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The combination of a vortex line in a one-dimensional optical lattice with fermions bound to
the vortex core makes up an ultracold superstring. We give a detailed derivation of the way to
make this supersymmetric string in the laboratory. In particular, we discuss the presence of a
fermionic bound state in the vortex core and the tuning of the laser beams needed to achieve
supersymmetry. Moreover, we discuss experimental consequences of supersymmetry and identify
the precise supersymmetry in the problem. Finally, we make the mathematical connection with
string theory.
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I. INTRODUCTION

Ultracold quantum gases provide a very exciting
branch of physics. Besides the interesting physics that
the gases offer by themselves, it has also been possible
in the last few years to model with quantum gases sys-
tems from other branches of physics, and by doing so to
provide answers to long-standing questions. The latter
is mainly due to the amazing accuracy by which their
properties can be tuned and manipulated. This involves
the trapping potential, the dimensionality, the interac-
tion between the atoms, and the statistics. By using a
three-dimensional optical lattice the superfluid-Mott in-
sulator transition in the Bose-Hubbard model has been
observed [1]. Bosonic atoms confined in one-dimensional
tubes by means of a two-dimensional optical lattice where
shown to realize the Lieb-Liniger gas [2, 3]. The uni-
tarity regime of strong interactions was reached by us-
ing Feshbach resonances to control the scattering length
[4, 5, 6, 7, 8].

To this shortlist of examples from condensed-matter
theory, also examples from high-energy physics can be
added. In a spinor Bose-Einstein condensate with fer-
romagnetic interactions skyrmion physics has been stud-
ied [9, 10], whereas an antiferromagnetic spinor Bose-
Einstein condensate allows for monopole or hedgehog so-
lutions [11, 12]. There is also a proposal for studying
charge fractionalization in one dimension [13], and for
creating (static) non-abelian gauge fields [14, 15]. In re-
cent work [16] we have added another proposal to model a
system from high-energy physics. By combining a vortex
line in a one-dimensional optical lattice with a fermionic
gas bound to the vortex core, it is possible to tune the
laser parameters such that a nonrelativistic supersym-
metric string is created. This we called the ultracold su-
perstring. This proposal combines three topics that have
attracted a lot of attention in the area of ultracold atomic
gases. These topics are vortices [17, 18, 19, 20, 21], Bose-
Fermi mixtures [22, 23, 24, 25, 26, 27, 28], and optical lat-
tices [1, 29]. Apart from its potential to experimentally
probe certain aspects of superstring theory, this proposal
is also very interesting because it brings supersymmetry

within experimental reach.

Supersymmetry is a very special symmetry, that re-
lates fermions and bosons with each other. It plays an
important role in string theory, where supersymmetry
is an essential ingredient to make a consistent theory
without the so-called tachyon, i.e., a particle that has
a negative mass squared. In the physics of the mini-
mally extended standard model, supersymmetry is used
to remove quadratic divergences. This results in a super
partner for each of the known particles of the standard
model. However, supersymmetry is manifestly broken
in our world and none of these superpartners have been
observed. A third field where supersymmetry plays a
role is in modeling disorder and chaos [30]. Here super-
symmetry is introduced artificially to properly perform
the average over disorder. Finally, supersymmetry plays
an important role in the field of supersymmetric quan-
tum mechanics, where the formal structure of a super-
symmetric theory is applied to derive exact results. In
particular this means that a supersymmetry generator
Q is defined, such that the hamiltonian can be written
as H = {Q,Q†}, which is one of the basic relations in
the relativistic superalgebra. It is important for our pur-
poses to note, that this relation is no longer enforced
by the superalgebra in the nonrelativistic limit. Careful
analysis [31, 32] shows that in this limit the hamiltonian
is replaced by the number operator, i.e., N = {Q,Q†}.
It may sometimes be possible to write a nonrelativistic
hamiltonian as the anticommutator of the supersymme-
try generators, but this does not correspond to the non-
relativistic limit of a relativistic theory.

In our proposal, a physical effect of supersymmetry is
that the stability of the superstring against spiraling out
of the gas is exceptionally large, because the damping
of the center-of-mass motion is reduced by a destruc-
tive interference between processes that create two ad-
ditional bosonic excitations of the superstring and pro-
cesses that produce an additional particle-hole pair of
fermions. Moreover, this system allows for the study of
a quantum phase transition that spontaneously breaks
supersymmetry as we will show.

Another very interesting aspect of the ultracold super-
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string is the close relation with string-bit models [33].
These are models that discretize the string in the spatial
direction, either to perturbatively solve string theory, or,
more radically, to reveal a more fundamental theory that
underlies superstring theory. String-bit models describe
the transverse degrees of freedom of the string in a very
similar fashion as in our theory of the ultracold super-
string.

