with such a long period that the concept of scattering is mean­
ingless. Apart from the restrictions of first order perturbation theory, there are no other restric­
tions, specifically, it is not necessary to assume a far field limit. From the expression for nor­
mal mode coupling, a theory for surface wave scattering and conversion is derived. This leads 
to a complete set of local surface wave interaction coefficients, where the effects of sphericity 
are fully taken into account. The surface wave polarization vectors and excitation tensor are 
derived from the source and receiver operators. The resulting theory for normal mode interac­
tions and surface wave scattering leads to an efficient method for generating synthetic seismo­
grams in laterally inhomogeneous media, and is simple enough to allow extensive mathemati­
cal manipulation of the resulting equations. The effects of anisotropy are treated in the sequel 
of this paper. 

This chapter is published as: 

Snieder, R., and B. Romanowicz, A new formalism for the effect of lateral heterogeneity on normal modes and surface 
waves -I: Isotropic perturbations, perturbations of interfaces and gravitational perturbations, Geophys. 1. R. 
As/ron. Soc., in press, 1987 
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1) Introduction. 

The relation between lateral heterogeneities in the Earth and long period or broadband 
seismological data is of continued interest to seismologists. This is because the problem is 
mathematically appealing, but also because inferences can be made on the nature of the lateral 
inhomogeneities in the Earth using seismological data. 

The theory for the effect of lateral inhomogeneities on the eigenfrequencies of the Earth 
is studied extensively by Luh (1973, 1974), Dahlen (1974) or Woodhouse and Dahlen (1978). 
The coupling between modes of different mulLiplets is discussed in Woodhouse (1980). In 
Woodhouse (1983) a waveform fitting routine is used to obtain a low order spectral model for 
the inhomogeneities in the Earth. In all these theories the effect of the lateral heterogeneity is 
treated by expanding the inhomogeneity in spherical harmonics. Apart from eigenfrequency 
data or waveform data, path averaged surface wave velocities have also been used to deter­
mine the lateral inhomogeneity in the Earth. The great circle theorem (Backus, 1964; Jordan, 
1978; Dahlen, 1979) provides a theoretical justification for this procedure, provided the hetero­
geneity is sufficiently smooth. Interestingly, both Backus (1964), Jordan (1978) and Dahlen 
(1979) expressed the inhomogeneity in spherical harmonics in order to derive the great circle 
theorem. Woodhouse and Girnius (1982) discussed the effects from inhomogeneities away 
form the great circle on the self interaction of surface waves. They derived this in a roundabout 
way by resumming the spherical harmonics expansion of the inhomogeneity. 

It therefore appears as if a global expansion of the heterogeneity in spherical harmonics 
is the traditional route to take. This may be useful if one is interested in heterogeneities which 
are extremely smooth. This is the case for the effects of rotation and ellipticity as in Dahlen 
(1968, 1969), but it is also convenient if one desires to find only a low order spectral model of 
the Earth's inhomogeneities, e.g. Woodhouse and Dziewonski (1984). 

However, we have the impression that the expansion of the heterogeneity in spherical 
harmonics has been complicating the mathematics of the theory unnecessarily. Also, for some 
practical problems it may be inconvenient to expand the inhomogeneity in spherical harmon­
ics. For example, surface waves are most efficiently scattered by "sharp" inhomogeneities with 
large horizontal gradients. An extremely large number of spherical harmonics may be needed 
to express such an inhomogeneity accurately. It has been shown by Romanowicz (1987) using 
GEOSCOPE data, that low order spectral models tend to underestimate the horizontal gradient 
of the lateral heterogeneity. An expansion of the heterogeneity in spherical harmonics has the 
additional problem that it is a global method, and that it is unsuitable for studying the hetero­
geneity on a local (continental) scale. It is therefore desirable to formulate a local theory for 
surface wave scattering and normal mode interactions, which can accommodata sharp lateral 
heterogeneities in an efficient way. 

It has been shown by Snieder (1986ab) that surface wave scattering and mode conver­
sions in a flat geometry can be described as a simple integral over the horizontal extend of the 
heterogeneity. In Snieder and Nolet (1987) similar results are derived to leading order in I for 
a spherical geometry. In Romanowicz (1987) a rigorous proof is given of a "minor arc 
theorem" instead of a "great circle theorem". This was achieved by expressing the effects of 
the inhomogeneity as an integral over the horizontal extend of the inhomogeneity, and by solv­
ing this integral in the stationary phase approximation. 

In this paper we present a unified first order theory for the effects of lateral heterogeneity 
which takes both normal mode interactions and surface wave scattering (and conversion) into 
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account. This theory constitutes a synthesis of the first order theory for normal mode interac­
tions of Woodhouse (1980, 1983) or Tanimoto (1984), the surface wave scattering theory of 
Snieder and Nolet (1987), and the operator formalism of Romanowicz and Roult (1986) and 
Romanowicz (1987). In the derivations no use is made of an expansion of the heterogeneity in 
spherical harmonics, nor is it necessary to invoke the generalized spherical harmonics of Phin­
ney and Burridge (1973). 

The theory leads to a set of interaction coefficients which both describe normal mode 
interactions; as well as surface wave scattering. These interaction coefficients are valid both in 
the far field as in the near field. The effects of sphericity are fully taken into account. The per­
turbations in the density and elastic constants are considered, as well as the effects of displace­
ments of internal interfaces and surface LOpography. Furthermore, the effects of gravitation are 
fully taken care of. In a following paper the effects of anisotropy are considered (Romanowicz 
and Snieder, 1987). 

The fact that the normal mode and surface wave interactions are described by an integral 
over the inhomogeneity leads to an efficient method for solving both the forward and the 
inverse problem. With present day computers, large scale inversions can be performed for 
detailed structures on a continental scale. At this point, inversions are performed for the struc­
ture under Europe and the Mediterranean, using surface wave data recorded by the NARS 
array. 

The formalism presented in this paper uses the Born approximation, so that the hetero­
geneity has to be sufficiently weak. The validity of this approximation can be evaluated in the 
same way as in Hudson and Heritage (1982). However, this entails making estimates of 
scattering integrals with oscillatory integrands, these estimates may be unnecessarily conserva­
tive. We take the pragmatic point of view, that the Born approximation can be used whenever 
the differences between the waveficld in the laterally heterogeneous Earth model (the data), 
and the synthetics for the radially symmetric reference Earth model are sufficiently small. In 
practice tois puts a lower limit, dependent on the Earth's structure, on the periods that can be 
analized with linear theory. Apart from finite difference or finite element computations, only 
the theory of Kennett (1984a) can handle nonlinear effects of sharp lateral heterogeneities on 
surface waves. However, his theory deals with surface wave propagation in only two dimen­
sions, which restricts the application to plane surface waves that impinge perpendicularly on a 
structure varying in only one horizontal direction (Kennett, 1984b). 

In section 2 the operator formalism is reintroduced. With this formalism the interaction 
coefficients are derived in section 3. These interaction coefficients are briefly discussed in sec­
tion 4. As shown in section 5, the source and receiver effects tum out to be simple. Finally, the 
link with surface wave scattering theory is established in section 6. 

2) The operator formalism. 

Lateral inhomogeneity produces a coupling between the eigenmodes IK ,m > and 
IK' ,m' > of a radially symmetric Earth model. (The index K =q ,n ,I designates the multiplet of 
kind q (toroidal, q=T, or spheroidal, q=S), radial mode number n, and angular mode number 
I, while m is the azimuthal mode number.) Starting from the general matrix element Zj(K' for 
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the interaction between modes as given by Woodhouse (1980) equation (AI), we shall restrict 
our attention to the contribution due to lateral inhomogeneity in the case of an isotropic pertur­
bation to the Earth model. This is described by perturbations op(r ,e,<I», o<l>(r ,e,<I», 01(r ,e,<I» 
and o~(r ,e,<I» in density, gravitational potential, bulk and shear moduli respectively, and a per­
turbation h (e,<I» of each discontinuity of the model. The notations will be those of Woodhouse 
(1980). 

The displacement s corresponding to the mode IK ,m > in the reference SNREI model 
can be written in a general spherical coordinate system (r,e,~) as follows: 

(1) 

(2) 

where U, V and W are the vertical eigenfunctions in the notation of Gilbert and Dziewonski 
(1975). yt are spherical harmonics normalized as in Edmonds (1960), and VI is the gradient 
operator on the unit sphere. The vertical eigenfunctions are normalized according to: 

u} f
a 

p(r) (U2+ lU+I)V2) r2dr = 1 u} f
a 

p(r) lU+l)W2 r 2dr = 1 (3) 
o o 

Analogously to the displacement operator D n1 , we define the strain operator by 

e = V2 ( VD + (VD)T ) (4) 

We wish to evaluate the effect of model perturbations on the long period seismogram, as 
expressed by normal mode summation in the framework of first order perturbation theory. 
Equation (11) of Tanimoto (1984) for the perturbation in the displacement field excited by a 
step function excitation can be written in the notation of Romanowicz (1987) as 

I( ) '" 4 m[ I. (limm' 2pmm') I Hmm'] Sm'S I = ~ WK RK --3 SIn WKI KK,-WK KK' + -4 COS WKI KK' K' (5) 
KK' ,mm' 2WK WK 

COK=COK' 

WKWK' m I mm' 2 mm' 1 mm' 2 mm'L. 22 2 - ]- 2 RK 
[ -2 cos WKI (llKK'-wKPKK,) -2- cos WK'1 (HKK,-WK'PKK,) 

KK' ,mm' WK-WK' WK WK' 

(J)K*COK 

(In this expression we left out the static part of the displacement field.) The factor wRwk is 
due to the difference in the normalization of Tanimoto (1984) and our normalization (3). H is 
the splitting matrix while P denotes the density matrix. Note that there is a sign difference in 
the definition of H in Tanimoto (1984), and in Woodhouse (1980) or Romanowicz (1987), 
hence the different sign of H in our equation (5) and in equation (11) of Tanimoto (1984). 

Ignoring terms of relative order lIwK l, equation (5) can be written as 
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Sl(t) = L 
KK' (6) 

OlK=Olf(' 

, with AKK, given by 

Z m'm( 2) ,-/m'm 2p m'mAKK'(oi) = L RK'z'K';«(ji)S; K'K 0) = 1" K'K-O) K'K (7)
mm' 

s; and RIc' are source and receiver functions respectively which can be written using an opera­
tor formalism (Romanowicz and Roult, 1986) as: 

s;=es:M[ y/m·(8s ,(j)s)] (8) 

R;: = v·DR [ Y,'J"(8R ,<PR)] 

where DR is the displacement operator at the receiver, es the strain operator at the source, and 
v indicates the component of the ground motion that is considered. Here (8s ,<!>s) and (8R,<!>R) 
are the colatitude and longitude of the epicenter and the receiver respectively. Indices Rand S 
affected to operators indicate that the differentiations included in them must be applied to the 
receiver and source coordinates respectively. 

The interaction term Z'K-£ in equation (Al) of Woodhouse (1980) can symbolically be 
written using an operator notation as 

ZK':; =~ f OXiJ opr[ y/m(8,<!»] OPJ[ Y,'J"·(8,<!»] dV (9) 
1,1 v 

+ ~ fox';: op/{ y/m(8,<!»] opl[ Y/'?"'(8,<!»] dL 
',1 1: 

where Opr and OPi1: are linear combinations of differential operators acting on the coordinates 
(8,<!» of the running point of the sphere, the coefficients being functions of the variable r alone, 
and OXjJ and ox'; represent the different perturbations to the Earth model (OK, op, etc.) . The 
interaction terms consist of a volume integral f over the volume of the heterogeneity, and of 

v 
surface integrals f over all displaced interfaces. The important point to note is that these 

1: 

operators do not themselves depend on the azimuthal orders m and m' . For example, the term 
corresponding to the perturbation OK in bulk modulus is: 

fOK (V's) (V·s'·) dV =fOK [V'Dy/m(8,<!»] [V'DY?'(8,<!»·] dV 
v v 

, where we define 
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Opr =op~ =V·D ox12 =OK 

and for example 

Op r[ y,'"(9,$)] ~ [ 2U-/;1+1)V + a, ~ Y,(9,$) 

Since none of the operators involved depends on the azimuthal orders m and m', we can 
rewrite expression (7) as: 

AKK'=(V·D)R (e:M)s{ ~ fox;) opr[LYi'(8s ,<!>s )Yi(8,<!»1 OpJ[LYr"(8,<!»Yr '(8R,<!>R)l dV 
',J V m J m' J 

+ ~ foXi7 OPi'£[LYi'(8s,<\>s )Yi(8,<\»1 Opl[LYr"(8,<\»Yr'(8R,<\>R)1 d'L} 
',J'£ m J m' J 

(10) 

Using the addition theorem for spherical hannonics (Edmonds, 1960) this can also be written 
as 

(11) 

with 

CKK'=~ fOXi) opr[X/DO,,)] OPJ[X/9(A')] dV +~ fOXiJ OP/[X/D(A)] opl[X/9(A')] d'L 
I,J v I,J '£ 

(12) 

where the angles A and A' are defined to be the angular distances between the source (8s ,<\>s) 
and the running point of integration (8,<\», and between the receiver (8R,<\>R) and (8,<\» respec­
tively, as shown in figure 1. The functions Xi are defined by 

(13) 

In equations (10) and (12) we keep in mind that the operators inside the integration sign in (12) 
act on the running coordinates (8,<\», while (e:M)s and (V·D)R in (11) act on (8s ,<\>s) and 
(8R,<\>R) respectively. In equation (11) we use 

1/ = [ 2~:1] Y2 (14)• 

Throughout this paper we use unprimed variables for the modes and geometric variables asso­
ciated with the source and the running point on the sphere, while the corresponding primed 
variables are associated Wilh the receiver and the running point on the sphere (figure 1). 

We shall first focus our attention on the evaluation of CKK, in equation (12), the applica­
tion of the source and receiver operators in (11) being then straightforward, as we shall see. 
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Figure 1 - Definition of the geometric variables. 

s 
R 

rotation point_...-:-1' 
_--~, 'V 

1t- \jI " 
rotation angle 

Figure 2. Definition of the coordinate systems (r ,A,Il) and 
(r ,-A',-IlJ. and the rotation Rlt-'P. 
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3) The coupling coefficients between modes and their relation with geometric variables 

In order to obtain explicit expressions for the coupling between the Earth's normal 
modes, it is necessary to use an explicit expression for the operators Opr and Opir. in equation 
(12). The factors OXi) and &3; and the operators Opr and Opir. denote the operations to be per­
formed on y/oO..,/l) and y/oO.:,/l') to obtain the coupling coefficients. Using equation (AI) of 
Woodhouse (1980) we find that: 

Cn , =J[SK(V,S)(V-s') + 2S/lr:r' + Sp [ s- V<1>I'+S'· V<1>I+81tG psrS'r+go A-ro2(S-s')]] dV 

+ lh J~ [- ~ (V(SH )s'r- ~ (V1'S'H )Sr-4Srs'r] &iH-[SrS'H+S'rSH] . ~ VIS~ 

( 2 (V ) -)' ( 2 (V ') ") .". 1 , 1, ] 1 V s:+ - - (SH +sr S l/- - (s H +sr sH+Sr s H+S rSH--sr s H--S rSH .- IU<!>[ r r r r r 

-:2 Srs'r Vf(S<!»}dV 

-Jh [ K(V,S)(V,S') + 2llr :r + p ( S·V<1>I'+S'· V<1>I+81tG PSrS'r+go A-ro;(s'S')) 
r. 

- K(V,S)o5/- K(V'S')o5r-2/lr:rS'-2/lr':rs] : dr. (15) 

-JVr.h .[ K(V-S)S'+ K(V'S')S+21lrrr S'+2/lr'rr s] >r. 
r. 

Unless stated otherwise, the notation of Woodhouse (1980) is followed. Note that the gravita­
tional perturbation terms differ from the expression given in Woodhouse (1980). The reason 
for this is that we have applied an integration by parts to these terms. The details of this rear­
rangement are given in appendix A. In this paper K, /l and p are the elastic moduli and the den­
sity of the spherically symmetric reference model. S is used for the displacement field while <1>1 
denotes the change in the gravitational potential of the modes. A dot is used to denote the 

radial derivative: s=~. The subscript H denotes the horizontal components, while the sub-or 
script r denotes the vertical component. The quantities r and A are related to the strain (e) and 
the displacement through the relations 

r =e - ~ (V's)1 (16) 

,and 

A= V2 [s.VS' +s'·Vs r r -sr V's'-s' r V·s-'!s S'] (17)rrr' 

As in Woodhouse (1980), the nOLation [ ..... J: refers to the difference between the quantity 
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between brackets above and below the interface. 

It can be seen from expression (12) that only the m=O component of the modes need to 
be taken into account, since only the functions X,o(A) and X/9(A') occur in equation (12). There­
fore, the displacement fields which are to be used in (12) are the m=O displacement fields with 
a dependence on the horizontal coordinates through terms X,O(A) and XP(A'). The fact that we 
only need to consider the m =0 component of the displacement field, implies that all variables 
in equation (12) are real, therefore the complex conjugations used in Woodhouse (1980) have 
been suppressed. 

The m=O displacement fields s and s' follow by applying the displacement operator (D) 
of equation (2) to X,O(A) and X,9(A'). The gradient in this operator acts on the running point on 
the sphere. This leads to 

A ASnl(r ,A) = ° -(' ° J.1Wn/(r)a..x,° (A) (18a)rUnl(r)X, (A) + Jl.Vn/(r)a..x, (A) ­

, and 

(18b) 

The convention is used that both toroidal and spheroidal eigenfunctions are used simultane­
ously in one expression, but that for toroidal modes U=V=<I>l=O, and for spheroidal modes 
W=O. The different signs of the horizontal displacements in equation (18a) and (18b) are due 
to the fact that at the running point on the sphere, VlXt(A) points in the i.. direction, whereas 
V1XP(A') points in the -}.' direction, as in figure 1. 

In equation (15) the strain field enters through the r terms (16) in the mode coupling. 
Since we only need to know the strain field for m=O modes with a horizontal dependence 
X,O(A) or Xro(A'), it is convenient to use spherical coordinates system with their pole either at 
the source or the receiver, see figure 2. Using expression (8.36) of Aki and Richards (1980), 
one finds in (r ,A,J.1) coordinates: 

V a2 U U ° V ~ ° err = UX. ,° e .... = - ..X, °+ -X, ° ellJL = -X, + - cot ""X, 
r r r r 

e"l!= ~~[aiXIO-cot AX,O] erl!=-lhZa..X,o er.. =l/2Xa..X,o (19) 

A similar expression holds for e' in (r ,-A',-J.1') coordinates. The eigenfunctions Z and X are 
defined by 

. I 
X = V + -(U -V) (20a) 

r 

. I 
Z=W--W (20b) 

r ' 

furthermore we shall use 

F = !(2U -LV) , (20c) 
r 

and 
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L=l(l+l). (20d) 

For toroidal modes X=F =0, while for spheroidal modes Z=0. 