In this article we investigate in detail the physics of
ultracold superstrings, expanding on our previous work
[16]. The article is organized as follows. In Sec. II we
give the detailed derivation of the conditions for the ul-
tracold superstring to be created. In particular, we pay
attention to the presence of the fermionic bound state in
the vortex core and the tuning of the lasers to reach su-
persymmetry. In Sec. III we investigate the experimental
consequences of the supersymmetry. Sec. IV contains a
detailed description of the supersymmetry by studying
the superalgebra. In Sec. V we make connection with
string theory. Finally, we end with our conclusions in
Sec. VI.

II. ULTRACOLD SUPERSTRINGS

Our proposal makes use of the fact that a vortex line
through a Bose-Einstein condensate in a one-dimensional
optical lattice can behave according to the laws of quan-
tum mechanics [34]. Such an optical lattice consists of
two identical counter-propagating laser beams and pro-
vides a periodic potential for atoms. When applied along
the symmetry axis of a cigar-shaped condensate, which
we call the z axis from now on, the optical lattice divides
the condensate into weakly-coupled pancake-shaped con-
densates. In the case of a red-detuned lattice, the gaus-
sian profile of the laser beam provides also the desired
trapping in the radial direction. Rotation of the Bose-
Einstein condensate along the z axis creates a vortex line
that passes through each pancake. Quantum fluctuations
of the vortex position are greatly enhanced in this con-
figuration because of the small number of atoms NB in
each pancake, which can be as low as NB = 10, but
is typically around NB = 1000. An added advantage
of the stacked-pancake configuration, as opposed to the
bulk situation, is that the dispersion of the vortex oscilla-
tions is particle like. This ultimately allows for supersym-
metry with the fermionic atoms in the mixture. In the
one-dimensional optical lattice the vortex line becomes
a chain of so-called pancake vortices. This produces a
setup which is pictured schematically in Fig 1. There
is a critical external rotation frequency Ωc above which
a vortex in the center of the condensate is stable. For
Ω < Ωc the vortex is unstable, but because of its Euler
dynamics, it takes a relatively long time before it spirals
out of the gas [19, 35, 36]. We analyze in detail the case
of Ω = 0, i.e., the situation in which the condensate is no
longer rotated externally after a vortex is created. How-
ever, the physics is very similar for all Ω < Ωc, where su-

FIG. 1: (Color online) Artist’s impression of the setup. The
disks represent the bosonic condensate density and the blue
balls in the vortex core represent the fermionic density. The
black line is a guide to the eye to see the wiggling of the vortex
line that corresponds to a Kelvin mode.

persymmetry is possible. The temperature is taken to be
well below the Bose-Einstein condensation temperature,
so that thermal fluctuations are strongly suppressed. We
only consider the zero-temperature limit, because super-
symmetry is formally broken for nonzero temperatures.

A. Atomic species

A convenient choice for the boson-fermion mixture is
87Rb and 40K, since such Bose-Fermi mixtures have re-
cently been realized in the laboratory [23, 24, 25, 26],
and because the resonance lines in these two atomic
species lie very nearby. The mostly used |f,mf 〉 hy-
perfine spin states are |9/2,±9/2〉 and |9/2,±7/2〉 for
40K, and |2,±2〉, |1,±1〉, and |1, 0〉 for 87Rb [37]. They
all have a negative interspecies scattering lenght aBF ,
which is not desirable for our purposes as we show be-
low. It could be possible to use other spin states, which
have a positive interspecies scattering length. An other
possiblity is to tune the scattering length, using one of
the various broad Feshbach resonances that can make
the interaction repulsive while keeping the probability to
create molecules negligible [37].

In principle it is also possible to use other mixtures.
Another Bose-Fermi mixture that has been realized in the
laboratory consists of 23Na and 6Li atoms [22, 27]. This
mixture is less convenient because the resonance lines
are widely separated, so that the two species feel very
different optical potentials and it is hard to trap both
with a single laser. In addition, 6Li is relatively hard to
trap in an optical lattice because of its small mass. For
these reasons, the 23Na-6Li mixture can only be used in a
very restricted parameter regime, as we will show lateron
in Fig. 5. For the same reasons, the mixture 87Rb -
6Li [28] does not work well either. The mixture 7Li-6Li
[38, 39] cannot be used at all, because the resonance lines
of the species are the same, so it is impossible to tune the
physical properties of the mixture.
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FIG. 2: (a) (Color online) Schematic picture of the setup.
Here r is the radial distance in the xy plane. The pink and
blue blobs represent the bosonic and fermionic densities, re-
spectively. Moreover, λ is the wavelength of the laser. The
blue and red lines indicate the strength of the optical poten-
tial, respectively, for the bosons and fermions as a function of
the z coordinate. (b) Schematic fine structure level scheme
of the bosonic and fermionic atomic species. Because we con-
sider only sufficiently large detunings the hyperfine level struc-
ture is not resolved.