It can be seen that equation (15) consists essentially of four kind of terms. 1) terms 
which only contain scalars. These terms contain either the divergence or the vertical com­
ponent of the displacement field. 2) terms containing dot products between vectors associated 
with the modes, such as opoisH'SH' or ops' V<1>I'. 3) dot products between modal vectors and 

the gradient of the inhomogeneity, such as .lS/SH,V10$ or le(V·s)s',V1:h. 4) contractions 
r 

between strain tensors, because r contains the strain tensor. These four types of terms should 
be treated in a different way. 

The scalar terms are easily found using 

° . ° Sr = UX/ and V·s= (U+F)X/ . (21) 

These terms do not contain any dependence on the azimuths Il and Il'. Therefore these terms 
lead to an isotropic interaction between the modes. This isotropic interaction in only non-zero 
if both modes sand s' are spheroidal. 

The vector terms containing dot products between modal vectors can be analyzed using 
simple geometrical relations such as 

(i·'A') = (Ii,i') = cos '¥ (22a) 

-('A.,i') = (,i''A') = sin '¥ (22b) 

, where '¥ is the scattering angle defined in figure 1. For example, using equation (18a),we can 
rewrite 

OPSH'V1<1>1' = op [ 'AV-~w] '(-'A')<1>I'(a",x/o)(a,-,x/9) 

= -op [ V <1>1' cos '¥ - W <1>1' sin'¥ ] (a",x/o)(a""x/9) 

These vector products lead to a cos '¥ or sin '¥ dependence of the scattering angle. 

In order to analyze the vector terms containing dot products between modal vectors and 
the gradient of the heterogeneity, we introduce for a scalar ~ the slope vector defined by 

1 
S~ == -Vl~ (23)

r 

, where ~ is either the interfac;e displacement h, the perturbation in the gravitational potential 
0$, or its vertical derivative 0$. The azimuth of the slope vector is denoted by $~ (see figure 3), 
while S~ is used to denote the magnitude of the slope vector. (Note that the slope vectors S&jl 
and S&j. are not necessarily ali~ned.) With this definition, the mode coupling due to the hor­
izontal gradients of h , 0$ and 0$ can readily be computed. For example 

leVh ·s(V·s') = KShSh -[ 'Ava",x/O-,iwa",x/o] (U'+F')Xro= KSh[ V cos (Il-$h) + W sin (Il-$h)] (a",x/~xl 

The terms containing contractions of the strain tensor can be analyzed using equation 
(19), which gives a simple expression for the strain tensor e in (r ,"-,Il) coordinates, and for e' in 
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s 
R 

Figure 3 - Definition of the slope vector SI; and the slope 
azimuth <1>1;0 

(r ,-A.',-~J 

coordinates. However, except for the special case 'P=1t, these coordinate systems are different. 
A contraction between these tensors can only be performed after the coordinate system 
(r ,-A.',-~J has been rotated around a vertical axis through the running point on the sphere over 
1t-'P, so that the coordinate systems are aligned, see figure 2. In (r ,-A.',-IlJ coordinates the 
rotation matrix is given by 

1 0 0]
R1t-'¥ = 0 -cos '£1 -sin '£1 (24)[o sin '£1 -cos '£1 

The matrix multiplication R;~,¥e'R1t_'¥ aligns the two coordinate systems so that, using expres­
sion (19) and its equivalent with the primed variables, the contraction of the strain tensor can 
be performed. The erA and er!J. components lead to a cos '£1 and sin '£1 dependence of the 
scattering angle. The other components lead either to an isotropic interaction (only for 
spheroidal modes), and sin 2'£1 or cos 2'£1 interactions. 

After some algebra one finds using the recurrence relations for xt (Edmonds, 1960) that 
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, where 

f lrc (A,~) =&n~K'(A,~) x,"(A)X,9(A') - { &nkdA.,~) cos 'I' + Brolrc (A,J1) Sin'!'}a, aTX,'(A)X/ (A') 

+{ocoldA,Il) cos 2'¥ +ocoidA,Il) sin 2'¥ }b/bI'X?(A)Xf(AJ (26) 

,and 

f lJ(:(A,Il) ={-ocoldA,Il) cos (ll'--<!>h) - ocolK,(A,Il) sin (ll'-<!>h) 

- ocokic,(A,Il) cos (ll'-<P/)~) - ocok1:,(A,Il) sin (ll'-<P~) }al'x/O(A)X/(A') 

+ { OCOkK' (1.,11) cos (ll-<Ph) + OCOkK' (1.,11) sin (ll-<Ph) (27) 

+ ocoki,(A,Il) cos (ll-<P~) + ocok~'(A,Il) sin (ll-<P/)~) }a/x/(A)X/9(A') 

The mode coupling is now described by a set of local frequencies of interaction OCOkK' 
(i=O,16), which are shown in appendix B. The parameters a/ and b/ are defined by 

a/="l (I +1) and b/="(I+2)(1 + 1)1 (I-I) . (28) 

4) Some remarks on the coupling coefficients AKK, 

Equation (25) constitutes a simple expression where the coupling between normal modes
 
is expressed in an integral over the horizontal extend of the inhomogeneity. Apart from the
 
local frequencies of interaction ocoi , the intcgrand in the expressions (26) and (27) only contain
 
simple geometrical terms which can easily be computed.
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The local frequencies 80i (i=0,16) of appendix B consist of two parts. One part contains 
the depth integral of the modes K and K' and the inhomogeneity. The second part consists of 
the jump in the product of the modes K and K' and the parameters of the SNREI reference 
medium across the internal and external interfaces. Once the modes are computed, it is simple 
to compute the 8m' . 

It can be seen from appendix B and equation (26) that the perturbation in the density and 
the elastic parameters lead to a dependence of the mode interaction on the scattering angle 'P 
proportional to cos 'P, sin 'P, cos 2'P or sin 2\P, while the spheroidal-spheroidal mode interac­
tions also have an isotropic component. Using equation (27) it follows that the interactions due 
to the gradient of the interfaces and the gravitational potential depends in a more complicated 
way on azimuth through terms containing cos (~-(h), sin (~-(h), cos (~'-(h) or sin (~'-<l>~), 

where ~ is either the perturbations in the interfaces, the perturbation in the gravitational poten­
tial, or the vertical derivative of the latter. 

In general, the mode conversions between toroidal and spheroidal depend on the sine of 
some angle ('P, ~-<l>~, etc. ), while the interactions between equal kind of modes depends on 
the cosine of these angles. In the absence of horizontal gradient terms (hence when 8m5 

through 8m16 are zero) there is no conversion between spheroidal and toroidal modes in the the 
forward and backward direction (where sin m'P = 0). However, the gradient terms in equation 
(27) may produce spheroidal-toroidal mode coupling in the forward and backward direction, 
because terms like sin (~-<l>h) are not necessarily zero in the forward and backward direction. 
These terms produce the strongest coupling between toroidal and spheroidal modes in the for­
ward and backward direction if the gradient is perpendicular to the path of propagation. 

Note that the gradient of the interface displacement enters explicitly in the local frequen­
cies 8m5 through 8m8

• This contrasts the observation of Snieder (1986b) who found that (in 
first order perturbation theory) surface waves are influenced by surface topography, but not by 
the gradient of the surface topography. The reason for this discrepancy is that the local fre­
quencies Bm5 through 8m8 are proportional to the tractions 'trr or 't,,'. These terms vanish at the 
surface, so that to first order the gradient of the surface topography does not contribute. 

5) Incorporation of source and receiver efrects. 

To obtain the complete expression for AKK, in equation (25), we need only to apply the 
operators (e:M)s and (V·D)R' We shall analyze these operators in the same way as in 
Romanowicz and Roult (1986) and Romanowicz (1987). Let us first consider the receiver 
effects, these are described by the operator (V·D)R' It can be seen that f Kl, and flit: in equa­
tions (26) and (27) can be written as 

f K'k-(A,~) = sKl~O)(A,~) X/o(A)Xro(A') - S}iP(A,~) cos (~'-<l>"') alarX/(A)Xr1(A') (29) 

+ Sit2)(A,~) cos 2(~'-<l>"') b/brx?(A)Xl(A') 

f Ik:(A,~) = slk:(O)(A,~) a/X/(A)x/9(A') - Slk:(l)(A,~) cos (~'-<l>flfL,> arX/o(A)X/(A'). (30) 

Therefore, the receiver operator should be applied to a sum of terms, each containing a factor 



100 Chapter 7 

11(A' ,11') = cos m (11'-<Pmax) XP'(A') (m =0, 1,2) . (31) 

Applying the displacement operator (2) to these factors shows that we can obtain the vertical 
component by making in equations (29) and (30) the following replacement 

cos m (11'-<Pm,x) X[J'(A') --~ U (a )XP(A') cos m (11'-<Pmax) . (32a) 

Similarly, the radial component follows by replacing 

cos m (11'-<Pmax) XP'(A') --~ V (a )CJ.;,:XP'(A') cos m (11'-<Pmax) 

- W(a) .m.. ,X[J'(A') sin m(Il'-<Pm,J, (32b)
SIn A 

while for the transverse component we should replace 

cos m (11'-<Pmax) XrcA') --~ -W (a )cJ.;,:Xr:·(A') cos m (11'-<PmaJ 

- V (a) .m.. , XP(A') sin m (11'-<Pmax) (32c)
SIn A 

In order to incorporate the source effects we should analyze terms of the form 
(e:MhXi"(A) for m=0,1,2. As an example we show how to deal with the m=2 component. 
Using the recurrence relations for the X,m (Edmonds, 1960) one can show that 

(e:Mh b/X?(A) = (e:Mh [ 2 O~2 + /(1+1)] X10(A). 

The strain operator is essentially a differentiator. Since differentiations commute we therefore 
have 

(e:M)s b/X/(A) = [ 2 O~2 + /(1+1)] (e:MhX/o(A). (33) 

In a similar way we find for the m=1 contribution 

o 
(e:Mh a/X/(A) = OA (e:MhX/o(A). (34) 

The effect of the source operator (e:M)s follows from expression (2.1.18) and the tables 
(2.1.22) and (2.1.23) in Gilbert and Dziewonski (1975). Using this result one finds 

(e:M)sX/o(A) = CoX/o(A) + C lX/(A) + C~?(A) . (35) 

The excitation coefficients Co, C 1 and C 2 are given by 

Co = [ MrrU(rs) + Ih(M ee+Ml\lli»F(rs) ] 

C1=-a/ [Mre[X(rs)COSlls-Z(rs)Sinlls] +Mrl\l[X(rs)Sinlls+Z(rs)COslls]] (36) 
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C 2 =b/ ~ [ 1/2(M99-M epep) [ V (rs) COS 21ls + W (rs) sin 21ls] 

+ M eep[ V(rs) sin 21ls - W(rs) cos 21ls] ] 

,Ils is the source azimuth taken counterclockwise from south as shown in figure 1, and rs 
denotes the radius of the source position. 

To summarize, the source effects can be incorporated by making the following replace­
ments in equations (26) and (27) (or (29) and (30)): 

X/DO..) ~ CcJ(}()...) + C lX/O...) + C1X?('A) (37a) 

a/X/('A) ---~ a~ [ CoXID('A) + C lX/('A) + C1X?('A) ] (37b) 

b/X?('A) ---~ [ 2 a~2 + 1(1+1)] [ CoX/o('A) + C1X/('A) + C 2X/(A) ] (37c) 

6) Correspondence with propagating waves. 

In order to take the surface wave limit, we consider the perturbation in the displacement 
in the frequency domain, using the Fourier transform convention of Aki and Richards (1980): 
s (w) == f s (l) exp i Wl dl. The perturbation in the displacement field excited by a step function 
excitation follows from the equations (5) and (10) of Tanimoto (1984), by making the substitu­
tion p ~ -i w. Adding a factor wkwk· due to the difference in normalization, changing the 
sign of H because of the difference in the definition of II in this paper and in Tanimoto (1984), 
and rearranging terms one finds that in the notation of equation (6) 

1] Rm'[Hm'mSl(",)-_ ~~ -iwKwK' [1 1] [1
------- K' K'K-W2pm'm~smK·UJ ----- K'K
 

4w W-WK w+WK W-WK' w+WK'
KK',mm' 

(38) 

If a small amount of damping (0:) is applied, the term 1/(w-wK) has a pole at wK=W+i 0:, while 
the term lI(W+wK) has a pole at wK=-w-i 0:. In the following derivation only the poles in the 
upper half plane contribute, and we therefore drop the contribution of the lI(W+wK) term. 
Likewise, the 1/(W+wK') term also doesn't contribute, so that this term can also be discarded. 
Using the definition (7), expression (38) can be written as 

1 -iWKWK' 2 
S (W) = L AKK,(W) (39)

KK' 4W(W-WK )(W-WK') 
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, with AKK' defined in equation (7). AKK' can be eliminated using expression (25). The summa­
tion over K and K' implies a summation over all pairs of mode branches, as well as a summa­
tion over all angular quantum numbers I and I' within each mode branch. We shall restrict our 
attention to the contribution of one pair of mode branches. Dropping the operators (e:M)s and 
(V·D)R in equation (25), as well as the integration over the sphere, which we shall implicitly 
assume, we can write 

[ -j COl cor 2 
s (co) == L It! I' ."j 8co,~, XIO('A)XroO...') (40)

1,1' 4co(O)-co/ )(O)-cor ) co, col' 

It is understood that COl is the eigenfrequency of multiplet I belonging to mode branch K, and 
COr is the eigenfrequency of multiplet I' on mode branch K' in the reference SNREI Earth 
model. 8co& is the local frequency of interaction between multiplets I and 1', as given in 
appendix B. We have only written the first term in the definition of I 'II in equation (26), exten­
sion of the derivation which follows to the other local frequencies of interaction in equations 
(26) and (27) is straightforward. 

If the inhomogeneity is sufficiently far away from the source and the receiver and their 
antipodes (sin A » 1Il and sin A' » 111'), then XIO(A) and XI~(A') can be replaced by their 
asymptotic expansion (Edmonds, 1960). 

1t 1t 
cos ((I +1/2)A-"4) cos ((I' +1h.)A'-"4) 

(41) 
1t2.,Jsin A sin A' 

Using Poisson's sum formula both for I and l', and a contour integration in the upper half 
plane, the sum over I and I' can be performed. This procedure is shown in detail in Snieder 
and Nolet (1987). In their derivation the symmetry properties of the coefficients of the cosines 
under the parity transformation 

--7 -1-1 (42) 

playa crucial role. Since the 8coi depend only on the eigenfunctions U, V, Wand <1>[ and the 
product I (I +1), these terms are invariant under the transformation (42), see Snieder and Nolet 
(1987) for details. Therefore, the coefficients of the cosines in equation (41) satisfy the require­
ment (A6) of Snieder and Nolet (1987). 

Using the derivation in the appendix of Snieder and Nolet (1987), equation (41) leads to 
the following contribution of the mode branches K and K' 

i((l+lh)A+~) i«l'+lhW+~) 
e 4 e 4 (43) 

-Vsin Asin A' 

In this expression UK and UK' are the group velocities of the modes under consideration at the 
Earth's surface. The contour integration in the derivation only gives a contribution at the poles 
of the sum in equation (41), where 

(44) 

In this expression it is made explicit that the eigenfrcqucncies depend both on the radial modes 
number (n), the angular mode number (I) and the kind of modes (q=S or q=T). Note that only 
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resonant modes are coupled by the inhomogeneity. For a given mode branch (where nand q 
or n' and q' are specified) the values of land l' which are to be used in equation (43) follow 
from the condition (44). 

So far, we have only considered terms depending on the local frequency BW~K' and have 
not applied the source and receiver operators. The same derivation holds for the remaining 
terms in equations (26) and (27), only we need to consider asymptotic expansions of 
a/arxH)..)XX)..'), b/brX?C)..)Xr('A'), arX/o('A)X/('A') or a/X/('A)X/9('A'). Compared with the 
outgoing wave expansion of X/o, each term a/Xl produces an extra factor i (l +1h), while each 
term b/X? leads to an extra factor -(l +1h)2. 

In the surface wave limit, the source and receiver operators can be rewritten in a concise 
way. In the asymptotic expansion of the xt it is assumed that sin 'A » m /(l +112), and a similar 
far field condition holds for the primed coordinates. Under this restriction, the directivity of the 
radiation pattern leads in the computation of the displacement to terms of relative order lIl, 
and can be neglected. In this approximation, application of the receiver operator (v·D)R' as in 
equations (32a-c), amounts to a multiplication with a factor i (v·p'). The polarization vector p' 
is defined by 

p' = (l' +112)( v'i..' -W' tJ,') - iV'r . (45) 

For the source effects the substitutions (37a-c) should be used. In the far field, each dif­

ferentiation aa'A of the outgoing wave component of xt produces an extra factor i (l +1h). 

Apart from the effects of the differentiations, we should also analyze the term 
C oX/o('A)+C lX/('A)+C zX?('A) which occur in (37a-c). Using the asymptotic outgoing wave 
expansion for the xt we should replace 

C rX/o('A)+C lX/('A)+CzX?('A) --~ ..} . (Co+iC l-Cz) exp i ((l +lh)'A+~) 
~ ~'A 4 

The source effects are therefore contained in the factor (Co+iC l-Cz). Using expression (36), 
with the definition (45) one finds that 

C O+iC 1-C2=-iE*:M, (46) 

where the excitation tensor E is given by 

-["(a 1) .l+1h",] iU I (47)E - r r-- +l--/I. p-­
r r r 

(This can most easily be seen by rotating i.. and p from the (r ,'A,J.!) frame to the fixed (r ,e,ep) 
system in which the moment tensor is defined.) The polarization vector is defined by the 
unprimed equivalent of equation (45), where the modes are to be evaluated at the source depth. 
Therefore, the source effects are incorporated by a multiplication with -iE* :M. 

To summarize, the displacement spectrum of the perturbed wave can be written as the 
following double sum over all mode branches K and K' 
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exp i (kK(W)d+~) 
Sl(W) = ~ ~ f(E* :M) 4 VKK, (PK"v) dO. (48)

KK' l W n ( . d )'12sm­
a 

, where we defined the epicentral distance and wavenumber 

d =aA (49) 

In these expression I and l' are defined by the condition (44), so that only one mode on each 
mode branch contributes to equation (48). The interaction coefficients VKK' are given by 

2 -w a2tdr 2 { 
VKK' = 4 () () - OW~K' + (I + Y2) (1' +lh)OWkK' cos 'II + (l +1Iz)(l' +Y2)owkK' sin 'II 

UK W UK' W W 

(50) 

The local frequencies owi are given in appendix B. 

Expression (48) can be interpreted in the same way as in Snieder (l986a). At the source 
mode K is excited, this is described by the excitation tensor E. Surface wave mode K then 
travels to the point of interaction, this is described by the term exp i (kd +n:/4)/( sin d /a )'/'. The 
interaction coefficients VKK' describe the scattering and mode conversion effects from mode K 
to mode K'. After this, modes K' travels to the receiver, thus producing another propagator 
factor exp i (k'd' +1t/4)/( sin d' /a )'h. Finally the oscillation at the receiver is described by the 
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polarization vector p'. An integration over the horizontal extend of the heterogeneity and a 
summation over all incoming (K) and outgoing modes (K') completes the expression for the 
perturbed surface wave. 

7) Discussion and a comparison with previous results. 

The theory presented in Woodhouse (1980) and Woodhouse (1983), and the theory 
presented here are equivalent formulations of the same first order theory for normal mode 
interactions. Woodhouse (1980) expresses the heterogeneity in spherical harmonics, so that the 
integration over the sphere can be performed analytically, thus producing an algebraic system 
of equations for the mode interactions. In Woodhouse (1983) the normal modes are expressed 
in a fixed (arbitrary) reference frame, whereas in our theory the modes are expressed in coordi­
nate systems fixed to the source and the receiver, which allows for a simple scattering interpre­
tation of the normal mode interactions. The fact that Woodhouse (1983) expresses the 
interacting normal modes in the same reference frame precludes taking the surface wave limit 
directly from his results. 

There is a close analogy between equation (25) with the local frequencies 8(fi (i=0,16) 
of appendix B, and the coupling terms given in equations (A36) through (A42) of Woodhouse 
(1980) for an inhomogeneity of the form Y('(8,4». These expressions can be compared using 
the correspondence 

B )'::(+ < ~ (_1)m[ (I+m)!(I:+m)!] 'h Xj('A)XP('A') cos m'P (m=0,1,2)r (I-m)!(1 -m)! 

12

Bl~'::r- <---~ (_1)m+l[ u+m)!u:+m )!] I Xi('A)X[:'('A')Sinm'P (m=1,2) 
(I-m)!(1 -m)! 

l" (I" +1)Bl~9)r <----'----~ X/o('A)Xro('A') -~ Vf 
r 

Bl~W <---~ -aI'S't,X/o('A)X/('A') cos (/.l'-4>'t,) (51) 

iB1W~ <---~ -arS't,X/o('A)X/}('A') sin (/.l'-4>1;) 

In our theory we avoid an expansion of the heterogeneity in spherical harmonics, so that 
an integral over the inhomogeneity is present in the final result (25). It depends on the applica­
tion which formulation is more useful. If one wants to restrict oneself to smooth inhomo­
geneities on a global scale, the formulation of Woodhouse (1980,1983) is preferable. For sharp 
localized inhomogeneities the theory presented here is more useful since it allows for an 
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efficient local representation of such an heterogeneity. For this type of heterogeneity a very 
large number of terms is needed if one wants to express the inhomogeneity in spherical har­
monics. This expansion in spherical harmonics leads then to a global theory, whereas we know 
that some problems have a local character. As an example, think of the scattering of surface 
waves by a continental margin, as observed by Levshin and Berteussen (1979) or Bungum and 
Capon (1974). 

The theory of this paper is related in a curious way to the results of Woodhouse and Gir­
nius (1982). They used a spherical harmonics expansion for the inhomogeneity, but by apply­
~ng a partial in~egration reexpre.ssed this result in a Ipcal integ:al over t,he in~omo?eneity. This 
mtegral contams a kernel gIven by Yi(er,Q>r) l (Vr)'yl

m (e,Q»ylm(e,Q» J Yi (es,Q>s) for 

(i=O,lr)' As sholn in Romanowicz (1987), this expression can be reduced to 
(Vri l X/O('A)XIO('A') , where we used the notation of figure 1. It is possible to show the iden­

tities 

Vr[X/OO.W/9(A')] = -[ I (l +1)+1' (I' +1)] Xlo(A)Xro(A') - 2a/arX/(A)X)(A') cos 'P (52) 

, and 

Vf[x/O(A)X/9(A')] = [[ I (l +1)+1' (l' +1)] 2 + 21 (l +1)1' (l' +1) ] X/o(A)X/9(A') 

- 4[ I (l +1)+1' (I' +1)-1] al arX/(A)X/(A') cos 'P (53) 

, with al and bl defined in equation (28) Therefore, the results which are derived in this paper 
with geometrical methods can also be obtaincd using the algebraic results (52) and (53). This 
can only be done from the theory of Woodhouse and Girnius (1982) for the case of uncon­
verted modes, since they did not address the problem of mode conversions. Romanowicz 
(1987) pointed out that the formalism of Woodhouse and Girnius (1982) can be generalized for 
the interactions between different modes of equal kind. However, it is not clear to us how the 
sin 'P and sin 2'P interaction terms for the coupling between toroidal and spheroidal modes can 
be derived in a way similar to the equations (52) and (53). 

The break up into local frequencies 8cukK' in this paper can be compared to that of 
Woodhouse and Girnius (1982) for the case of self interaction (K=K'), as needed for the cal­
culation of the location parameter of Jordan (1978). Only 8CU~K=8cu~ is equal in this paper and 
in Woodhouse and Girnius (1982), while 8cuh and 8cuix as defined in equation (26), are 
linear combinations of 8CU~K' 8CUkK' 8cuRK as dcflned in Woodhouse and Girnius (1982). This 
linear combination follows from the identities (52) and (53). The 8cuRK' and 8cuiK' terms in 
(26) have no equivalence in the results of Woodhouse and Girnius (1982), since these terms 
describe interactions between spheroidal and toroidal modes. 

After the surfaCe wave limit is taken, the theory of this paper is to leading order in I 
equivalent to the results of Snieder and Nolet (1987). They only took the leading order terms of 
the interaction terms into account, whereas in this paper no high I approximation is used in the 
derivation of the interaction terms. Note that also the excitation terms and displacement terms 
agree up to terms of relative order l!l. The reason for this is that even though we used a high I 
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approximation to derive (45) and (47), the effects of sphericity are fully taken into account, 
whereas Snieder and Nolet (1987) ignored subdominant contributions. The main discrepancy is 
the last term in the excitation tensor (47), which after a contraction with the moment tensor 

leads to a contribution	 iU tr M. This term precludes a dyadic decomposition of the excitation 
r s 

tensor E, and is only nonzero for sources with an explosive component. 

It can be seen by comparing equation (50) and appendix B with the corresponding 
results of Snieder and Nolet (1987), that the interaction terms in equation (50) of this paper and 
in equation (5.2) through (5.5) of Snieder and Nolet P987) are (up to terms of relative order 
lfl) proportional, with a proportionality factor ro fdl'a 2/4UK UK" The reason for this 
discrepancy is that the eigenfunctions in Snieder and Nolet (1987) are normalized differently 
with a relative factor rof I a I2UK. Expression (48) differs with a factor -lli ro from expression 
(4.8) from Snieder and Nolet (1987). However, equation (48) is the perturbation in the dis­
placement in case of a step function excitation, whereas equation (4.8) of Snieder and Nolet 
(1987) is the perturbation in displacement for a general excitation F (ro). These results are 
reconciled if equation (48) is multiplied with -i ro to correct for the source spectrum of the step 
function excitation. 

The results of Snieder and Nolet (1987) were derived using polarization vectors. How­
ever, the concept 'polarization vector' is only useful in the far field limit, where the direction 
of the particle motion is completely described by the wave path. It is therefore not surprising 
that the results of Snieder and Nolet (1987) are only valid in the far field. In this paper, polari­
zation vectors have not been used in the derivation of the interaction coefficients. The interac­
tion terms derived in expressions (26) and (27) are not only valid in the far field limit, because 
in section 2 no restriction was made for the epicentral distances').. and ')..'. Interestingly, the 
local frequencies of interaction in appendix B are, apart from a trivial proportionality factor, to 
leading order in I equal to the far field interaction terms of Snieder and Nolet (1987). From this 
we conclude that near field effects only affect the propagator terms, but not the interaction 
terms. 

The question of the far field restrictions is important, because in many applications the 
source and the receiver may be located on top of an inhomogeneity (or it's antipode), thus 
violating the far field conditions. Unfortunately, in taking the surface wave limit in section 5, 
an asymptotic expansion of the spherical harmonics is used which is only valid in the far field. 
Therefore, our surface wave results are only valid in the far field. Clearly, a new procedure is 
needed for the surface wave limit, which uniformly takes care of both the far field effects and 
the near field effects. (The special case where the source and receiver are antipodal is dis­
cussed in Romanowicz and Roult, 1988.) 

Perturbations in low frequency seismograms due to lateral heterogeneity can be com­
puted using normal mode summation using the equations (6), (25), (29) and (30), where the 
source and receiver effects are affected with the substitutions (37a-c) and (32a-c). Perturba­
tions in surface wave seismograms follow from the expressions (48) and (50). 

Numerically, it is much simpler to compute equation (25), than the corresponding 
expression (40) from Woodhouse (1983), or expression (4.5) from Woodhouse and Gimius 
(1982) for the self interaction of modes. The reason for this is that in the latter formulations a 
double sum over modes y/m has to be perfom1ed for all O:5;m:5;1 , whereas for equation (27) of 
this paper one only needs to compute xt for m=O,l,2, and some simple geometrical variables 
on a sphere. 
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The theory presented in this paper leads to a formalism for normal modes interactions 
without using an expansion of the inhomogeneity in spherical harmonics, and without using 
generalized spherical hannonics. The simplicity of the final results allows for analytical mani­
pulation (along the lines of Romanowicz (1987), Snieder (1986a) or Snieder (1987)), and leads 
to an efficient algorithm for the generation of synthetic seismograms in a laterally heterogene­
ous Earth. 
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Appendix A, a rearrangement of the normal mode interaction terms due to the gravi­
tational potential 

According to equation (Al) of Woodhouse (1980), the normal mode interaction due to 
the perturbation in the gravitational potential 0<1> is given by 



110 Chapter 7 

<K' ,m' IZllcjllK,m > = Y2f p[s·V(s'·VO<j)) + s'·V(s·V&») - (s·VO<j))(V'S') - (S"V&»)(V's) ] dV. 
v 

(AI) 

Let us consider the term 

I"" f ps·V(s'·V&») dV . (A2)
v 

This integral can be split in a radial integral and an integral over the unit sphere. Since the den­
sity p of the SNREI reference model is radially symmetric, we have 

1= Jp[ bs·V(s'·V&») dO.] ,2dr (A3) 

, where 0. denotes the unit sphere. 

Decompose s in a horizontal component and a vertical component, and apply an integra­
tion by parts to the term with the horizontal component, this leads to 

fs·V(s'·V&»)do. = 1. f Sl/'Vl(s',Vo<j))d 0. + f s,a,(s',V&»)do. 
Q r Q Q 

= -=l f (Vl'Sl/)(s',Vo<j))do.+ f s,a,(s'·Vo<j))do. (A4) 
, Q Q 

Using the decomposition V=1.Vl+fa, and differentiation with respect to r gives 
r 

a, (s'·Vo<j)) = l.Sl/'·V10<j) + l.SIl'·VIO~ - ~Sl/ ',V1o<j) + s,'o~ + s,'o~ (AS)
r , r 

The &» term can be eliminated using 

1o~ = L&» = J...l-[r 2 aO<j)] _lo~ = [V2__ vrlo<j) _lo~ (A6)
2ar 2 r a, a, r ,2 J r 

, and the field equation for the perturbation in the gravitational potential 

V2&» =41tG op (A7) 

, so that 

.. 12· 
o<j) = 41tG op - 2"Vro<j) - -o<j) . (A8) 

, r 

The first term on the right hand side of equation (A8) is absorbed in the op term of equation 
(15), leading to a factor 81tG ps,sr' instead of the factor 41tG ps,s,' in equation (AI) of Wood­
house (1980). Inserting (A4) through (A7) in equation (Al) leads to the gravitational perturba­
tion term in equation (15). 
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Appendix B, the local frequencies of interaction boi. 

'l/O)(J)' a { 2 .. . . 
bO)O = -- f (bK--bll)(U+F)(U'+F') + bll(FF'+2UU') 

2 ° 3 

- pUU' ( :' \7104» - p(UF'+FU')o~} "d' 

'1/0)0)' ..[2"
- -2- L hr 2 (K-"3Il)(U+F)(U'+F') + Il(FF' +2UU') 

~a{ }b0)2= ~O) [ +bll(XZ'-ZX')+bP(W<l>j'-<l>jW'+;r g (UW'-WU,)-0)2(VW'-WV')) r 2dr 

- 'I/~O)' L hr 2 [ +1l(XZ' -ZX')+ P ( W<l>j'-<P jW' + ;r g (UW' -WU' )_0)2(VW' -WV') ) 
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Chapter 8 

Theory and numerical examples of waveform inversions 

of surface wave data 

1) Introduction. 

Standard surface wave analysis proceeds by eXLracting path averaged group or phase 
velocities from surface wave data using dispersion analysis. If sufficient data are available, 
these path averaged dispersion data can be used to determine the local phase or group velocity. 
Mathematically, this approach relies on the great circle theorem (Backus, 1964; Jordan, 1978; 
Dahlen, 1979), or more accurately on the minor arc theorem (Romanowicz, 1987). These 
theorems state that surface waves are only influenced by the integral of the phase or group 
velocity over the source receiver great circle (or minor arc). This is justified if the lateral 
heterogeneity is smooth on a scale of a wavelength of the surface waves under consideration. 

In practice, this condition may not be satisfied. For example, a 30 s. Rayleigh wave has a 
wavelength of approximately 120 km. In continents the lateral variation on this scale can be 
considerable, so that the use of the great circle (minor arc) theorem and the related dispersion 
measurements are not justified. Surprisingly, this well known fact is widely ignored and in 
some cases dispersion analysis is used over structures which have the same length scale as the 
surface waves e.g. Panza et a1. (1980), CalcagniIe and Scarpa (1985). If the structure is not 
smooth on a scale of a wavelength, surface wave scattering and multipathing may occur. This 
is documented for reflection of surface waves at a continental margin by Levshin and Ber­
teussen (1979) and Bungum and Capon (1974). Linearized scattering theory can be used to 
describe these effects. This theory is developed both for a flat geometry (Snieder, 1986ab), 
and for a spherical geometry (Snieder and Nolet, 1987). 

Scattered surface waves must to some degree be responsible for the generation of the 
surface wave coda, and it would be fruitful to extract this information from the surface wave 
coda. In Snieder (1986a) a holographic inversion scheme is presented for the surface wave 
coda, reminiscent of migration procedures in exploration seismics. This inversion method has 
been applied successfully to image the surface wave reflections from a concrete dam on a tidal 
flat (Snieder, 1987a). In order to achieve this, several severe approximations have been used, 
and it is desirable to give waveform inversion for surface data a firmer theoretical basis. This 
paper serves to provide a rigorous waveform fitting method for surface waves, based on sur­
face wave scattering theory. This inversion is set up as a huge matrix problem, and it is shown 
how solutions can be found iteratively. 

This chapter is submitted for publication as: 

Snieder, R., Large scale wavefonn inversions of surface waves for lateral heterogeneity -1: Theory and numerical 
examples, submitted /0 J. Geophys. Res.• 1988. 
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There is, however, more to be gained from surface wave scattering theory than an 
analysis of the surface wave coda. Surface wave scattering theory can also be used to describe 
the distortion of the direct wave due to lateral heterogeneity (Snieder, 1987b). This allows not 
only for accurate forward modelling of the direct surface wave in the presence of lateral 
heterogeneity, but also for a waveform inversion of the direct surface wave train. In this way 
both amplitude and phase information can be used. 

A waveform inversion of surface wave data was first attempted by Lerner-Lam and Jor­
dan (1983), who linearly fitted fitted higher mode surface waves with a laterally homogeneous 
model. Nolet et al. (1986a) extended this method to incorporate nonlinear effects and lateral 
inhomogeneity. However, they only used the phase information of the surface waves. Yomo­
gida and Aki (1987) used the Rytov field to fit both the amplitude and phase of fundamental 
mode Rayleigh wave data. The starting point of Yomogida and Aki (1987) is the 2D wave 
equation. One can argue that their method lacks rigor, because it is not clear that surface waves 
satisfy the 2D wave equation. Tanimoto (1987) determined a global model for the S-velocity 
in terms of spherical harmonics up to order 8 using long period higher mode waveforms. In 
computing the synthetics he used the great circle theorem to compute the phase shift, and he 
ignored focusing effects. Because of the low order of his spectral expansion (l ::;8), ray theory 
could be used for this inversion. This means that up to this point, all waveform inversions for 
surface waves relied either on ray theory, or on the 2D wave equation. 

In this paper it is shown how linear scattering theory can be used for waveform fitting of 
the direct surface wave by the reconstruction of a 2D phase velocity field. The derivation uses 
the full equations of elasticity, and neither uses ray theory nor the 2D wave equation. 
Specifically, there is no need to assume any smoothness properties of the medium. In fact, in 
section 7 a numerical example is shown of the distortion of the direct surface wave by a struc­
ture with sharp edges. A restriction of this inversion method is that small scattering angles are 
assumed. This can in practice be realized by time windowing the data. 

In section 2 of this paper some elements of surface wave scattering theory are revisited. 
The isotropic approximation, which allows the determination of phase velocities from scatter­
ing theory, is introduced in section 3. The following section features a method to invert the 
resulting scattering integral. Due to the extremely large size of the resulting matrix equation 
this is not without problems, and in section 5 several tricks are shown to make these computa­
tions feasible on systems as small as a super mini computer. Unfortunately, the surface wave 
inversion problem is in reality nonlinear, and the assumption of linearity is only justified for 
reference models which are sufficiently close to the real Earth. It is therefore advantageous to 
perform a nonlinear inversion (using ray theory) first (section 6), in order to find a smooth 
reference model for the subsequent linear inversion. (This linear inversion is in this paper 
referred to as "Born inversion".) In section 7, it is shown that a more or less realistic distribu­
tion of scatterers produces a realistic looking coda, but also that sharp lateral heterogeneity 
may severely distort the direct surface wave. Examples of inversions for a point scatterer and 
for ray geometrical effects (phase shifting and focusing) are presented in the last two sections. 
Application of this technique to surface wave data recorded with the NARS array are presented 
in part II of this paper (Snieder, 1988). 