B. Optical lattice

Because the excited states of the bosonic and fermionic
atoms have different transition frequencies, the optical
lattice produces for the two species a periodic potential
with the same lattice spacing, but with a different height,
as schematically shown in Fig. 2. This is very crucial, be-
cause it allows to tune the optical lattice for the bosonic
and fermionic atoms seperately, by careful adjustement
of the wavelength and the Rabi frequency, i.e., the inten-
sity of the laser. This is required to be able to tune the
system to become supersymmetric lateron.

For the 86Rb-40K mixture the Rabi frequencies are
in a good approximation the same. For other mixtures
the Rabi frequencies are different and we then take the
bosonic Rabi frequency as a reference. We take into ac-
count the fine-structure level scheme of the atoms, but,
assuming that we are sufficiently far from resonance, we
neglect the hyperfine structure. As a result, the optical
potential is given by

VB,F (z) = VB,F cos2(2πz/λ), (1)

where the well depths obey

VB,F = −
~Ω2

B,F

3

[(

1

ωB,F
D1

− ω
+

1

ωB,F
D1

+ ω

)

(2)

+2

(

1

ωB,F
D2

− ω
+

1

ωB,F
D2

+ ω

)]

,

ω = 2πc/λ is the laser frequency, and ωD1 and ωD2 are
the frequencies of theD1 andD2 resonance lines. Here we
neglected spontaneous emission of photons. This effect
slightly modifies the trapping potential, but gives a finite
lifetime to the atoms. Using the rotating-wave approx-
imation and neglecting the fine structure, the effective

rate of photon absorption can for red-detuned laser light
be estimed as

Γeff
B,F = −

~Ω2
B,F

2

ΓB,F

(~ωB,F − ~ω)2 + (~ΓB,F )2
, (3)

where ΓB,F is the linewidth of the bosonic or fermionic
excited state, respectively. For blue-detuned laser light,
the atoms are trapped in the regions of low laser intensity
and spontaneous emission is strongly reduced.

The optical potential should be sufficiently deep to
have a bound state for the bosonic and fermionic atoms.
To make sure that that is the case we impose the condi-
tion

VB,F

EB,F
>

3

2
, (4)

where we have used the recoil-energy

EB,F =
2π2

mB,Fλ2
, (5)

which is the energy associated with the absorption of a
photon. On the other hand, the optical lattice should not
be so strong to drive the system in the Mott-insulator
state [1, 29, 40]. In one dimension with many atoms per
site, this requires an exceptionally deep lattice, which
only occurs if the laser frequency is very close to the
resonance frequency of the atomic species. Since we stay
away from resonance, this situation does not occur in our
calculations.

The wavefunctions in the z direction are assumed to be
the groundstate wavefunctions of the harmonic oscillator
associated with the optical lattice and thus given by

ψB,F (z) =
1

π1/4
√

ℓzB,F

exp

(

− z2

2ℓzB,F

)

, (6)

where

ℓzB,F =

(

EB,F

VB,F

)1/4
λ

2π
. (7)

For the tunneling amplitude, we use the expression [41]

JB,F = 4
(V 3

B,FEB,F )1/4

√
π

exp

[

−2
√

VB,F /EB,F

]

, (8)

which becomes exact for a deep lattice. Therefore, the
atomic dispersions along the z axis are given by

ǫB,F (k) = 2JB,F [1 − cos(kλ/2)]. (9)

Lateron we need for the fermions the relation between
the average number of particle per site and the chemical
potential µF . From the above dispersion we derive at
zero temperature that

NF =
2

π
arcsin

[
√

µF

4Jf

]

, (10)

where we neglect also interaction effects.
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C. Kelvons

The wavefunction in the (axial) z direction is fully
specified by the optical lattice and all the dynamics
thus takes place in the radial direction, i.e., in the xy-
plane. Since the vortex-fluctuations form the lowest-lying
modes, we restrict the dynamics to the vortex motion.
We follow the derivations in earlier work [34, 42], where
a specific ansatz for the wavefunction was used, to achieve
this. In this work the condensate density was described
by a gaussian wavefunction with size RTF and the vortex
core was approximated by a step function. Furthermore,
it was assumed that the vortex is close to the center. The
motion of the vortices results in kelvons, i.e., quantized
oscillations of the vortex, described by the creation and
annihilation operators

b̂ =

√
Nb

RTF
(x̂+ iŷ), b̂† =

√
Nb

RTF
(x̂ − iŷ), (11)

which obey [b̂, b̂†] = 1. Without the optical lattice Kelvin
waves have already been observed [43, 44]. The kelvons
have the dispersion

~ωK(k) =
~ωℓ2

2R2
TF

(

1 − Γ

[

0,

(

l

RTF

)4
])

+ ~Ω(12)

+2JK [1 − cos(kλ/2)],

where

JK = Γ[0, (ℓ/RTF)4]JB, (13)

Γ[0, z] is the incomplete Gamma function, RTF is the
Thomas-Fermi radius in the radial direction, ℓ is the

bosonic harmonic length in the radial direction, and ω
is the associated frequency. Using another ansatz for the
condensate wavefunction can slightly change the constant
of proportionality in the definition of the kelvon operators
and in the details of the dispersion, but the dispersion al-
ways stays tight-binding like.