Throughout this paper the limitations of surface wave scattering are assumed (Snieder 
and Nolet, 1987), i.e. it is assumed that the heterogeneity is weak, and that the far field limit 
can be used. In order to transcend these limitations a considerable amount of theoretical work 
remains to be done. For reasons of simplicity, only vertical component fundamental mode data 
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are assumed, but this restriction is not crucial. Note that this does not mean that the fundamen­
tal Love wave need not be considered, because in general a double couple source excites Love 
waves, which may be converted by the heterogeneity to Rayleigh waves. 

2) Surface wave scattering theory. 

A dyadic decomposition of the surface wave Green's function (Snieder, 1986a; Snieder 
and Nolet, 1987) has allowed compact expressions for both the direct and the scattered surface 
waves. In this section, elements of surface wave scattering theory are briefly presented. 
Throughout this paper a spherical geometry is assumed, and computations are performed to 
leading order of ka, where k is the wavenumber and a the circumference of the Earth. As 
shown in Snieder and Nolet (1987), the unperturbed surface wave excited by a moment tensor 
M can be written as a sum over surface wave modes (with index v): 

i(kvaM~) 
e 4 (1)

uO(r ,e,4» =LpV(r ,IlR) -V (Ev
• (rs ,lls):M) .
 

v sin ~
 

In this expression Ils and IlR are the azimuths of the source receiver minor arc at the source 
and receiver respectively counted anticlockwise from south, while ~ is the epicentral distance. 
In this paper, we shall only be concerned with the fundamental modes, so that the (Greek) 
mode indices are usually omitted. The polarization vector p is for Love waves given by 

PL,=-(l+llz)W(r)~ , (2a) 

and for Rayleigh waves by 

PR = (l+Yz) V(r) t\-iU(r)r , (2b) 

where r, t\ and ~ are unit vectors in the vertical, radial and transverse direction respectively. 
The eigenfunctions U, V and W of the Earth's normal modes are defined in Gilbert and 
Dziewonski (1975). The eigenfunctions are assumed to be normalized as in Snieder and Nolet 
(1987): 

liz f p(r)[ U 2(r) + l(l+1)V2(r)] r 2dr = 1/2 fp(r) l(l+I)W2(r) r 2dr = [ l;:] Ih/4CtJUg (3) 

The angular quantum number l is related to the wavenumber by the relation ka=l+1/2, and ug 

is the angular group velocity of the mode under consideration. The excitation tensor E in equa­
tion (1) can be expressed in the polarization vector at the source 

A .(l+lh) ~ ]
E(rs ,Ils) = rdr + z-r-t1s p(rs ,Ils) . (4) 

[ 

The perturbation of the wavefield due to the lateral heterogeneity can be expressed as a 
double sum over incoming (0-) and scattered (v) surface waves modes (Snieder and Nolet, 
1987) 
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R<-R Radiation pattern for T=34 s. 
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Figure la. Radiation pattern for the interaction of the fundamental Rayleigh mode with 
itself for surface topography (3 km.) and for S-velocity perturbations extending down to 
170 km. (0/3//3=4%),110 km. (0/3//3=4%) and 33 km. (0/3//3=12%). The effective size 
of the scatterer is 100x lOOkm 2. The direction of the incoming wave is shown by an 
arrow. 

i(kva~1+~) 
e 4 

(Ea 
> (rs ,Ils ').M) d Q' .u!(r ,S,cjl) = L If pV(r ,IlR ') 

(sin tJ.2)'1zv,cr 

(5) 

The surface wave distortion is expressed a scattering integral over the horizontal extend of the 
heterogeneity (S',cjl'). The minor arc from the source to the heterogeneity (S',cjl') defines the 
azimuth Ils' at the source and the angular dist.ance tJ.!, while the minor arc from (S',cjl') to the 
receiver defines the azimuth llR' at the receiver and the angular distance tJ.2• The interaction 
matrix Vvcr describes the coupling between the modes v and cr. For isotropic perturbations in 
the density op and the Lame parameters oA and Oil the interaction matrix depends only on fre­
quency and the scattering angle \f' defined by 

(6) 
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R<-L Radiation pattern for T=34 s. 
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Figure lb. Radiation pattern for the conversion from the fundamental Love mode to the 
fundamental Rayleigh mode. Conventions as in figure 1a. 

(~oul and ~i" are the azimuths of the incoming and scattered wave at the scatterer.) Extensions 
for perturbations of interfaces and gravitational effects are given in Snieder and Romanowicz 
(1987), while the effects of anisotropy are discussed in Romanowicz and Snieder (1987). 

For perturbations in the density and the Lame parameters the interaction terms are depth 
integrals containing the heterogeneity and the modes under consideration (Snieder and Nolet, 
1987). For example, the Love wave to Rayleigh wave conversion (R ~L) is given by 

2VRL =(lR+V2)(IL+V2) J[ -VRWL8pro2 + ( ~ UR+dr VR)(dr Wd8~] r dr sin 'I' 

(7) 

For Love-Love wave interactions (LL) or Rayleigh-Rayleigh wave interactions (RR) a similar 
dependence on the scattering angle exists 

- - (0) - (I) - (2)
VRR or IL = VRR + VRR or IL cos 'I' + VRR or IL cos 2'1' . (8) 
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In the figures la and Ib the radiation patterns are shown for interactions of the fundamental 
Rayleigh wave with itself, and for conversion from the fundamental Love wave to the funda­
mental Rayleigh wave. These radiation patterns are shown for surface topography (Snieder, 
1986b; Snieder and Romanowicz, 1987), and for a constant relative perturbation in the S­
velocity o~/~ down to different depths with an unperturbed density (op=O). The perturbations 
in the Lame parameters are equal. 

In Snieder (1986b) it is shown that the interaction terms for forward scattering and 
unconverted waves are proportional to the perturbation of the phase velocity oe. Using the 
normalization (3), equation (9.3) of Snieder (1986b) can be written as 

'/2

k = ~ __1_ Vunconverted ('11=0) . (9)
e [ Z+V2 ] (l+V2) 

Up to this point, it has been assumed that the real Earth can be treated as a radially sym­
metric reference model (producing a seismogram u O), with superposed lateral inhomogeneities 
(leading to the seismogram distortion Ul). However, as shown in Snieder (1986a), the theory 
can also be formulated for a smoothly varying reference model, with embedded hetero­
geneities. (Smooth means that the lateral variation is small on scale of one horizontal 
wavelength.) In that case the phase terms and the geometrical spreading terms of the propaga­
tors follow from ray theory (Snieder, 1986a). Solving the ray tracing equations is a cumber­
some affair, and as long as the inhomogeneity of the reference medium is sufficiently weak, 
the ray geometrical effects can be expressed as simple line integrals over the minor arc under 
consideration (Woodhouse and Wong, 1987; Romanowicz, 1987). Using these results, the pro­
pagator terms exp i (ka ~+1t/4)/"sin ~ in the expressions (1) and (5) should for the case of a 
smooth reference medium be replaced by 

ka~ ---> ka[~-1 0: d~J (lOa) 

sin ~ -~ sin ~ -
li

f sin~' sin (~-~') ann (DC) d~' . (lOb)
° e 

The azimuth terms in the polarization vectors and the scattering angle should be replaced by 

Ils -~ Ils - _._1_ 
li

f sin (~-~') an ( DC) d~' (lOc) 
sm~ ° e 

IlR -~ IlR + _._1_ 
li

f sin ~' an (k) d~' , (lOd) 
sm~ ° e 

with similar expressions for the azimuths of the incoming and outgoing wave at the scatterer. 
In these expressions Dc Ie is the relative phase velocity perturbation of the reference medium, 
while an and ann are the first and second angular derivatives in the transverse direction. 

One should be careful giving u l the interpretation of the scattered surface wave, because 
u l describes all perturbations of the wavefield due to the perturbations superposed on the refer­
ence medium. If there are abrupt lateral variations, this leads to surface wave scattering. 
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However, in the case of a smoother perturbation on the reference model, u1 describes the 
change in the direct wave due to these inhomogeneities. For example, it is shown explicitly in 
Snieder (l987b) that the "scattering integral" (5) describes the ray geometrical effects on the 
direct wave due to smooth lateral heterogeneity, 

3) The isotropic approximation. 

The surface wave scattering formalism, as presented in the previous section, establishes 
a linear relation between the lateral heterogeneity and the perturbations of the surface wave 
field. In principle, a 3D inversion could therefore be formulated as a huge system of linear 
equations, by discretizing both the scattering integral over the heterogeneity (5) and the depth 
integrals in the interaction terms (7). Unfortunately, the simplicity of this approach is elusive. 
An inversion using the surface wave scattering integral (5) should take care of the following 
effects. 

[1]	 The inhomogeneities should be located at their correct horizontal position. 

[2]	 The depth distribution of the heterogencity should be determined. 

[3]	 The contributions from the different inhomogeneities op, OA. and o~ should be 
unravelled. 

It is difficult those achieve these goals, since the heterogeneity acts on the wavefield only 
through the interaction terms VVO". This means that it is only possible to retrieve certain depth 
integrals of the heterogeneity. Information for different frequencies, and possibly different 
modes, is needed for the reconstruction of the depth dependence of the inhomogeneity. The 
contribution of the different types of inhomogeneity (op,OA.,o~) can only be retrieved by using 
information of different scattering angles. 

It will be clear that a complete 3D reconstruction of the heterogeneity is hard to realize 
with a finite set of band limited, noise contaminated data. With present data sets there are two 
realistic approaches. One can parameterize the depth dependence and the different contribu­
tions of op, OA. and o~ in a finite set of basis functions. This reduces the degrees of freedom of 
the heterogeneity, which facilitates a well behaved inversion. This approach has been taken in 
a field experiment where surface waves on a tidal flat were reflected by a concrete dam 
(Snieder, 1987a). In this test example, the depth dependence of the heterogeneity was 
prescribed, and an accurate reconstruction of the location of the dam was realized using the 
surface wave coda. 

Alternatively, one can make the "isotropic approximation". It follows from expression 
(8) that the R ~R radiation pattern is stationary with respect to the scattering angle for near 
forward directions. This can be verified in figure la for several different inhomogeneities. 
Furthermore, it follows from equation (7) that the R ~L conversion vanishes in the forward 
direction. From figure 1b it can be seen that for the shown examples the R ~L conversion is 
small for near forward directions. This means that (at least for the fundamental modes) for near 
forward directions one can make the "isotropic approximation", This means that 
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VRL:::O, (11) 

liz 

V - V (0) + V(l) + V(2) _ I+V2 (1+IA) oe 
RR - RR RR RR - - ~ 2 -;;- (12)

[ ] 

These expressions are extremely useful, because they make it possible to retrieve the 
phase velocity perturbation from scattering theory. This allows a two stage inversion of surface 
wave data. In the first step, the scattering theory is used to find the phase velocity perturbation 
using the expressions (5), (11) and (12). Once these local phase velocities are computed, a 
standard linear inversion can be used to determine the depth dependence of the heterogeneity 
(Nolet, 1981). The catch is that this approach forces us to use information for small scattering 
angles only. In practice, this can easily be achieved by time windowing the seismograms, and 
only using the information contained in the direct wave. Note that there are no smoothness res­
trictions on the heterogeneity, so that it is in principle possible to reconstruct a 2D phase velo­
city field without doing any dispersion measurements. In this way, the conditions for the vali­

c dity of the great circle theorem need not be fulfilled. 

4) Inversion of the scattering integral. 

The linear relation (5) between the perturbation of the wavefield, and the perturbation of 
the medium can be written as 

vva 
U

1 =Lff pvg y{t:.z) aa ·m(8',<j>')ga(t:.1) (Ecr'":M)dn' , (13) 
v,a m 

with the propagators defined by 

i(kvaM~) 
(14)

(t:.) _ _c------,==-_gv - _I. A 

"sm L1 

or its equivalent for a smoothly varying reference medium (10). The model parameter m 
designates either the heterogeneity (oP,OA,OIl) parameterized in some suitable form, or the 
phase velocity perturbation oe Ie if the isotropic approximation is used. The difference 
between the recorded surface wave data and the synthetics for the reference model (uo) can for 
all events, stations, and frequency components be arranged in one (huge) vector d of data resi­
duals. Likewise, the model parameters can, after a discretization in cells of the surface integral 
(13) (and possibly also of the depth integrals in the interaction terms), be arranged in one 
model vector m. (Of course, one does not have to expand the heterogeneity in cells,other 
parameterizations can also be used.) In that case, equation (13) can be written as a matrix 
equation 

dj =L Gijmj , (15) 
j 

where Gij is the spectral component of the synthetic seismogram for event-station pair "i" at 
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frequency (Oi. due to a unit perturbation of model parameter "j". 

In general. the matrix G is extremely large. The reason for this is that the integrand in 
the original scattering equation (13) is rapidly oscillating with the position of the inhomo­
geneity. This means that in order to discretize (13) accurately. a cell size much smaller than a 
wavelength is needed. For an inversion on a continental scale for surface waves with a 
wavelength of say 100 lan., several thousands of cells are needed. Fortunately. extremely large 
systems of linear equations can be solved iteratively in the least squares sense (Van der Sluis 
and Van der Vorst. 1987). so that a brute force inversion of G need not be performed. The least 
squares solution minimizes the misfit Id-Gm 12

• so that one performs in fact a least squares 
waveform fit of the data residual d to the synthetics Gm. 

In the inversions presented in this paper. and in part II, the algorithm LSQR of Paige and 
Saunders (1982ab) is used to solve equation (15) iteratively in the least squares sense. LSQR 
performs the inversion by doing suitable matrix multiplications with G and GT 

• (In the 
language of modem optimization schemes (Tarantola and Valette. 1982). one would say that 
one only needs to solve the forward problem.) There is no need to store the matrix in memory. 
in fact. one only needs to supply LSQR with a subroutine to do a multiplication with one row 
of G or GT 

• As an additional advantage. LSQR has convenient "built in" regularization proper­
ties (Van der Sluis and Van der Vorst. 1987). The stability of LSQR is confirmed by Spakman 
and Nolet (1987). who applied LSQR to a tomographic inversion of an extremely large set of 
P-wave delay times. and who made a comparison with other iterative solvers of linear equa­
tions. 

The inversion with LSQR has some interesting similarities with migration methods in 
exploration seismics. The first iteration of LSQR yields a solution proportional to GT d. higher 
iterations perform corrections to the misfit (Van der Sluis and Van der Vorst. 1987). It is 
shown in detail in Snieder(1987a) that the contraction GT d amounts to a holographic recon­
struction of the heterogeneity. This means that the waves propagating away from the sources 
(the illumination) are correlated with the surface wave residuals which have backpropagated 
from the receivers into the medium. For one source-receiver pair this leads to an ellipsoidal 
contribution to the reconstructed image. By summing over all source-receiver pairs (which is 
implicit in the product GT d) an image is constructed. It is shown by Taranlola (1984ab) that 
this procedure is similar to Kirchoff migration as used in exploration seismics. Just as with 
these techniques. the surface wave reconstructions using the method of this paper will contain 
"smiles" (Berkhout. 1984) if insufficient data are used. 

It may be advantageous to impose an a-priori smoothness constraint on the solution. This 
can be achieved by solving of equation (15) the equation 

GSrit=d. (16) 

where S is a prescribed smoothing matrix. This yields the solution 

m=Srit • (17) 

which incorporates the smoothness criterion imposed by S. 
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5) Practical implementation of solving the matrix equation 

Solving the linear system (15) or (16) is not entirely straightforward, because the matrix 
may be extremely large. For example, discretizing the continent of Europe (with a size of say 
3500x3500km 2

) in cells of 35x35km 2 (which is l/4 of the wavelength of a 30 s. fundamental 
mode Rayleigh wave), leads to a model of 10,000 cells. For the data set used in paper II, there 
are approximately 2,500 spectral components of surface wave data to be fitted. This means that 
storing this matrix on disc required 100 Mbyte of disc space, which is impractical (if not 
impossible on many machines). As mentioned before, LSQR does not need the whole matrix 
at once, but only needs access to the rows of G and GT 

• In principle, the matrix can therefore 
be computed during the inversion. However, due to the large number of trigoniometric opera­
tions required for the computation of the synthetics this leads to prohibitive CPU times. 

If we restrict ourselves to vertical component data for the fundamental mode only, the 
elements of the matrix G have the form 

G =ARei<!>R + ALei<!>L . (18) 

The first term in this expression describes the scattering of the fundamental Rayleigh mode to 
itself, while the second term describes the conversion from the fundamental Love mode to the 
fundamental Rayleigh mode. The terms <PR and <PL are the phase terms of the propagators (14), 
while the complex amplitudes AR and AL contain the remaining terms. 

Due to the phase terms, the matrix Gij (which is the synthetic for data point i due to a 
unit perturbation of model parameter j) is an oscillatory function of the position of the inho­
mogeneity, and hence of the index j. This oscillatory character makes it impossible to use 
some interpolation scheme to compute Gij. However, the phase functions <PR , <PL and the com­
plex amplitudes AR , AL are smooth functions of the location of the inhomogeneity. This makes 
it possible to store these terms at selected grid points, and to compute values at intermediate 
points by interpolation during the inversion. One could call this procedure "Filon matrix multi­
plication" . 

This procedure can be simplified even further by using the fact that the the wavenumbers 
of the fundamental Rayleigh wave and the fundamental Love wave usually are not too dif­
ferent (hence <PR :::<pd. If equation (18) is wrillen as 

G =z ei<!>R , (19) 

with 

Z =A +AL ei(<!>L-QR) , (20)R 

one only needs to store Z and <PR at selected gridpoints. 

The functions Z and <PR are in general also a smooth function of frequency, so that the 
matrix only needs to be stored at certain selected frequencies. The value of the matrix elements 
for intermediate frequencies can also be computed by interpolation. This interpolation with 
respect to frequency can be performed with a simple linear interpolation. For the interpolation 
with respect to the location of the inhomogeneity it is beller to use a quadratic scheme. The 
reason for this is that the phase ¢R has a minimum on the minor arc between the source and the 
receiver. It is especially at this location that accuracy is required if the isotropic approximation 
is used, because in that case the requirement of a small scattering angle confines the solution to 
the vicinity of the minor arc. A linear interpolation scheme for the horizontal coordinates is not 
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able to reproduce such a minimum, and is thus unsuitable. 

In the inversions shown in part II of this paper for the structure under Europe and the 
Mediterranean, an area of 3500x3500km 2 is investigated. Storing the matrix on a l5x15 grid, 
and interpolating in between produced accurate results. (Halving the grid distance for the inter­
polation did not change the solution.) In the period range from 30 s. to 100 s., only 15 frequen­
cies were sufficient to achieve an accurate interpolation with respect to frequency. (Doubling 
the number of frequency points for the interpolation did not change the solutions.) In this way, 
only 2 Mbyte of disc space was needed to store the interpolation coefficients for the matrix G. 

The edges of the domain of inversion require special attention. Artificial reflections may 
be generated at the edge of the domain of inversion if this domain is truncated abruptly 
(Wielandt, personal communication). This problem can be circumvented by tapering the 
matrix G near the edges of the domain. In the inversions used in this study, a linear taper was 
applied to G near the edges of the domain over a length of 254 km. 

The theory formulated here is strictly only valid in the far field (Snieder and Nolet, 
1987). It can be seen from equation (14) that the theory becomes singular in the near field. Due 
to the lack of a better theory, this problem is ignored in this study. The singularity was 
removed by replacing the sin ~ term in the propagator (14) by a constant (sin ~o), whenever 
~<~o. A value of 2.7 degrees was adopted for ~o. 

The data fit (16) is performed in the frequency domain, whereas surface wave data are 
recorded in the time domain. After applying some Ulper, these data can be transformed to the 
frequency domain. In case one uses the isotropic approximation a time window is needed to 
extract only the direct wave. In general, the data are therefore in the time domain multiplied 
with some nonnegative time window w (t). Of course, the matrix elements, which are the spec­
tral components of the inhomogeneity in each cell, should incorporate the effects of this time 
window. A multiplicative window in the time domain acts as a convolution in the frequency 
domain, which complicates the inversion. However, it is shown in appendix A that if the time 
window w(t) is nonnegative and sufficiently broad, that due to the surface wave character of 
the signal this filter acts in the frequency domain as a simple multiplication with w (L /U (m». 
In this expression, L is the distance covered by the surface wave, and U (m) i:- the group velo­
city of the mode under consideration. 

6) Waveform fitting by nonlinear optimization. 

The theory presented here establishes an inversion scheme in case a linear relation exists 
between the inhomogeneity and the deviation between the recorded surface waves and the syn­
thetics for the reference model. In practice, this relation may suffer from nonlinearities. The 
main culprit for this effect is that small changes in the wavenumber are multiplied in the 
exponent by a large epicentral distance so that exp i (k+8k)L :::: (1+i 8kL) exp ikL may be a 
poor approximation. 

It is therefore desirable to perform first a nonlinear inversion in order to find a smooth 
reference model for the Born inversion. This nonlinear inversion can be achieved by minimiz­
ing the penalty function 
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F =L J[U rs (t) - srs (m ,t)] 2 dt + 'Y JJ 1VIm 12 d n (21) 
r.r 

with respect to the model parameters m. In this expression urs (t) is the surface wave seismo­
gram for source s and receiver r, while srs (t) is the corresponding synthetic for model m. The 
last term serves to select the smoothest possible solution by minimizing the horizontal gradient 
IVlm I. 

As shown in Nolet et al. (1986a), the minimization of F in (21) can be achieved 
efficiently using conjugate gradients. In this kind of inversion one only needs to solve the for­
ward problem repeatedly (Nolet et aI., 1986a), and most of the computer time is spend comput­
ing the gradient of the penalty function with respect to the model parameters. It is therefore 
crucial to have a fast method for computing this gradient. (In this study, the forward problem 
is solved using the .line integrals (10) in order to incorporate ray geometrical effects. Bicubic 
splines are useful for representing the lateral phase velocity variations, because they ensure 
continuity of the phase velocity with its first and second derivatives. In this approach, the 
model parameters m are the phase velocities at some selected grid points.) 

The gradient of the misfit M =J[U (t) - s (m ,t)] 2dt for one source receiver pair can for 

bandlimited data be estimated analytically. It is shown in appendix B that if the synthetic con­
sists of a sum of modes 

S(m,ro) =L Sy{m,ro) =LAvei$v , (22)
v v 

the gradient of the misfit can be approximated by 

l oAvaM =_2L{~Jacv dxBi+__ BI} (23)am v cv am A v am 
In this expression 

Bi=fsY{m,t)[u(t)-S(m,t)]dt, (24) 

B I =fs v(m ,t)[U (t ) - s (m ,t)J dt , (25) 

and J. ....dx denotes the integral over the minor arc from the source to the receiver. The virtue 
of this approach is that the correlations B i and B I have to be computed only once, and that 
the derivatives of all model parameters follow from these correlations. Note the similarity 
between expression (24) and the correlation functions used by Lerner-Lam and Jordan (1983) 
(the "lx:cfs") in their linear inversion of surface wave data. 

7) A numerical example of scattered surface waves. 

In order to see whether the scattering theory presented here is useful for inversion, it is 
instructive to study synthetic seismograms for some artificial distribution of scatterers. Figure 2 
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Model for scattering computation. 

Figure 2. Horizontal extend of the heterogeneity used in the example of the scattering 
computation. The inhomogeneity extends down to 170 km. with 8~/[3=lO%, 8p=0 and 
0/...=011· 

shows a fictitious distribution of scatterers which forms an extremely crude model of structures 
as the Alps, the Tomquist-Teisseyre zone, and the edge of north Africa. The inhomogeneity 
consists of a constant S-velocity perturbation of 10% down to a depth of 170 km., while the 
density is unperturbed. Equal perturbations of the Lame parameters are assumed. Synthetics 
are computed with a brute force integration of equation (5). In order to satisfy the criterion of 
linearity, only periods larger than 30 s. are considered (see part II of this paper). 

Figure 3 shows the synthetic seismogram for the laterally homogeneous reference 
model, the model with the inhomogeneity, and data recorded at station NE02 of the NARS net­
work (Dost et al., 1984; Nolet et aI, 1986b). Observe the realistic looking coda in the synthet­
ics for the model with the scatterers. Of course, one cannot speak of a fit of the recorded sur­
face wave data for this simple minded model, but the coda in the data and in the synthetics are 
at least of the same nature. 

In figure 4 the synthetics are shown for paths which propagate with different lengths 
through the central block which mimics the Alps. For path B, which does not propagate 
through the heterogeneity, only the coda is affected, while for the paths C and D the direct 
wave is substantially distorted. For path D, the inhomogeneity induces both a forward time 
shift as well as an amplitude increase. Physically this happens because the scattered waves 
arrive almost simultaneously with the direct wave (forward scattering). The resulting 
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Example for scaltering computation tor path A. T>30 s. 

direct only 

direct + scattered 

800 1000 

lime (s) 
600 

Figure 3. Seismograms for path A of figure 2. The top seismogram is for the laterally 
homogeneous reference medium, the middle seismogram for the medium with the 
heterogeneity, and the bottom seismogram shows data. 

-­ dtrect + scatte
direct only 

red 

I--------._~ \ 

Full synthetics and direct waves only. for the paths B. C and D 

path B 

A' path C 

v:' 0/ 

A~\0A~f __pathD _-j 
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Figure 4. Synthetic seismograms for the laterally homogeneous reference medium, and 
the medium with the inhomogeneity for the paths B, C and D of figure 2. 
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Example for point scatterer 

"data" 
synthetics 

starting model 

after inversion 

400 500 600 
time (s) 

700 800 900 

Figure 5. Wavefonn fit before and after Born inversion for a synthetic seismogram 
generated with the point scatterer of figure 6. 

interference leads to a distortion of the arriving wave train. This example shows that non­
smooth structures may lead to a distortion of the direct surface wave. It is not clear if a stan­
dard dispersion analysis (which assumes ray theory) gives correct results when applied to 
seismogram D. 

8) Inversion for a point scatterer. 

In order to see how the inversion for the surface wave coda operates, an example is 
shown where one point scatterer influences one seismogram. This point scatterer has the same 
I.th structure as in the example of section 6, but has an effective strength of 

o xarea=70x70km 2. The synthetics for the laterally homogeneous reference medium, and 

t~ (synthetic) data for the medium with the scalterer are shown in the top seismograms of 
figure 5. The point scatterer has generated a wave packet which arrives after the direct wave 
between 600 s. and 700 s. The Born inversion is applied to these data for a model of 100xlOO 
cells. After three iterations the model shown in figure 6 is produced. (The correct depth depen­
dence of the heterogeneity is prescribed.) The corresponding synthetics are shown in the 
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-1.25% E _ +1.25% 

Reconstructed model for a point scatterer. 

Figure 6. Model reconstructed by Born inversion of the top (solid) seismogram of figure 
5. The triangle marIes the source, the square marks the receiver and the circle gives the 
true location of the point scallerer. 

bottom seismograms of figure 5. The "data" for this point scatterer have been fitted quite well. 

The resulting model (figure 6) bears of course no resemblance to the original point 
scatterer, because it consists of an ellipsoidal band of positive and negative anomalies. With 
one source and one receiver it is impossible to determine the true location of the heterogeneity 
on this ellipse. By using more sources and receivers, an image is constructed by the superposi­
tion of these ellipses. 

As mentioned in section 4, the result of the first iteration of the Born inversion is propor­
tional to GT d, which can be interpreted as the temporal correlation between the excited 
wavefield, and the backpropagated data residuals (Snieder, 1987a). Since surface wave trains 
consist of oscillating wave packets, this correlation also has an oscillatory nature, which pro­
duces the alternation of positive and negative anomalies in figure 6. The "holes" in these 
ellipses are caused by the nodes in the radiation pattern of the source (a double couple), and in 
the radiation pattern of the scatterers (the thick solid line in the figures la and Ib). 

The strength of the reconstructed inhomogeneity is of the order of 1%, whereas the syn­
thetic "data" have been computed for a point inhomogeneity of 100% with an effective area of 
70x70km 2• The reconstructed heterogeneity is spread out over a much larger area, which 
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-1.25% ES== _ +1.25% 

Born reconstruction for phase shift and focussing. 

Figure 7. Model reconstructed by Born inversion for ray geometrical effects. The triangles 
indicate the sources, the squares mark the receivers. 

explains the weakened reconstructed image. Suppose the heterogeneity is spread out over zone 
of 2000x300km 2

, which is about the right size (see figure 6). This would lead to a weakening 
of the reconstructed image of 70x70km 2/2000x300km 2 ::: 1%, which is of the order of magni­
tude of the reconstruction in figure 6. 

9) Inversion for ray geometrical effects. 

In this section it is shown how the Born invcrsion takes ray geometrical effects such as 
focusing and phase shifting into account. Synthctics have been computed for the two source 
receiver pairs shown in figure 7, assuming a double couple source for the excitation. The 
seismogram for the right wave path has been multiplied with lA, and the seismogram for the 
left wave path has been shifted backward in timc over 4 s. (which is roughly 1% of the travel 
time). 
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Inversion for phase shift effects 

-­ "data" 
-------. synthetics 

starting model 

after inversion 

400 500 600 700 
time (s) 

Figure 8. Wavefonn fit before and after Born inversion for the left wavepath in figure 7, 
where the phase is shifted. 

These seismograms have been inverted simultaneously with the Born inversion using the 
isotropic approximation. In this inversion a smoothness criterion is imposed because in con­
trast to the scattering example of the previous section, no sharp heterogeneities are needed to 
generate the perturbations of the wave field. The domain shown in figure 7 consists of lOOxlOO 
cells of 35x35km 2• The smoothing matrix that is used is given by 

S.. .. =ali<lJ-j<lJ 1alia-jal if li...-j ... l~ and lia-jal~ (26) 
1~/a'}<lJ}a 'i' 'i' 

s·· . . = 0 elsewhere 
I <lJ1 a,} <lJJ a 

where i<j>' i a etc. denote the cell indices in the horizontal directions. In this example the values 
a=O.66 and N =4 are adopted. 

The resulting model after 3 iterations is shown in figure 7. Note that because the isotro­
pic approximation is used, this figure displays the phase velocity perturbation Oc Ie. In figure 8 
the waveform fit for the left wave path in shown. (This is the time shifted seismogram.) The 
phase shift is correctly taken into account. This is realized by a negative phase velocity ano­
maly in the first Fresnel zone of the left wave path in figure 7. This negative phase velocity 
anomaly is not distributed evenly over the first Fresnel zone of the left wavepath, there are 
phase velocity minima slightly away from the source receiver minor arc. If these minima were 
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Inversion for focussing effects 

-- "data"
 
-------- synthetics
 

starting model 

..., 
'J 

after inversion 

400 500 600 700 
time (s) 

Figure 9. Waveform fit before and after Born inversion for the right wavepath in figure 7, 
where the amplitude is increased. 

absent, the resulting concave transverse phase velocity profile would produce an anomalously 
large amplitude due to focusing. Because of the phase velocity minima adjacent to the source 
receiver minor arc, the transverse phase velocity profile is actually convex at the minor arc. 
This produces defocusing of surface wave energy, which compensates the amplitude increase 
due to refraction at the edge of the Fresnel zone. 

The seismograms for the right wave path are shown in figure 9. The synthetic data are 
40% too strong for the laterally homogeneous reference model, this is almost completely taken 
care of in the inversion. Physically, this is achieved by a negative phase velocity anomaly on 
the source receiver line, and an anomalously high phase velocity just away from this line. This 
phase velocity pattern leads to focusing of surface wave energy, so that the large amplitude is 
fitted. This confirms not only that surface wave scattering theory can account for ray geometri­
cal effects (Snieder, 1987b), but also that these ray geometrical effects are taken care of in the 
Born inversion. The asymmetry of the phase velocity pattern in figure 7 around the wave paths 
is due to the the asymmetry in the radiation pattern of the double couple source. 

There are approximately 10 cells between the maxima in the strips of high phase veloci­
ties for the right wave path in figure 7. The focusing produced by this structure is achieved by 
the transverse curvature of the phase velocity. Increasing the cell size (which is computation­
ally advantageous) leads to a representation of this curvature with only a few cells, which may 
produce unacceptable inaccuracies. 
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10) Conclusion. 

Large scale inversion of the surface wave coda can in principle be performed using an 
iterative solver of a large system of linear equations. For this kind of inversion the depth 
dependence of the heterogeneity should be prescribed, or be parameterized in a limited number 
of basis functions. Alternatively, the isotropic approximation can be used, which leads to a 
waveform fit of the direct surface wave due to a laterally heterogeneous phase velocity field. 
These phase velocities, determined for different frequency bands, can be inverted locally to a 
depth distribution of the heterogeneity. 

The Born inversions shown in this paper are performed iteratively using LSQR. 
Although LSQR is originally designed for sparse matrices, and the matrix for surface wave 
scattering is not sparse, good results are obtained in inversions of synthetic data. In practice, 
three iterations proved to be sufficient both for an inversion for the surface wave coda, and of 
the direct wave. A similar conclusion was drawn by Gauthier et al. (1986), who used an itera­
tive scheme for fitting waveforms in an exploration geophysics setting. 

In hindsight, the success of linear waveform inversions in a few number of iterations is 
not so surprising. It has been argued by Tarantola (l984ab) that the standard Kirchoff migra­
tion methods in exploration seismics is equivalent to the first (steepest descent) step of an itera­
tive optimization scheme. Analogously, the first step of the iterative matrix solver used here 
amounts to a holographic inversion (Snieder, 1987a) analogously to Kirchoff migration. These 
one step migration methods have been extremely successful in oil exploration, and there is no 
principal reason why a similar scheme cannot be used in global seismology. Applications of 
this technique to surface wave data recorded by the NARS array are shown in part II of this 
paper (Snieder, 1988) 
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Appendix A, the effect of the time window function on the spectrum of surface waves. 

Suppose that a surface wave seismogram s (t) is multiplied with some nonnegative win­
dow function w (t) to give a windowed seismogram f (t) 

f (t) = w (t )s (t) . (Al) 

In the frequency domain the application of this window leads to a convolution 

F (w) =fW (w')S (CJ)-w') d w' . (A2) 

Since w (t) is nonnegative, IW (w) I attains its maximum for w=0, this can be seen by making 
the following estimates: 

IW(w)1 = I fw(t)eiO)/dt I ~ f Iw(t)e iffit Idt = fw(t)dt = IW(w=O) I . (A3) 

If the time window has a length T in the time domain, its frequency spectrum will have a width 
of the order niT in the frequency domain. From this we conclude that long nonnegative time 
windows, have a spectrum is peaked around w=0. 

Now assume that the surface wave spectrum consists of one mode (extensions to mul­
timode signals is straightforward): 

S(w)=A(w)eik(ffi)L , (A4) 

where L is the epicentral distance. Substituting in (A2) gives 

F(w) =fW(w')A(CJ)-w')eik«(J)-ffi')L dw' . (AS) 

W(w) is a function peaked around w=0, so that the main contribution to the w'-integral comes 
from the point w'=O. Usually, the complex amplitude A (w) is a smooth function of frequency, 
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so that one can approximate for small w' 

A (w-w')==A (w) . (A6) 

The phase term can be analyzed with a simple Taylor expansion 

Lw' 
k(w-w')L ==k(w)L - U(w) , (A7) 

where U (w) is the group velocity of the surface wave mode. Inserting (A6) and (A7) in (AS) 
gives 

F(W) ==A(w)eik(co)L fW(w')e-iLco'!u(CO) dw' . (A8) 

With (A4) and the definition of the Fourier transform this leads to 

F(w) ==S(w) w(LIU(w» . (A9) 

Appendix B, analytical estimation of the gradient aM lam. 