For the calculation of the bound state in the vortex
core, we need to go beyond the description of the core
by a step function. This change of the calculation could
improve the value of JK , but not the functional form
of the kelvon dispersion. Since the corrections on the
value of JK are small, we just use the result in Eq. (13).
Besides the bandwidth JK we derive from Eq. (12) also
the chemical potential for the kelvons, which gives

µK ≡ −~ωK(k = 0) (14)

=
~ωℓ2

2R2
TF

(

Γ

[

0,

(

l

RTF

)4
]

− 1

)

− ~Ω.

Note that the chemical potential is positive only for suf-
ficiently small rotations, which is due to the fact that
the vortex is in principle unstable for these values of the
rotation and wants to spiral out of the center of the gas
cloud.

D. Bound states in the vortex core

By treating the interaction between the bosonic and
fermionic atoms in mean-field approximation, we have
to solve the Gross-Pitaevskii equation for the condensate
wavefunction Ψ(r) coupled to the Schrödinger equation
for the fermion wavefunction ψ(r)

(−~
2∇2

r

2mB
+

1

2
mBω

2
Br

2 − µB +
UBB

2
|Ψ(r)|2 + UBF |ψ(r)|2 − ~ΩL̂z)Ψ(r) = 0, (15)

(−~
2∇2

r

2mF
− E +

1

2
mFω

2
F r

2 + UBF |Ψ(r)|2)ψ(r) = 0, (16)

which we investigate for the case that Ω = 0. The inter-
action paramaters are related to the scattering lengths
according to

UBB =
4π~

2

√
2πmB

aBB

ℓzB
, (17)

UBF =
2π~

2

√
πmR

aBF
√

(ℓzB)2 + (ℓzF )2
, (18)

with aBB the boson-boson scattering length and aBF

the boson-fermion scattering length and mR the reduced
mass mBmF /(mB +mF ). Although it is very well pos-
sible to solve these equations numerically, we prefer an

analytic treatment, to gain more insight into the problem.
To proceed we make the approximation that the conden-
sate wavefunction is not affected by the presence of the
fermions. This is justified, because the contribution of
the fermions is NF /NB smaller than the contribution of
the bosons, where NB,F is the average number of bosons
and fermions at a lattice site. This ratio will be smaller
than 10−3 as it turns out. Taking into account the inter-
action with the fermions leads to a slightly wider vortex
core, which enhances the possiblity of a bound state. So
we first solve the Gross-Pitaevskii equation for the con-
densate density neglecting the presence of the fermions
and then use the condensate density as an effective po-
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tential for the fermions. Since we only want to estimate
when there is a bound state and we do not need the
details of this bound state, we make the following ap-
proximations. First, we assume the vortex to be in the
center such that the problem is rotationally symmetric
and we only have to solve the radial equation. Because
of the quantum uncertainty the vortex position in prin-
ciple fluctuates around the center of the trap, but these
fluctuations are small. Second, we assume the envelope
condensate wavefunction to be Thomas-Fermi like, i.e.,

|Ψ(r)|2 = nTF (r) =
µB − mB

2 ω2
Br

2

UBB
= n0

(

1 − r2

R2
TF

)

.

(19)
Third, we describe the vortex core by r2/(r2 + 2ξ2) [45],
such that the total bosonic density is given by

nB(r) =

(

r2

r2 + 2ξ2

)

nTF (r). (20)

If we take for the healing length ξ the usual expression
in the center of the trap, i.e.,

ξ =
~

√

2mBnTF (0)UBB

, (21)

we obtain the relation

ξ

ℓ
=

ℓ

RTF
. (22)

By expressing the energy in terms of µBmB/mF we can
write the Schrödinger equation for the fermions as

[

−ξ
2∇2

r

2
− ǫ+

r2ξ2

(ℓrF )4
+
mF

mB

UBF

UBB

r2

2ξ2 + r2

(

1 − r2ξ2

ℓ4

)]

ψ(r) = 0, (23)

where ǫ = mFE/µBmB and the dimensionless parameter

Γ =
mF

mB

UBF

UBB
=

1

2

√

√

√

√

2

1 +
√

VB

VF

EF

EB

(

1 +
mF

mB

)

aBF

aBB

(24)
determines whether or not there is a bound state in the
core of the vortex.