The misfit between the data d (t) and the surface wave synthetics s (m ,t) for model m is 
in the L 2 norm defined by 

M =J[d(t)-s(m,t)fdt . (Bl) 

Using Parseval's theorem (Butkov, 1968), the misfit has the same form in the frequency 
domain 

M = f I D(w)-S(m,w) 12 dw . (B2) 

In general, the model m consists of many parameters. The derivative of the misfit with respect 
to one of these parameters is 

~~ =-2Re{ as~:;w) (D* (w)-S*(m ,w» dW} . (B3) 

Let the surface wave seismogram be given by a superposition of modes v with complex ampli­
tude A vand phase <Pv 

S (m ,w) = L 5 im ,w) = L Av(m ,w)e i <i>v(m ,co) , (B4) 
v v 

so that 

as [1 aA v . a<pv]-=L --+z-5 (B5)am v A am am vv 

According to equation (2.10), the phase of the surface waves is in a laterally heterogeneous 
medium 
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L 

<p(W) =Jk (w.x) dx , (B6) 
o 

where k (w.x) is the local wavenumber. Differentiation with respect to the model parameter m 
gives 

L L 

~=J~dx=- ~J~dx. (B7) 
am 0 am c 0 am 

Inserting this in (BS) gives 

aM {J 1 aA y [. • l am =-2Re ~ ~ am SvCm,w) D (w)-S (m,w)j 
1

dWf (B8) 

{ J i 00 [L 1. [. · }ac y l
+2 Re ~ c; J0 am dxJ 5y(m ,(0) D (00)-5 (m ,w)j d 00 

When one is attempting to find phase velocities by nonlinear optimization, one will usually 
work with bandpassed data for which c (00) can be assumed to be independent of frequency. In 
that case, the phase velocity term and the amplitude term can be taken out of the frequency 
integral. Applying Parseval's theorem once more to the resulting expression gives 

yaM 1 [ ac J [ l-;-:::; -2 L. 2" J~dx Jsy(m,t) d(t)-s(m,t)j dt (B9) 
am y C y um 

1 aA y J [ l-2 L. --:>- sy(m,t) d(t)-s(m,t)j dt , 
y A y am 

which proves equation (23). 
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Chapter 9 

Waveform inversions ofsurface wave data recorded 

with the NARS array 

1) Introduction. 

One of the main tasks of modem seismology is to map the lateral heterogeneity in the 
Earth. Low order spectral models of lateral heterogeneity have been constructed using P-wave 
delay times (Dziewonski, 1984), surface wave dispersion data (Nataf et aI., 1986) or surface 
wavefonns (Woodhouse and Dziewonski, 1984; Tanimoto, 1987). These studies produced 
extremely smooth Earth models, because of the low order expansion of the heterogeneity in 
spherical harmonics. However, recent large scale tomographic inversion ofP-wave delay times 
have shown that lateral heterogeneity exists down to depths of at least SOO km. on a horizontal 
scale of a few hundred kilometers (Spakman, 1986ab). 

Lateral variations in the P-velocity on this scale can be analyzed accurately using delay 
time tomography. In principle, tomographic inversions could also be applied to S-wave delay 
times. In practice, this is not so simple, because the presence of the low velocity layer renders 
the S-wave tomography problem highly nonlinear. In fact, it is shown by Chapman (1987) that 
the tomographic inversion problem is ill-posed if a low velocity layer is present. The fact that 
the low velocity layer exhibits strong lateral variations (York and Heimberger, 1973; Souriau, 
1981; Paulssen, 1987) poses an additional complication. 

One could use surface wave data instead, because Love waves and Rayleigh waves are 
strongly influenced by the S-velocity. However, fundamental mode surface wave data (which 
are most easily measured and identified) that penetrate as deep as 200 km., have a horizontal 
wavelength of the order of 300 km. This means that lateral heterogeneities on a scale of a few 
hundred kilometers are no longer smooth on a scale of a wavelength of these waves. Therefore 
ray theory, which forms the basis of all dispersion measurements, cannot be used in that case. 
Up to this point, this fact has been consequcntly ignored. 

The breakdown of ray theory means that scattering and multipathing effects can be 
important. In the companion paper of this articlc (Snicder, 1988; this paper is referred to as 
"paper I"), linear surface wave scattering is presentcd. It is shown in paper I how this theory 
can be used to map the lateral variations of the S-velocity in the Earth. With this method, the 
complete waveform of surface wave data can be inverted, so that not only the phase but also 
the amplitude can be used for inversion. Unfortunately, there is at this point only linear theory 
for surface wave scattering in three dimensions (Snieder, 1986ab; Snieder and Nolet, 1987; 

This chapter is submitted for publication as: 

Snieder, R., Large scale waveform inversions of surface waves for lateral heterogeneity -II: Application to surface 
waves in Europe and the Mediterranean, submilled 10 J. Geophys. Res., 1988. 
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Source-reciever minor arcs. 

Figure 1. Source-receiver minor arcs for the seismograms used in the inversions. The 
different line styles are defined in section 2. 

Snieder and Romanowicz, 1987; Romanowicz and Snieder, 1987) which limits the applicabil­
ity of this method. Large scale inversion of both the phase and the amplitude of surface wave 
data has also been performed by Yomogida and Aki (1987), who applied a scattering formal­
ism to the Rytov field of surface waves. However, their method is based on the assumption that 
surface waves satisfy the 2D wave equation, which has never been shown (and which is prob­
ably not true). 

In this paper large scale waveform inversions using linear scattering theory, as presented 
in paper I, are applied to surface wave data recorded with the NARS array (Dost et aI, 1984; 
Nolet et al., 1986) for events in southern Europe. The inversions with linear scattering theory, 
which will be called the "Born inversion", arc applied both to the surface wave coda and to the 
direct surface wave. Details of the inversion method with numerical examples are shown in 
paper I. 

The Born inversion is first applied to the surlace wave coda. To this end the nature of the 
surface wave coda is investigated in section 2, and the conditions for the validity of the Born 
approximation for the surface wave coda is established. In inversions of the complete 
wavefonn, parameters like the source mechanism, station amplification etc. should be specified 
correctly. The procedures that are followed in this study are reported in section 3. As shown in 
paper I, it may be advantageous to perform a nonlinear inversion first for a smooth reference 
model, in order to render the problem more linear. The results of this nonlinear inversion are 
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Event 5300 (Algeria), station NE03. deplh=10 km. 
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Figure 2. Low passed seismograms for an Algerian event recorded in NED3 (Danmark). 

shown in section 4. The next section features wavefonn inversions of the surface wave coda, 
while in section 6 the Born inversions of the direct wave arc shown. The reliability of these 
results is investigated in section 7, where a resolution analysis is presented. A two layer model 
of the S-velocity under Europe and the Mediterranean is finally presented in section 8. 

2) The nature of the surface wave coda. 

Before proceeding with the inversion, it is instructive to study the surface wave coda in 
some more detail. In this study surface wave data recorded by the NARS array (Dost et aI., 
1984; Nolet et al., 1986) are used for shallow events around the Mediterranean and a deeper 
event in Rumania. Figure 1 shows the source receiver minor arcs for the seismograms used in 
this study. Because the inversion is linear, it is important to establish first the conditions for the 
validity of the Born approximation for the surface wave coda. 

In figure 2 a seismogram is shown for an event in Algeria recorded at station NE03 in 
Danmark, low passed at several different periods. For the seismogram low passed at 16 s., the 
coda has approximately the same strength as the direct wave. This means that the Born approx­
imation cannot be used to describe the surface wave coda at these periods. However, for 
periods larger than 20 s. the coda is much weaker than the direct wave, which justifies the Born 
approximation for these periods. Low passed seismograms recorded in the same station for a 
Greek event at approximately the same depth arc shown in figure 3. For this event in the 
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Figure 3. Low passed seismograms for a Greek event recorded in NED3 (Danmark). 

seismogram lowpassed at 25 s., there is still an appreciable secondary wavetrain (around 700 
s.) just after the arrival of the direct wave, and the Born approximation for the surface wave 
coda is therefore only justified for periods larger than 30 s. (This is confirmed later by figure 
4b.) Therefore, only periods larger than 30 s. have been used in the inversions presented in 
this paper. It is verified that for all recorded seismograms low pass filtering at 30 s. leads to a 
coda level which is low enough to justify the Born approximation. 

This condition for the validity of the Born approximation may be overconservative. In a 
field experiment, surface waves reflected from a concrete dam on a tidal flat have been used 
successfully to reconstruct the location of this dam using Born inversion (Snieder, 1987). Due 
to the very large contrast posed by this dam, the direct surface wave and the reflected surface 
wave had approximately the same strength, and Born inversion was strictly not justified. 
Nevertheless an accurate reconstruction of the location of this dam was achieved. The reason 
for this discrepancy is that the geometry of the heterogeneity precluded multiple scattering. In 
such a situation, linear inversion gives at least qualitatively good results. 

The examples shown in the figures 2 and 3 show that the coda level is very different for 
the different wave paths. This is verified by dividing the seismograms in two groups. One 
group consists of seismograms for with wave paths through the western Mediterranean (the 
dashed lines in figure 1), while the other group is for the wave paths through eastern and cen­
tral Europe (the dotted lines in figure 1). For each group the spectrum of the direct surface 
wave is determined, as well as the spectra of the coda (defined by group velocities between 1.6 
and 2.9 km./s.), and the spectrum of the signal before the arrival of the direct wave. The spec­
trum of the signal before the arrival of the direct wave is considered to give an estimate of the 
background noise level. From an academic point of view this is acceptable, because body 
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Figure 4a. Spectra of the direct wave, surface wave coda and background noise for wave 
paths through the western Mediterranean. 
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Figure 4b. Spectra of the direct wave, surface wave coda and background noise for wave 
paths through eastern and central Europe. 

waves and higher mode surface waves are noise for our purposes. On the other hand, this pro­
cedure may give an overestimate of the background noise. 
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The spectra for the paths through the Mediterranean is shown in figure 4a Note that the 
average coda level is much weaker than the strength of the direct surface wave, even for 
periods as short as 16 s. (0.06 Hz). For periods larger than 25 s. (0.04 Hz) the noise level has 
about the same strength as the coda level. The means that inversions using the surface wave 
coda for these periods can only give meaningful results if there is an abundance of data, which 
leads to a system of linear equations which is sufficiently overdetermined to average out the 
contaminating influence of noise. For the wave paths through eastern and central Europe 
(figure 4b) the situation is different. For all frequencies, the coda level lies above the noise 
level, although for periods longer than 50 s. (0.02 Hz) this difference is marginal. For these 
seismograms, the coda energy increases rapidly as a function of frequency, for periods shorter 
than 22 s. (0.045 Hz) the coda spectrum is even higher than the spectrum of the direct wave. 
This means that there is only a relatively narrow frequency band where the Born approxima­
tion is valid, and where the coda stands out well above the noise level. 

The fact that the coda level for the paths through eastern and central Europe increases 
more rapidly as a function of frequency than for the paths through the western Mediterranean 
has implications for the depth of the heterogeneities that generate the coda. In order to quantify 
this notion, a normalized coda level can be defined by subtracting a constant noise level from 
the coda spectrum, and by division by the spectrum of the direct wave. This normalized coda 
level is approximately equal to the interaction coefficients, see the equations (1) and (5) of 
paper 1. (One should be a bit careful with this identification, because an organized distribution 
of scatterers leads to extra frequency dependent factors, see Snieder (1986a) for an example of 
scattering of surface waves by a quarter space.) 

The normalized coda level are in the figures Sa and 5b compared with the interaction 
terms for different heterogeneities. (In this example, the absolute value of the interaction terms 
is averaged over all scattering angles.) These inhomogeneities have a constant relative shear 
wave velocity perturbation down to the indicated depth, while the density is unperturbed, furth­
ermore bA.=bll. For the wave paths through eastern and central Europe, these curves in figure 
5b can only be compared with the interaction tenns for periods longer than 30 s., because the 
condition of linearity breaks down for shorter periods. All shown heterogeneities fit the nor­
malized coda level within the accuracy of the measurements. Also, it follows from the figures 
lab of paper I that these heterogeneities have approximately the same radiation pattern. This 
means that for these wave paths, it is virtually impossible to determine the depth of the hetero­
geneity from the surface wave coda. For the paths through the western Mediterranean this 
situation is different, because it can be seen from figure Sa that a shallow heterogeneity (or 
topography) fits the normalized coda spectrum better than a deeper inhomogeneity. This is an 
indication that the lateral heterogeneity in eastern and central Europe is present at greater 
depths than in the western Mediterranean. 

3)Procedures for the inversion of surface wave seismograms. 

In order to perform waveform fits of surface wave data, several parameters and pro­
cedures need to be specified. All inversions presented in this paper have been performed with 
the model shown in figure 6. This model is equal to the M7 model of Nolet (1977), except that 
the S-velocity in the top 170 km. is 2% lower than in the M7 model. This compensates for the 
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Figure 5a. Normalized coda level for the wave paths through the western Mediterranean, 
and the (normalized) integrated radiation for different irthomogeneities as defined in 
section 3. 
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Figure 5b. Normalized coda level for the wave paths through eastern and central Europe. 
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fact that the M7 model is for the Scandinavian shield which has an anomalously high S­
velocity. The anelastic damping of the PREM model (Dziewonski and Anderson, 1981) is 
assumed, this damping is not varied in the inversions. 

For the source mechanisms, the event location, depth, and centroid moment tensor solu­
tions, as reported in the ISC bulletins are used, whenever available. For the remaining events, 
the source parameters from the PDE bulletins are used. For the Rumania event, the source 
mechanism as determined from GEOSCOPE data (Romanowicz, personal communication) is 
employed. No inversion for the source mechanism is performed, because the NARS stations 
provide only a limited azimuthal coverage, which means that the source mechanisms are 
poorly constrained by the data. The source strength is usually rather inaccurate, this parameter 
determined by fitting the envelopes of the synthetics to the data envelopes. The events used in 
this study are in general rather weak (ms:::5-6), so that the reported source mechanisms are not 
always reliable. All seismograms with a strong difference in waveshape between the data and 
the (initial) synthetics have not been used in the inversion. Surface wave recordings that trig­
gered on the surface wave have also been discarded. 

The station magnifications are not included in the inversions presented here. The station 
magnification includes not only the instrumental magnification, but also the magnification 
effects of the local environment of the station. As a check, the inversions presented here have 
also been performed with a simultaneous inversion for the station amplifications. Even though 
this produced station magnifications as large as 10%, the results in the models for lateral 
heterogeneity was minimal. 

Reference model for inversions 
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Figure 6. Starting model for the inversions. 
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In paper I, the wavefonn inversion is formulated as the least squares solution of a large 
matrix equation. The rows and columns of this matrix can be scaled at will (Van der Sluis and 
Van der Vorst, 1987). It has been shown by Tanimoto (1987) that it is important that each 
seismogram gets more or less the same weight in the inversion. Similarly, the different fre­
quency components within each seismogram should have a comparable weight. For the shal­
low events used here, the low frequencies are not excited very well. In order to compensate for 
this, data and synthetics are scaled in the frequcncy domain with a factor 1/<0. In the inversions 
for the surface wave coda, a scaling with Mo rJ.sint. is applied, where M o is the strength of the 
moment tensor, and t. the epicentral distance. This factor corrects for the different strengths 
and geometrical spreading factors of the different events. In the inversion for the direct wave, 
the seismograms are scaled in such a way that maximum amplitude in the time domain is 
equalized. 

Lastly, in the Born inversions both for the coda and the direct wave, each seismogram is 

scaled with a factor lr 'I + ~. In this expression, E is the energy of the data residual of'\I <E> 
the seismogram under consideration, while <E> denotes the average of this quantity for all 
seismograms. This weight factor ensures that the seismograms with appreciable misfits get 
more or less the same weight in the inversion, so that the contaminating influence of outliers is 
reduced. In the meantime, seismograms with a good initial fit have a low weight in the inver­
sion, this prevents that a small amount of spurious noise in these seismograms gets an exces­
sive weight in the inversion. 

4) Nonlinear inversion of the direct wave. 

As mentioned in paper I, it is advantageous to perform a nonlinear inversion of the direct 
wave first, because this renders the Born inversion more linear. For this inversion, the pro­
cedures described in paper I are used for detcrmining the phase velocity perturbation of a 
smooth reference model. In this inversion, the phase velocity is detennined on a rectangular 
grid of 12x12 points in the domain shown in figure 1, and is interpolated at intermediate loca­
tions using bicubic splines. The relative phase velocity perturbation oe Ie is assumed to be con­
stant in the period bands 30-40 s., 40-60 s. and 60-100 s. 

In figure 7a the phase velocity perturbation for periods between 60 s. and 100 s. is shown 
for the unconstrained case, i.e. y=0 in equation (21) of paper I. Note that the phase velocity 
perturbations are not confined to the vicinity of the source receiver paths. This is an artifact of 
the bicubic spline parameterization, which has an oscillatory nature near places where the 
interpolated function changes rapidly. These artifacts can be removed by switching on the reg­
ularization parameter y in expression (21) of paper I. The constrained solution (y>0) is shown 
in figure 7b. This regularization goes at the expense of the waveform fit, and it is subjective 
how much regularization one wants to impose on these solution. However, in this study the 
nonlinear inversion for a smooth reference model is only the first step in the complete 
wavefonn inversion, so that there is no need to obtain the maximum infonnation from this non­
linear inversion. For periods larger than 30 s., the resulting reference models for the employed 
value of y (see for example figure 7b) produce a wavefonn fit which are sufficiently good to 
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bc/c after unconstrained nonlinear inversion. 

Figure 7a. Relative phase velocity perturbation (be Ie) for periods between 60-100 s. 
detennined from unconstrained nonlinear wavefonn fitting ("(=0). 

warrant a linear inversion for the remaining data residual. (This means that the phase shift 
between the data and synthetics is at the most 45 degrees, and that the amplitude mismatch is 
not larger than 30%.) These reference models for the phase velocity perturbations are used in 
the subsequent Born inversions. Waveform fits of the nonlinear inversion are presented in sec­
tion 6. 

5) Born inversion of the surface wave coda. 

The Born inversion can be applied both for inversion of the direct surface wave, as well 
as for the coda. In this section the waveform inversion of the surface wave coda is discussed. 
The surface wave coda is extracted from the full seismogram with a time window that allows 
group velocities between 1.74 km./s. and 2.90 km./s. At both ends this window is tapered with 
a cosine taper over a length of 100 s. 
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oclc after constrained nonlinear inversion. 

Figure 7b. Relative phase velocity perturbation (oe Ie) for periods between 60-100 s. 
determined from constrained nonlinear waveform fitting (y>0.). 

In this inversion, the depth dependence of the heterogeneity is prescribed to consist of a 
constant relative S-velocity perturbation 8~/~ down to a depth of 170 km., while the density is 
unperturbed. The perturbations on the Lame parameters are egual. In the inversion, a model of 
100x100 cells is determined (with a cell size of 35x35km 2), so that 10,000 unknowns are 
determined in the inversion. The 42 seismograms produce 2520 data points, where the real and 
imaginary parts of each spectral component are counted as independent variables. This means 
that the resulting system of linear equations is underdetermined. Increasing the cell size has the 
disadvantage that the scattering integral (5) of paper I is not discretized accurately. Imposing a 
smoothness constraint also is no option, since scattered surface waves are most sensitive to 
abrupt lateral changes of the heterogeneity. As argued in section 2, it is difficult to obtain a 
good depth resolution for this kind of inversion. This, and the consideration that for a fixed 
depth dependence of the heterogeneity the resulting system of linear equation is already under­
determined, makes it unjustifiable to per[onn an inversion with more degrees of freedom with 
respect to the depth dependence of the heterogeneity. 