If we assume that ξ ≪ ℓ and ξ ≪ ℓFr , we can neglect
the harmonic confinement and the Thomas-Fermi profile
of the Bose-Einstein condensate. The effective potential
for the fermionic atoms is then given by Γr2/(r2 + 2ξ2).
This potential has a bound state for each value of Γ,
because for large distances from the core, it behaves as
Γ(1 − 2ξ2/r2). However, the size of the wavefunction
describing the bound state becomes extremely large for
small values of Γ. Hence it is necessary to take into ac-
count the exact form of the potential to make a quanti-
tative estimate of the existence of the bound state. The
potential is determined by the values of the radial bosonic
and fermionic harmonic length ℓ and ℓrF . Since ℓrF deter-
mines the potential outside the condensate, it determines
whether or not the fermions can tunnel out of the core
to this region. For the existence of the bound state we
can neglect this contribution, which is always justified,
because it enhances the possibility of having a bound
state.

The radial bosonic harmonic length ℓ is fixed by the
normalization of the condenstate wavefunction

∫

d2
r|Ψ(r)|2 =

∫

d2
r

r2

r2 + 2ξ2
nTF (r) = NB. (25)

Neglecting the presence of the core we find the usual
expression for the Thomas-Fermi profile

ℓ4

ξ4
=
R4

TF

ℓ4
=

4mBNBUBB

π~2
=

16
√

2πNBaBB

λ

[

VB

EB

]1/4

.

(26)
Using that
∫

d2
r

(

r2

r2 + 2ξ2

)(

1 − r2

R2
TF

)

=

π

2
R2

TF + 2πξ2
(

1 −
[

1 +
2ξ2

R2
TF

]

log

(

R2
TF + 2ξ2

2ξ2

))

,

we see that taking into account the core implies that we
have to solve the equation

ℓ4

ξ4
=

4mBNBUBB

π~2
+ 4

(

1 +
2ξ4

ℓ4

)

log

(

1 +
ℓ4

2ξ4

)

− 4,

(27)
where the last two terms come form the presence of the
core. Since the core is small in this approximation, this
results in a radial harmonic length that is only slightly
modified. The requirement that the wavefunction should
vanish well within the condensate can then be quantified
to yield the expression

Γ
σ2

σ2 + 2ξ2

(

1 − σ2ξ2

ℓ4

)

< ǫ, (28)
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FIG. 3: (Color online) Setup with the additional laser to ma-
nipulate the radial trapping potential.

where σ is the radial size of the fermionic wavefunction.
In this way we obtain that for typical densities there is a
bound state for Γ > 1.5 which means that aBB/aBF > 2.

In contrast to the radial bosonic length ℓ, the fermionic
radial harmonic length ℓrF is not fixed. When the optical
lattice is red-detuned, the lattice can be used to trap the
atoms also in the radial direction. As a consequence, the
total confining potential for the fermions is a multiple of
the confining potential of the bosons, i.e.,

r2

ℓ2
+

z2

(ℓzB)2
∝ r2

(ℓrF )2
+

z2

(ℓzF )2
.

This gives the relation

ℓrF
ℓ

=
ℓzF
ℓzB
, (29)

from which we derive
(

ℓrF
ξ

)4

=

(

ℓzF
ℓzB

ℓ

ξ

)4

=

(

ℓ

ξ

)4
EF

EB

VB

VF
. (30)

However, if the lattice is blue-detuned or if the radial
trapping is tuned independently, this relation is not true.
The radial trapping can be tuned by introducing a second
running laser in the same direction as the optical lattice,
as shown in Fig 3. The new laser beam has a constant
intensity along the z axis, and does not influence the
one-dimensional potential wells, but it does change the
radial confinement. In principle this second laser also
introduces interference terms, but they are much faster
than the atoms can follow for the frequencies of interest
to us. Therefore, the intensities of the two lasers can sim-
ply be added. In particular, as we show lateron, adjusting
the radial trapping potentials is needed to get supersym-
metric interaction terms. The condition imposed by this
requirement is

(

ℓ

ℓrF

)4

=
mB

mF

(

ξ

ℓ

)4
(

Γ

[

0,

(

ξ

ℓ

)4
]

− 3

2

)

, (31)

which gives the following expression for the fermionic ra-
dial harmonic length

(

ℓrF
ξ

)4

=
mF

mB

(

ℓ

ξ

)8
1

Γ

[

0,
(

ξ
ℓ

)4
]

− 3
2

. (32)
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FIG. 4: Effective potential for the fermions. Lengths are
measured in units of ξ and energies in units of µBmB/mF .
(a) Γ = .5, ℓr

F ≫ ℓ: No bound state, since the potential is
too small. (b) Γ = 2.6, ℓr

F ≫ ℓ: Bound state in the core,
but possibility to tunnel outside. (c) Γ = 2.6, ℓr

F ≃ ℓ: Bound
state in the core, no tunneling possible.

In this last case, the harmonic radial potential for the
fermions is very small. In principle this allows the
fermionic atoms to tunnel out of the vortex core, to the
region where the condensate density vanishes. However,
the tunneling is suppressed by increasing the parameter
Γ. A WKB estimate gives that for Γ > 5 the lifetime
of the fermions in the core is larger than a second. This
means that aBB/aBF > 8. Further increasing this ratio
increases this lifetime dramatically. Since adjusting the
radial trapping potentials is only needed close to the cen-
ter of the trap, it is also a possibility to use a second laser
with a much smaller waist, such that higher-order con-
tributions from the potential prevent the fermions from
tunneling out of the core. For various situations, the
effective potential for the fermions is shown in Fig 4.

E. Interactions

In our superstring realization there are also boson-
boson and boson-fermion interactions. The kelvons in-
teract repulsively among each other when Ω < Ωc. For
Ω = 0 the kelvon-kelvon interaction coefficient is given
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by [46]

VKK =
~

2

2NBmBR2
TF

(

Γ[0, (ℓ/RTF)
4
] − 3

2

)

. (33)

In addition, a repulsive interaction between the kelvons
and the fermionic atoms is generated by the fact that
physically the presence of a kelvon means that the vor-
tex core is shifted off center, together with the fermions
trapped in it. Because of the radial confinement experi-
enced by the trapped fermions, this increases the energy
of the vortex. When the vortex core is shifted from 0 to
r, the fermion hamiltonian is extended by a term

HKF =
mF (ωr

F )2

2
r2c†c, (34)

where c†c is the number operator for the fermions in the
core. Defining CB,F as the spring constants associated
with the radial confinement of the bosonic and fermionic
atoms, respectively, and using the definition of the kelvon
operators, this translates into

HKF =
CFR

2
TF

2NB
c†c b†b. (35)

So the kelvon-fermion interaction coefficient is found to
be

VKF =
CFR

2
TF

2NB
. (36)

F. Supersymmetry

To obtain a supersymmetric situation we have three
requirements. In the first place the hopping amplitudes
have to be the same

JF = JK ≡ t. (37)

This can be done by adjusting the laser parameters λ
and ΩB, as shown in Fig 5. The freedom in choosing the
wavelength of the laser can be used to minimize the atom
loss. In Fig. 6, we plot the atom loss as a function of the
wavelength of the laser.

Secondly, the chemical potentials have to be the same

µF = µK ≡ µ. (38)

This can be achieved by adjusting the fermion filling frac-
tion NF , as shown in Fig 7. Using the result from Eq.
(10) and using the requirements for supersymmetry we
obtain

NF =
2

π
arcsin







√

√

√

√

√

~ωℓ2

2R2
TF

(

Γ
[

0, l4

R4
TF

]

− 1
)

4JBΓ
[

0, l4

R4
TF

]







=
2

π
arcsin











ℓ

ℓzB

√

√

√

√

√

√

√
π ℓ2

R2
TF

(

Γ
[

0, l4

R4
TF

]

−1
)

e

√

VB

EB

16(VB/EB)1/4Γ
[

0, l4

R4
TF

]











.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 400  500  600  700  800  900  1000  1100  1200

R
a

b
i 
fr

e
q

u
e

n
c
y
 (

G
H

z
)

Wavelength (nm)

 0

 2

 4

 6

 8

 10

 700  720  740

R
a
b
i 
fr

e
q
u
e
n
c
y
 (

G
H

z
)

Wavelength (nm)

FIG. 5: Tuning of the lattice laser to obtain supersymmetry.
Plotted is the Rabi frequency for the bosonic atoms versus
wavelength for 87Rb-40K for 10000 (solid line), 1000 (dashed
line) and 500 (dotted line) bosonic atoms per site. Note that
for the blue-detuned part, i.e., λ < 760 nm for the 87Rb-40K
mixture extra radial trapping is needed, either magnetically,
or by using an extra running laser as discussed in the text and
shown in Fig. 3. In Fig. 8 we display how to tune the running
laser to obtain also supersymmetric interactions. In the inset
we plotted the Rabi frequency that is required for the 23Na-
6Li mixture to obtain supersymmetry, again for 10000 (solid
line), 1000 (dashed line) and 500 (dotted line) bosonic atoms
per site. Note that this can only be obtained in a very limited
range of wavelength’s.

The ratio ℓ/ℓzB is undetermined by supersymmetry con-
straints. In order for the Thomas-Fermi approximation
to apply in the radial direction, versus the gaussian wave-
function in z direction, this ratio needs to be sufficiently
small. In the figure a ratio of 1/5 is chosen.