The result of the Born inversion of the surface wave coda for periods between 30-100 s. 
is shown in figure 8. For this inversion three iterations have been performed, according to the 
results of paper I this is sufficient to linage the heterogeneity. The reconstructed model has a 
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Figure 8. Relative S-velocity per­
turbation (O~/~) from the inver­
sion of the surface wave coda. The, 
heterogeneity extends down to a 
depth of 170 km. 

Figure 9. Filtered envelope of the 
model in figure 8. 
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149 Large scale waveform inversion-Jl: data analysis 

messy appearance, and is dominated by ellipsoidal structures. These structures are reminiscent 
of the "smiles" that occur in improperly migrated sections in exploration seismics (Berkhout, 
1984). Note the oscillatory nature of the solution, which is a consequence of the fact that this 
image is reconstructed essentially with a correlation method (paper 1). The direction of this 
ellipsoidal stripes is determined by the geometry of the events and the stations, it does not 
necessarily reflect the structure of the inhomogeneity. 

This directivity and the oscillations in the reconstructed model can be removed by 
envelope filtering. Subtracting a smoothed version of this envelope from the envelope itself 
enhances the the contrasts in the final solution. The result of this procedure is shown in figure 
9. One should always be careful in applying this kind of image processing techniques, because 
it may introduce an unwanted degree of subjectivity in the resulting patterns. On the other 
hand, these methods may help to extract some order out of an apparent chaos. Unfortunately, 
in the resulting model (figure 9) this goal is only partly reached. Some of the heterogeneities 
could be related to familiar geological structures such as the Tornquist-Tesseyre zone, and the 
northern edge of the African continent, while other heterogeneities appear to be distributed at 
random. 

1%_7% 

Envelope of model for point scatterers. 

Figure 10. Filtered envelope of the model determined from a waveform inversion of 
synthetics computed for positive (circles) and negative (triangles) point scaUerers with 
8~/~ constant down to a depth of 170 km. 
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Figure Ila. Examples of the waveform fit of the surface wave coda, low passed at a 
comer period of 50 s. 
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Figure llb. Examples of the wavefoml fit of the surface wave coda, high passed at a 
comer period of 50 s. 

In order to establish the significance of these resulLs, the same inversion is performed 
with synthetic data for a model consisting of 9 positive and 8 negative point scattcrers. The 



151 Large scale waveform inversion-II: data analysis 

envelope of the resulting model is shown in figure 10. The heterogeneity is reconstructed near 
most point scatterers, but also in areas away from these point scatterers (Spain, southwest 
France, Aegean sea, etc.). This means that even if the data were noise free, there are 
insufficient data to constrain the resulting model. For noise corrupted data this effect is aggra­
vated. 

Nevertheless a reasonable good fit of the surface wave coda is achieved, with a variance 
reduction of 25%. The resulting waveform fits of the surface wave coda are shown in the 
figures 11aand 11b both low passed and high passed at a corner period of 50 s. For periods 
larger than 50 s. (figure 11a) the waveform flt is poor. This is consistent with the results of sec­
tion 2 where it was argued that the coda level does not stand out very well above the noise 
level. However, for the higher frequencies (periods from 30-50 S., see figure lIb) a reasonable 
waveform fit is obtained. Most of the beats in the surface wave coda are reproduced in the syn­
thetics. It should be remembered that the seismograms in these figures only show the surface 
wave coda. In order to see these data in their proper perspective, a fit of the coda (bandpassed 
for periods between 30 s. and 50 s.) is shown in figure 12 together with the direct wave. 
Unfortunately, the fact that good waveform fits are achieved, does not establish the reliability 
of the resulting models, because the linear system of equations is underdetermined. 

Inversions for heterogeneities which extend to a depth different than 170 km. produce 
almost the same model, only the strengths of these heterogeneities differs from the model 
shown in figure 8. An inversion for data bandpassed between 30-40 s. gives virtually the same 
result as figure 8, which confirms that for longer periods the surface wave coda contains a large 
noise component, and not much scattered surface waves. 

Event 3218 (Greece), station NE02. 

-data 
-------. synthetics 

800 1000 1200 

time (5) 
400 600 

Figure 12. Full wavefonn fil of the surface wave coda, low passed at a comer period of 50 
s. 
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These results do not imply that mapping lateral heterogeneity using the surface wave 
coda is impossible. In fact, it has been shown in a controlled field experiment that successful 
imaging of the surface wave coda is possible (Snieder, 1987a). However, the surface wave 
coda data at our disposal are currently too sparse to produce an accurate reconstruction of the 
lateral heterogeneity. This is exacerbated by the fact that the noise level in the surface wave 
coda is relatively high, which can only be compensated with a redundant data set. Large net­
works of digital seismic stations, as formulated in the ORFEUS (Nolet et al., 1985) and PASS­
CAL proposals, are necessary to achieve this goal. Alternatively, the Born inversion of the 
surface wave coda might be used in regional studies where one wishes to study tectonic 
features such as continental margins, or the boundaries of major geological formations. A sys­
tem of portable digital seismographs would be very useful for this kind of investigations. 

6) Born inversion of the direct surface wave. 

Linear scattering theory can also be used to describe the distortion of the direct wave 
(Snieder, 1987b). This distortion can either be due to ray geometrical effects, or to multipath­
ing effects that are not accounted for by ray theory. In the Born inversion presented in this sec­
tion, the isotropic approximation is used (paper I). This means that the relative phase velocity 
perturbations are retrieved from the linear waveform inversion of the direct wave. This quan­
tity is assumed to be constant within the frequency bands employed (30-40 s., 40-60 s. and 60­
100 s.). A separate Born inversion is performed for each of these frequency bands, so that the 
phase velocity perturbation is determined independently for each frequency band. In order to 
justify the isotropic approximation (paper I), a time window is used to extract the direct wave 
from the complete seismograms. 

The Born inversions presented here are performed for a model of 100xlO0 cells with a 
cell size of 35x35km 2• In the Born inversion of the surface wave coda in the previous section, 
no a-priori smoothness constraint was imposed, because scattered surface waves are most 
efficiently generated by sharp lateral heterogeneities. This led to an underdetermined system of 
linear equations. For the Born inversion of the direct wave, the available data set also pro­
duces an underdetermined system of linear equations. One alternative would be to increase the 
cell size, but according to the example of figure 7 in paper I, rather small cells are needed to 
produce the required focusing/defocusing. Instead of this, the smoothing operator of equation 
(26) in paper I is used in this inversion to constrain the solution. In these inversions, the values 
a=0.66 and N =4 are used, which implies an effective correlation length of 140 km. The Born 
inversions are performed in three iterations (see also paper n, it has been checked that more 
iterations don't change the resulting models very much. 

The phase velocity perturbation for the three frequency bands are shown in the figures 
l3abc. The phase velocities are the result of both the nonlinear inversion for the smooth refer­
ence medium, and the subsequent Born inversion. See figure 7b as an example of the contribu­
tion of the nonlinear inversion for the smooth reference medium, to the phase velocity model 
of figure 13c. 

Note that the resulting phase velocity patterns vary considerably on a scale of one hor­
izontal wavelength. This means that ray theory cannot be used to model the effects of these 
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Figure 13a. Relative phase velocity 
perturbation (oe Ie) for periods 
between 30-40 s. as detennined 
from nonlinear wavefonn inver­
sion plus a subsequent Born inver­
sion. 
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oele for 40 s.<T<60 s. after Born inversion. 

Figure l3b. As figure 13a, but for 
periods between 40-60 s. 
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8c/c for 60 s.<T<100 s. after Born inversion. 

Figure Be. As figure 13a, but for periods between 60-100 s. 

heterogeneities, while surface wave scattering theory takes effects such as multipathing into 
account. Surprisingly, figure l3c for the phase velocity determined from Born inversion is not 
too different from figure 7a for the unconstrained nonlinear inversion using ray theory. The 
smaller scale features of figure l3c are absent in figure 7a because the spline interpolation does 
not allow these small scale features (nor docs ray theory). Nevertheless, the overall pattern in 
these figures is the same. Apparently, ray theory is rather robust to violations of the require­
ment that the heterogeneity is smooth. This may explain the success of dispersion measure­
ments in situations where ray theory is not justified. Most of the information on the S-velocity 
structure under Europe in the crust and upper mantle is determined from surface wave disper­
sion measurements. For example, Panza ct a1. (1982) delineate a heterogeneity between Cor­
sica and northern Italy with a scale of approximately 250 km., from anomalously low Rayleigh 
wave phase velocities betwecn 40-60 s. Thcir results arc therefore inconsistent with the (ray) 
theory they employed. Nevertheless, this low phasc velocity anomaly is also visible in figure 
l3b, which is constructed using surface wave scattcring thcory. 

Waveform fits after the nonlincar inversion for the smooth reference model, and after the 
subsequent Born inversion (the "final fit") are shown in the figures 14 to 19. In figure 14 results 
for station NE12 near Madrid are shown. Thc amplitude of the direct surface wave is changed 
considerably in the inversion. Note that the wavcform fit has slightly deteriorated in the non­
linear inversion. The reason for this is that thc 42 seismograms are inverted simultancously, so 
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Event 3218 (Greece), station NE12, 30 s.d<40 s. 
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Figure 14. Wavefonn fit for 
periods between 30-40 s. for the 
laterally homogeneous starting 
model (top), after the nonlinear 
inversion for a smooth reference 
model (middle), and after Born 
inversion (bottom), for a Greek 
event recorded in NE12 (Spain). 
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Figure 15. AE figure 14, for a 
Greek event recorded in NE01 
(Gothenborg) for periods between 
30-40 s. 
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Event 5300 (Algeria), station NE15, 40 S.<T<60 s. 

nonlinear fit 

Figure 16. As figure 14 for an 
Algerian event recorded in NE15 
(Netherlands) for periods between 
40-60 s. 

400 500 600 700
 
time (s)
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Figure 17. As figure 14 for the full 
bandwidth (30-100 s.). 
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Event 5300 (Algeria), station NE15, 30 s.d<100 s. 

-- data 

lat. hom. 

-------- synthetics' 

nonlinear fit 

final fit 

Figure 18. As figure 15 for the full 
bandwidth (30-100 s.) 
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._. 
Figure 19. As figure 14 for a Greek 
event recorded in NE02 (Darunark) 
for the full bandwidth (30-100 s.). 
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that it is possible that the fit of one seismogram is improved at the expense of another seismo­
gram. In figure 15, an example is shown for a seismogram recorded at NE01 (Gothenborg). 
For this seismogram, the amplitude is already quite good for the laterally homogeneous starting 
model, but the phase is adjusted in the Born inversion. In the preceding examples, the Born 
inversion realized the fit between data and synthetics. This is not the case for all seismograms. 
In figure 16 a seismogram for an event in Algeria recorded at NE15 (Netherlands) is shown. 
For this seismogram the nonlinear inversion performed most of the waveform fit. 

By superposing the seismograms for the three frequency bands, seismograms for the full 
bandwidth (30-100 s.) can be constructed. Figure 17 displays the seismogram of figure 14, but 
now for the full employed bandwidth. The final fit between the data and the synthetic is 
extremely good. Note that the tail of the direct wave (around 725 s.) is fitted quite well after 
the Born inversion. For the recording of the Algerian event in NE15, the full bandwidth data 
are shown in figure 18. The trough in the waveform around 420 s. has been adjusted well in the 
nonlinear inversion, whereas the fit of the start of the signal (around 400 s.) is improved con­
siderably in the subsequent Born inversion. Unfortunately, the improvement in the waveform 
fits is not for all seismograms as dramatic as in the preceding examples. Figure 19 features the 
waveform fit for a Greek event recorded at NE02 (Danmark). The phase of the signal is 
slightly improved in the nonlinear inversion, but the final waveform fit is not impressive. 

period (s.) nonlinear Born nonlinear + Born 

30-40 15% 20% 31% 
40-60 37% 27% 54% 
60-100 21% 25% 41% 

Table I, variance reductions for the waveform inversions. 

The quality of the waveform fits is expressed by the variance reductions shown in table 
1. Both in the nonlinear inversion, and in the subsequent Born inversion the variance reduction 
is of the order of 25%, although this differs considerably between the different frequency 
bands. In the nonlinear inversion for the smooth reference medium, the solution is rather 
heavily constrained (compare the figures 7a and 7b) so that larger variance reductions could be 
achieved with the nonlinear inversion. The smallest variance reduction occurs in the period 
range from 30-40 s. This is not surprising, because these surface waves have the shallowest 
penetration depths, and are therefore most strongly subjected to lateral heterogeneity and there­
fore most difficult to fit. Surprisingly, the variance reduction for periods between 40-60 s. is 
larger than for 60-100 s. The reason for this might be that surface waves between 60-100 s. are 
influenced by the low velocity zone, which is reported to exhibit strong lateral variations (York 
and HeImberger, 1973; Paulssen, 1987). The tOlal variance reduction is larger than the vari­
ance reduction obtained by Yomogida and Aki (1987) for surface waves which propagated 
through the Pacific. (They obtained a variance reduction of approximately 30%.) However, it is 
difficult to compare these results because on the one hand the paths of propagation of the sur­
face waves they used are much longer than in this study, but on the other hand Europe and the 
Mediterranean is much more heterogeneous than the Pacific. 
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-5%~-- _+5% 

<5 c/c, model for resolution experiment. 

Figure 20. Synthetic model of the relative phase velocity perturbation (Oc/c) for the 
resolution experiment of section 7. The source-receiver minor arcs are superposed. 

7) A resolution analysis of the inversion for the direct wave. 

Just as with the inversion for the surface wave coda, the quality of the waveform fit is no 
measure of the resolution of the inversion. In order to address this issue, synthetics have been 
computed using asymptotic ray theory (Woodhouse and Wong, 1987) for the phase velocity 
model shown in figure 20. For convenience the minor arcs of the used source-receiver pairs are 
also shown in this figure. The resulting synthetics have been subjected to the same two step 
inversion as the surface wave data from the previous section. As a representative example, the 
results for the period band between 60-100 s. are presented in this section. In figure 21 the 
model as derived in the nonlinear inversion for the smooth reference model is shown. The thin 
lines show the model of figure 20, in the ideal case the inversion would reproduce this model. 
Since only the direct wave is used in this inversion, the solution is only nonzero in the vicinity 
of the source-receiver minor arcs. Apart from the positive anomaly in the northern Adriatic, 
the heterogeneities are placed more or less at their correct location. The reconstructed model 
after the subsequent Born inversion is depicted in figure 22. 

The strength of the mOdel after Born inversion is closer to the true model than after the 
nonlinear inversion alone. However, the magnitude of the reconstructed heterogeneity is still 
much less than the magnitude of the input model. The physical reason for this is that the model 
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Figure 21. Reconstruction of the 
model of figure 20 after the con­
strained nonlinear inversion for 
periods between 60-100 s. 

Figure 22. Reconstruction of the 
model of figure 20 after the con­
strained nonlinear inversion and 
the subsequent Born inversion for 
periods between 60-100 s. 
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used in this resolution test consists of altcmaling positive and negative anomalies. A smearing 
of these anomalies leads to a reduction of the magnitude of these anomalies. In the true Earth, 
an alternation between positive and negalive phase velocity anomalies may also occur, so that 
the reconstructed models (figures Babc) may underestimate the true phase velocity perturba­
tions. 

Surprisingly, the heterogeneities are better positioned after the Born inversion (figure 22) 
than after the nonlinear inversion alone (figure 21). The reason for this is that with the ray 
geometrical nonlinear inversion one basically measures certain path integrals over the source 
receiver minor are (see equation (lOa-d) of paper I), whereas in the Born inversion more com­
plete wave information is used. 

It follows from figure 22 that the east-west resolution in the southern Mediterranean is 
rather poor. This is due to the fact that there are no crossing ray in that region. A large portion 
of the wave paths runs in a bundle from Greece to north western Europe, and encounter a suite 
of positive and negative anomalies. This leads to a smearing of the solution under Germany 
and Danmark in the northwest-soulheast direclion, and a subsequent underestimate of the true 
inhomogeneity. A similar smearing in the northwest-southeast direction is visible in the north­
ern Adriatic, this area also suffers from a lack of crossing ray paths. One of the most conspi­
cuous features in the figures Babc are the high phase velocities under Greece. This is no 
artifact of the inversion, because this feature is not present in the results from the resolution 
analysis (figure 22). 

In conclusion, the reconstructed phase velocity models are meaningless outside the dot­
ted line in the figures 24 and 25. In the area enclosed by this line, lateral smearing in the 
northwest-southeast direction occurs under Danmark, Germany and the northern Adriatic, 
while there is an east-west smearing in the soulhern Mediterranean. 

8) A model for the S-velocity under Europe and the Mediterranean. 

The phase velocity perturbations presented in section 6 can be converted to a depth 
model using the phase velocity information of the different frequency bands. However, these 
phase velocities are not only infiuenced by the composilion of the crust and upper mantle, but 
also by the crustal thickness. The crustal thickness under Europe and the Mediterranean is 
known from refraction studies, and il is lherefore possible to correct for the varying crustal 
thickness. The reference model shown in figure 6 has a crustal thickness of 33 km. By deter­
mining the phase velocity for the same model, but wilh a different crustal lhickness, the fol­
lowing linear parameterization of the effect of crustal lhickness on the fundamental Rayleigh 
mode phase velocity has been determined: 

8c- =rcz-33.) (%) , (1) 

in this expression z is the cruslal lhickness in kilomelers. 

The parameter [' is for the differenl frequency bands given by 

c 
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Smoothed crustal thickness in domain. 

Figure 23. Smoothed crustal thjdmcss uscd in thc corrcction for the varying Moho depth. 

r =-0.180 (%/km. ) for 30 s. <1' <40s. 

r = -0.113 (%/km.) for 40 s. <1' <60s. (2) 

r = -0.076 (%/km.) for 60 s. <1' <100s. 

The crustal thickness used in this study is adopted from Meissner (1986) and Stoko et a1. 
(1987), and is shown in figure 23. In the area outside the dOlled line in figures 24 and 25 the 
default value is assumed (33 km.). For consistency reasons, the same smoothing is applied to 
the crustal thickness, as for the reconstructions of shown in the figures 13abc. The variations in 
the crustal thickness are as large as 25 km. in the area of interest. For the shortest period band 
this leads to a phase velocity perturbation of 4.5%, which is of the same order of magnitude as 
the perturbations as determined from the Born inversion (figure 13a). 