Finally, the interaction terms have to be the same.
This implies

VKK = VKF ≡ U. (39)

Setting these coefficients equal to each other gives a con-
dition on the radial trapping given by

CF

CB
=

(

ℓ

RTF

)4(

Γ[0, (ℓ/RTF)4] − 3

2

)

. (40)

The radial trapping can be tuned by introducing a sec-
ond running laser, as explained before. For the second
laser, we can again independently choose both the wave-
length and the Rabi frequency as shown in Fig. 8. This
can again be used to minimize the atom loss due to the
red-detuned laser, but it turns out that atom loss is al-
ways quite small anyway for reasonable system parame-
ters. Only for very small detunings, the lifetime is less
than a second.
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FIG. 6: Effective rate of photon absorption as a function of
the wavelength of the optical lattice for 1000 bosonic atoms
per site. The solid line is for the bosonic atoms, whereas
the dashed line is for the fermionic atoms in the 87Rb-40K
mixture.
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FIG. 7: Tuning of the average number of fermions per lat-
tice site to obtain supersymmetry for 10000 (solid line), 1000
(dashed line) and 500 (dotted line) bosonic atoms per lattice
site. The result depends on the ratio of the bosonic harmonic
lengths in the axial and radial directions ℓ/ℓz

B . This ratio
should be sufficiently small to be radially in the Thomas-
Fermi limit. For this plot a ratio of 1/5 is chosen.

G. Hamiltonian

Combining everything, our superstring is described by
the supersymmetric hamiltonian

H = −t
∑

〈ij〉

[b†ibj + c†i cj ] (41)

+
∑

i

[

−µ′(b†i bi + c†i ci) +
U

2
b†ib

†
ibibi + Ub†ibic

†
i ci

]

.
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FIG. 8: Tuning of the additional laser to obtain supersymmet-
ric interactions for 1000 bosonic atoms per lattice site. The
Rabi frequency is plotted versus the wavelength of the running
laser for different wavelengths of the lattice laser beam: 1000
nm for the left curve and 600 nm for the right curve. In the
inset the effective rate of photon absorption originating from
the additional laser is plotted, again the left curves are for a
lattice laser of 1000 nm and the right curves are for a lattice
laser of 1000 nm. The solid lines indicate the rate of photon
absorption for the bosonic atoms, whereas the dashed lines
are the rates of photon absorption for the fermionic atoms.

Here bi is the annihilation operator of a kelvon at site
i, ci is the annihilation operator of a fermion at site i,
〈ij〉 means that the summation runs over neighbouring
sites, and µ′ = µ − 2t. We used the convention for the
Fourier transformation fk = (1/

√
Ns)

∑

n e
ikznfn, where

Ns is the number of lattice sites. We define a = λ/2
as the lattice spacing and L = Nsa as the length of the
system. Assuming that Ns ≫ 1, such that L ≫ a, we
can perform a continuum approximation to obtain for the
hamiltonian

H =

∫

dz b†(z)

(

− ~
2

2m∗

∂2

∂z2
− µ

)

b(z) (42)

+

∫

dz c†(z)

(

− ~
2

2m∗

∂2

∂z2
− µ

)

c(z)

+
U

2

∫

dz [b†(z)b†(z)b(z)b(z) + 2b†(z)b(z)c†(z)c(z)],

where we introduced the effective mass m∗ = ~
2/2a2t.

This continuum hamiltonian turns out to be exactly solv-
able [47, 48] by a straightforward generalization of the
Bethe-Ansatz solution of the one-dimensional Bose gas
[49, 50]. However, the exact solutions spontaneously
break supersymmetry and do not give much insight in
the role of supersymmetry in the problem.

Using that the lagrangian is given by

L =
∑

i

(

b†i i~
∂

∂t
bi + c†i i~

∂

∂t
ci

)

−H[b†, b; c†, c], (43)
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the action in the continuum limit is obtained as

S =

∫

dt

∫

dz

{

b∗
(

i~
∂

∂t
+

~
2

2m∗

∂2

∂z2
+ µ

)

b (44)

+c∗
(

i~
∂

∂t
+

~
2

2m∗

∂2

∂z2
+ µ

)

c

− U

2

(

|b|2 + |c|2
)2
}

,

which now explicitly shows the supersymmetry of the
problem, because it remains invariant when b and c are
rotated into each other. If we neglect the interaction
terms, which are rather small anyway, the fermions fill
a Fermi sea and the low-energy excitations are particle-
hole excitations around the Fermi surface. Therefore,
the low-energy part of the theory is properly described
by linearizing the fermionic dispersion around the Fermi
level. To preserve supersymmetry we do the same for the
bosons and obtain at the quadratic level the action