After correcting for the crusul1thickness, a standard linear inversion (Nolet, 1981) leads 
to the S-velocity perturbations for depths between 0 km. and 100 km., and between 100 km. 
and 200 km. A simple resolution analysis shows that incorporating a third layer is unjustified. 
The resulting S-velocity perturbations arc shown in the figures 24 and 25. The S-velocity 
models in these figures can be compared with maps of the S-velocity as compiled subjectively 
from a wide range of surface wave and body wave data (panza et aI., 1980; Calcagnile and 
Scarpa, 1985). In general, there is a correspondence of the large scale features. The velocity is 
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8 BIB for 0 km.<z<1 00 km. 

Figure 24. Relative S-velocity perturbation (8~/~) between the surface and a depth of 100 
km. 

high in the Scandinavian shield, which can be seen in the northern area of inversion of the 
figures 24 and 25. Under the western Mediterranean the velocity is low (Marillier and Mueller, 
1985), whereas the Adriatic is characterized by a S-velocity higher than in the adjacent 
regions. This high velocity under the Adriatic is more pronounced in the lowest layer (figure 
25), than in the top layer (figure 24). Note that the Alps do not show up in the figures 24 and 
25, whereas Panza et a1. (1980) and CalcagniIe and Scarpa (1985) report large anomalies both 
in the western Alps and the eastern Alps. A reason for this discrepancy might be that the 
depth-averaged structure of the Apls deviates not very much [rom the rest of Europe, so that 
the surface waves are not perturbed strongly. 

Early tomographic studies using P-wave delay times (Romanowicz, 1980; Hovland et 
aI., 1981; Hovland and Husebey, 1982; Babuska and Plomerova, 1984) produced rather dif­
ferent results for the P-velocity under Europe. The only consistcnt fcature of these studies are 
the low velocity in the Pannonian basin, and the high velocity under the Bohemian massif for 
the upper layer (0-100 km.). Both [calures can also be seen in figure 24. (In figure 23 the Pan­
nonian basin shows up as a region with a thin crust, whereas the Bohemian massif can be 
identified by it's thick crust.) A morc recent tomographic inversion with a much larger data 
produced more detailed results (Spakman, 1986ab). In his study the subduction of Africa under 



164 Chapter 9 

-5%~ - _+5% 

8~/~ for 100 km.<z<200 km. 

Figure 25. Relative S-velocity perturbation (8~/~) for depths between 100 kIn. and 200 
kIn. 

Europe has been imaged spectacularly. The subduction of Africa of the African slab under 
Europe can also be seen in figure 25 as a positive velocity anomaly in the deepest layer (100­
200 km.) under the Adriatic and northern Italy. Panza et a1. (1982) observed relatively low 
velocities in the lid between Corsica and Italy, the same anomaly is visible in figure 24. 

In the figures 24 and 25 the Rhine Graben shows up as a zone of relatively low velocities 
extending towards the southeast from the Netherlands. Most wave paths in this region are in 
the southeast-northwest direction. This may explain why in the top layer (figure 24) only the 
northern part of the Rhine Graben can be seen, whereas the southern part of the Rhine Graben 
(which trends in the north-south direction) is not delineated. The variations in the S-velocity 
for the deepest layer (figure 25) reflects the lateral variations of the low velocity zone. It is 
noted by York and HeImberger (1973) and Paulssen (1987) that strong velocity variations of 
the low velocity zone exist, which is confirmed by figure 25. Under the Massif Central the 
positive anomaly in the top layer (figure 24), and the negative anomaly in the bottom layer 
(figure 25) indicates a pronounced low velocity zone, which is consistent with the results of 
Souriau (1981). 

The feature which shows the power of the inversion method of this paper most spectacu­
larly, is the high velocity anomaly in eastern Europe. (It is possible that this area of high 
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velocities extends further eastward, but this area is not sampled by the data.) From the 
waveform point of view, this anomaly is needed to produce the focusing needed to fit the 
amplitudes of seismograms recorded in the northern station of the NARS array. For this rea­
son, this anomaly is located away from (but close to) the source receiver minor arcs. This zone 
of a high S-velocity closely marks the Tornquist-Tesseyre zone, the boundary between central 
Europe and the east European platform. Note that this transition zone is not visible in the upper 
layer of the S-velocity model (figure 24) This is consistent with the findings of Hurtig et al. 
(1979) who showed by fitting travel time curves, that below 100 km. the eastern European plat­
form has higher P-velocities than central Europe. According to figure 25, this transition at 
depth between central Europe and the eastern European platform is very sharp. 

9) Conclusion. 

Linear inversion of a large set of surface wave data is feasible with present day comput­
ers. The Born inversion for the surface wave coda (using 42 seismograms) ran in roughly one 
night on a super mini computer. The inversion of the direct surface wave for the three fre­
quency bands takes approximately the same time. The nonlinear inversion for the smooth 
reference model is comparatively fast, and takes about 3 hours for the three frequency bands. 
With the present growth in computer power, larger data sets can soon be inverted with the 
same method, possibly on a global scale. 

Reasonable waveform fits of the surface wave coda can be obtained, leading to a vari­
ance reduction of approximately 25% for the surface wave coda. However, with the data set 
used in this study many artifacts are introduced in the inversion (the analogue of the smiles in 
exploration seismics). The fact that the surface wave coda contains a relatively large noise 
componerit is an extra complication. A larger (redundant) data set is needed to perform an 
accurate imaging of the inhomogeneity in the Earth using the surface wave coda. It would be 
interesting to set up controlled experiments to probe tectonic structures like .continental mar­
gins or the Tornquist- Tesseyre zone with scattered surface waves. 

Application of Born inversion to the direct surface waves leads to detailed S-velocity 
models on a scale comparable to the wavelength of the used surface waves. With the data set 
employed, a lateral resolution of approximately 300 km. can be achieved in some regions 
(Italy, France, Alps, Western Mediterranean), while in other areas smearing along the wave 
paths occurs (southern Mediterranean, north eastern Europe, the Adriatic). More data are 
needed to achieve a more evenly distributed resolution. Only a limited depth resolution can be 
obtained. 

The fact that a model of the heterogeneity is constructed with a horizontal length scale 
comparable to the wavelength of the used surface waves, implies that scattering and multipath­
ing effects are operative. This means that for this situation dispersion measurements are not 
justified. Nevertheless, the resulting model for the S-velocity bears close resemblance to the 
S-velocity models constructed by Panza et al. (1980) and Calcagnile and Scarpa (1985), which 
are largely based on surface wave dispersion measurements. Apparently, ray theory is rela­
tively robust for structures that are not smooth on scale of a wavelength. 
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Linear waveform inversion is a powerful and rigorous method to fit surface wave data. 
Presently, the main limitation is imposed by the availability of high quality digital surface 
wave data. A network of seismometers, as described in the ORFEUS (Nolet et aI., 1985) or 
PASSCAL proposals, will increase the resolution and reliability of the resulting models. A data 
distribution center like ODC (ORFEUS Data Center) provides access to digital seismological 
data at low costs. Born inversion for surface waves, applied to these data may help to construct 
accurate S-velocity models of the Earth. 
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Chapter 10 

Summary and conclusion 

Scattering of surface waves in a three dimensional layered elastic medium with 
embedded heterogeneities is described in this thesis with the Born approximation. The 
dyadic decomposition of the surface wave Green's function provides the crucial ele­
ment for an efficient application of Born theory to surface wave scattering. This is 
because the dyadic Green's function allows for an efficient bookkeeping of the different 
processes that contribute to the scattered surface wave: excitation, propagation, scatter­
ing (conversion), and oscillation. One can argue that the most crucial (and surprisingly 
also the simplest) expression in this thesis is equation (3) of chapter 2. The resulting 
surface wave scattering theory for buried heterogeneities in a flat geometry (chapter 2), 
can easily be extended to incorporate the effects of surface topography (chapter 3), and 
a spherical geometry (chapters 6 and 7). 

In practice, the Born approximation imposes a lower limit on the periods that can 
be analyzed. This limit depends both on the properties of the heterogeneity and on the 
source receiver separation. An analysis of the surface wave coda recorded in stations of 
the NARS array shows that the surface wave coda level differs substantially for dif­
ferent regions. For paths through eastern and middle Europe, the Born approximation 
breakS down for periods shorter than 30 s., while for paths through the western Mediter­
ranean periods as short as 20 s. can be analyzed with linear theory (chapter 8). 

In exploration seismics, linear theory is usually used to establish a relation 
between the heterogeneity and the reflected waves, as well as for the inversion of these 
reflection data. It is therefore not surprising that the surface wave coda can in principle 
be used to map the heterogeneity in the Earth, with an inversion scheme which is remin­
iscent to Kirchoff migration as used in exploration seismics (chapter 2). In a simple 
field experiment the feasibility of such an inversion scheme is established (chapter 4). 
It is also possible to formulate the waveform inversion of surface wave data as a (huge) 
matrix problem. The least squares solution of these matrix equations can iteratively be 
constructed. These reconstructed models have the same characteristics as the models 
found with a simple holographic inversion (chapter 8). 

Inversion of the surface wave coda recorded in stations of the NARS array pro­
duce chaotic models of scatterers which are difficult to interpret unambiguously. Apart 
from a lack of enough data to perform a good imaging, this inversion is hampered by an 
appreciable noise component in the surface wave coda. This noise level might be 
acceptable if the data set were redundant, so that this noise component can be averaged 
out. However, the 42 available seismograms lead to an underdetermined system of 
linear equations, which make it likely that the noise in the surface wave coda introduces 
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artifacts in the reconstructed model (chapter 9). 

Born theory for surface waves describes the distortion of the wavefield due to the 
heterogeneity of the medium. This distortion consists of true surface wave scattering 
due to abrupt lateral inhomogeneities, as well as a distortion of the direct surface wave 
due to smooth variations of the heterogeneity. Up to first order, ray geometrical effects 
follow from linear scattering theory (chapter 5). Furthermore, the scattering coefficient 
for forward scattering of unconverted waves is proportional to the phase velocity per­
turbation of these waves (chapter 3). This makes it possible to reconstruct phase velo­
city fields for surface waves using a large scale linear waveform inversion of the direct 
surface wave (chapter 8). 

This inversion is applied to the direct surface wave train recorded in stations of 
the NARS array. This results in detailed reconstructions of the phase velocity of the 
fundamental Rayleigh mode. In this inversion, a variance reduction of approximately 
40% is achieved. By combining this information for different frequencies, detailed 
models of the S-velocity under Europe and the Mediterranean are reconstructed 
(chapter 9). With the present data set, the resolution of this model differs considerably 
from region to region. The only way to overcome this restriction is to use more data, 
which can be realized by employing dense networks of digital seismic stations. 

There is still a considerable amount of research to be performed on scattering 
theory of elastic waves. Apart from the restriction of linearity, the theory presented in 
this thesis is only valid in the far field. This means that the inhomogeneity should be 
several wavelengths removed from the source and the receiver (and their antipodes). In 
practice, this is a troublesome limitation, because seismic stations are often located on 
top of heterogeneities, and earthquakes usually occur in heterogeneous areas such as 
subduction zones. The interaction terms are valid both in the far field and in the near 
field (chapter 7), so that in order to resolve the far field restriction, the propagator terms 
need to be investigated. Future theoretical research should also address the problem of 
conversions between surface waves and body waves. This issue is related to the near 
field problem, because in the near field the concepts of "surface waves" and "body 
waves" are poorly defined. 

It would be interesting to use portable seismic stations for local investigations by 
recording scattered surface waves in the vicinity of strong lateral variations in the crust 
and upper mantle. In this way, it should be possible to probe tectonic features such as 
subduction zones using scattered surface waves. The waveform inversions of the direct 
surface waves, as presented in this thesis, can be applied to other regions of the Earth 
with a good coverage with digital seismic stations (e.g. Japan, the continental US), and 
possibly for lower frequencies on a global scale. In this way, large scale waveform 
inversions for both the phase and amplitude of surface wave data may dramatically 
increase our knowledge of the Earth's interior. 
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Oppervlakte golven verstrooid aan heterogeniteiten ingebed in een drie dimen­
sionaal gelaagd medium worden in dit proefschrift beschreven met behulp van de Born 
benadering. De dyadische ontwikkeling van de Greense functie is het cruciale element 
voor een efficiente boekhouding van de verschillende elementen die een bijdrage 
leveren aan de verstrooide oppervlakte golf: excitatie, propagatie, verstrooiing (conver­
sie), en oscillatie. Men kan stellen dat vergelijking (3) van hoofdstuk 2 de meest cruci­
ale (en verrassend genoeg ook de simpelste) uitdrukking is. De resulterende theorie 
voor oppervlakte golf verstrooiing aan interne heterogeniteiten in een vlakke geometrie 
(hoofdstuk 2), kan eenvoudig gegeneraliseerd worden voor de effecten van oppervlakte 
topografie (hoofdstuk 3), en voor een bolgeometrie (hoofdstuk 6 en 7). 

In de praktijk stelt de Born benadering een ondergrens aan de perioden die 
geanaliseerd kunnen worden. Deze ondergrens hangt af van de eigenschappen van de 
heterogeniteit, en van de epicentrale afstand. Een analyse van de oppervlakte golf coda 
geregistreerd in de stations van het NARS netwerk toont aan dat de oppervlakte golf 
coda aanzienlijk verschilt voor verschillende regios. Voor golfpaden door oost- en mid­
den Europa is de Born benadering niet geldig voor perioden korter dan 30 s., terwijl 
voor golfpaden door het westelijke Middenlandse Zee gebied deze ondergrens op 20 s. 
ligt (hoofdstuk 8). 

In de exploratie seismologie wordt lineaire theorie meestal gebruikt zowel voor 
de relatie tussen de heterogeniteit en de gereflecteerde golven, als voor de inversie van 
deze reflectie data. Ret is daarom niet verbazend dat de oppervlakte golf coda in prin­
cipe gebruikt kan worden om de heterogeniteit in de Aarde te reconstrueren met een 
inversie methode die doet denken aan Kirchoff migratie zoals gebruikt wordt in de 
exploratie geofysica (hoofdstuk 2). In een simpel veld experiment is de haalbaarheid 
van een dergelijke inversie aangetoond (hoofdstuk 4). Ret is tevens mogelijk om de 
golfvorm inversie van oppervlakte golf data te formuleren als een (zeer groot) matrix 
probleem. Met behulp van iteratieve technieken kan een kleinste kwadraten oplossing 
van dit probleem gevonden worden. De op deze wijze gereconstrueerde modellen heb­
ben dezelfde karakteristieken als modellen bepaald met een eenvoudige holografische 
inversie (hoofdstuk 8). 

Inversie van de oppervlakte golf coda geregistreerd in stations van het NARS 
netwerk leidt tot chaotische modellen voor de heterogeniteit die niet eenduidig te inter­
preteren zijn. Behalve een gebrek aan voldoende data voor een goede focussering, is 
een relatief hoog ruisniveau in de coda hiervan de oorzaak. Dit ruisniveau zou aan­
vaardbaar kunnen zijn voor een grote (overbepaalde) data collectie, zodat de ruis uit­
middelt in de inversie. De 42 gebruikte seismogrammen leidden echter tot een onder­
bepaald stelsel lineaire vergelijkingen, zodat het waarschijnelijk is dat ruis in de coda 
artefacten in het geronstrueerde model introduceert. 
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Born theorie voor oppervlakte golven beschrijft de vervorming van het golfveld 
ten gevolge van heterogeniteiten in het medium. Deze vervorming bestaat niet alleen uit 
echte oppervlakte golf verstrooiing ten gevolge van abrupte heterogeniteiten, maar ook 
uit een vervorming van de directe golf ten gevolge van gladde variaties van de inhomo­
geniteit. Tot op eerste orde volgen optisch geometrische effecten uit de lineaire ver­
strooiingstheorie (hoofdstuk 5). De verstrooiingscoefficient voor voorwaartse verstrooi­
ing van ongeconverteerde golven is evenredig met de fasesnelheid verstoring van deze 
golven (hoofdstuk 3). Dit maakt het moge1ijk om fasesnelheid verdelingen van 
oppervlakte golven te bepalen met behulp van een grootschalige lineaire golfvorm 
inversie van de directe oppervlakte golf (hoofdstuk 8). 

Deze inversie is toegepast op de directe oppervlakte golf geregistreerd in stations 
van het NARS netwerk. Dit leidt tot gedetailleerde reconstructies van de fasesnelheid 
van de Rayleigh golf grondtoon. Door deze informatie voor verschillende frequenties te 
combineren zijn gedetailleerde modellen van de S-snelheid onder Europa en de Mid­
denlandse Zee geconstrueerd (hoofdstuk 9). Met de huidige gegevens varieert de reso­
lutie aanzienlijk van regio tot regio. AHeen met meer gegevens is hier verbetering in te 
brengen. Dit kan gerealiseerd worden met dichte netwerken van digitale seismische 
stations. 

Er is nog veel onderzoek te doen op het gebied van verstrooiingstheorie voor 
elastische golven. Behalve de restrictie van lineariteit, is de theorie in dit proefschrift 
alleen geldig in het verre veld. Dit betekent dat de heterogeniteit zich op minstens 
enke1e golftengten van de bron en de ontvanger (en hun antipolen) moet bevinden. In de 
praktijk is dit een complicerende factor, omdat seismische stations vaak hoven hetero­
geniteiten staan, en omdat aardbevingen meestal in heterogene gebieden zoals subductie 
zones optreden. De verstrooiingscoefficienten zijn zowel in het verre- als het nabije 
veld geldig (hoofdstuk 7), zodat teneinde de verre veld restrictie op te lossen de propa­
gator termen onderzocht moeten worden. Ret theoretisch onderzoek moet tevens een 
beschtijving geven van de interacties tussen oppervlak.te golven en ruimte golven. Dit 
probleem is gerelateerd aan de problemen met het nabije veld, aangezien in het nabije 
veld de concepten "oppervlakte golf' en "ruimte golf' slecht gedefinieerd zijn. 

Ret zou interressant zijn om draagbare seismische stations te gebruiken voor 
locale metingen van verstrooide oppervlakte golven in de nabijheid van sterke hetero­
geniteiten in de korst en bovenmantel. Op deze manier is het wellicht mogelijk om tec­
tonische fenomenen ZOalS subductie zones of the Tornquist-Teisseyre zone te bemon­
steren. De golfvorm inversies van de directe golf zoals gepresenteerd in dit proefschrift, 
kan tevens toegepast worden op andere gebieden met een goede bedekking met digitale 
seismische stations (bijv. Japan en de continentale V.S.), en wellicht voor lagere fre- . 
quenties ook op een globale schaal. Op deze wijze kunnen grootschalige golfvorm 
inversies van oppervlakte golf gegevens op dramatische wijze onze kennis van het 
inwendige van de aarde vergroten. 
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