S =
∑

σ=±

∫

dt

∫

dk
{

b∗σ(k, t)(i~∂t − ~vF (σk − kF ))bσ(k, t)

+c∗σ(k, t)(i~∂t − ~vF (σk − kF ))cσ(k, t)
}

,

where σ indicates whether the particles are right
movers or left movers and vF = ~kF /m

∗ is the
Fermi velocity. We used that µ = ~

2k2
F /2m

∗.
We identify the Fermi velocity with the veloc-
ity of light c and perform the transformation
cσ(z, t) = (1/

√
L)
∑

k e
ikzcσ(k + σkF , t). We intro-

duce the Dirac spinor ψ(z, t) = (c+(z, t), c−(z, t)) and
ψ̄(z, t) = ψ†(z, t)γ0, with γ0 = σy. The other Dirac ma-
trices are γ1 = iσx and γ5 = σz . The two bosonic fields
can be captured in a single Klein-Gordon field X(z, t) =

(1/
√
L)
∑

k e
ikz
√

~/k (b+(k + kF , t) + b−(k − kF , t)),
such that ∂µ∂µX = (∂2

t /c
2 − ∂2

z )X = 0. This enables us
to rewrite the linearized action as

S =

∫

d2x
{

∂µX∗∂µX + i~ψ̄γµ∂µψ
}

, (45)

which is the action for the transverse modes of a free rel-
ativistic N = 1 superstring in 3 + 1 dimensions [51]. In
modern language, the Lorentz invariance of this action
appears here as an emergent phenomenon at long wave-
lenghts, because the underlying theory is not Lorentz
invariant. This is very similar with the way in which
Lorentz invariance appears in string-bit models [33]. A
second property of this action is, that the fermionic
part has classically chiral symmetry, but quantum-
mechaniclly suffers from a chiral anomaly. Whereas in
string theory this is an unwanted feature, in our case it
has a physical origin, because it comes about from the
fact that the underlying microscopic theory does not con-
serve the chiral current iψ̄γµγ5ψ, and only conserves the
current ψ̄γµψ associated with the conservation of the to-
tal number of fermions.

H. Nonlocal interaction

The presence of a kelvon implies that neighbouring vor-
tex cores are slightly shifted with respect to each other.
This effect decreases the fermionic hopping amplitude
and results in a interaction term that couples fermions
on neighbouring sites of the form

H′ = t
∑

kk′

A(k′) cos(k)c†kckb
†
k′bk′ . (46)

Since this term breaks supersymmetry, we want to in-
vestigate the system parameters for which it can be ne-
glected, i.e., for which A(k′) ≪ 1. To do so we consider
a kelvon with a certain wavenumber k. The relative dis-
tance between neighboring cores kan then be estimated
to be

δr =
RTF√
NB

kλ

2
. (47)

From Eq. (20) we know that for small distances the vor-
tex core can be modeled as a harmonic potential with
width ξ. Hence, the fermionic wavefunctions are gaus-
sians with the same width. So we have to compute

A(k) = 1 −
∫

d2
re

− r
2

2ξ2 e
−

(r−δr0)2

2ξ2

∫

d2
re

− r
2

ξ2

(48)

= 1 − e
−

δr2
0

4ξ2 ≃ δr20
4ξ2

=
k2λ2R4

TF

16Nbℓ4
,

where we used the relation from Eq. (26). From this
same relation we see that (RTF/ℓ)

4 scales with the num-
ber of bosonic atoms NB, such that A(k) is indepen-
dent of NB. We can estimate R4

TF/NBℓ
4 to be of order

unity, such that the requirement for A(k) to be small
only depends on the wavenumber k. If we identify this
wavenumber with the Fermi momentum, i.e.,

k2
Fλ

2

16
≪ 1, (49)

we obtain a restriction on the fermionic filling fraction
which can be estimated to be

NF < 0.1. (50)

From Fig. 7 we see that for most of the parameter space
this condition is fullfilled.

III. EXPERIMENTAL SIGNAL

It is an important question how the supersymmetry
can be observed. Therefore we need to distinguish be-
tween the question whether the hamiltonian is tuned to
be supersymmetric and whether the quantum ground
state is supersymmetric, since it is possible that the
ground state can spontaneously break supersymmetry.
We are primarely interested in the situation that both
the hamiltonian and the quantum ground state are su-
persymmetric.
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FIG. 9: Diagrams that contribute to the dissipation of the
vortex line. The solid lines represent bosonic propagators,
the dashed lines represent fermionic propagators. The left dia-
gram is called ΠKK(k, ω), the left diagram is called ΠKF (k, ω)

.

A. Density measurements

The two observables that are most easy to measure
experimentally are the average number of fermions at a
site NF and the average number of kelvons NK . The
average fermion number can be determined by usual
absorpsion measurements. The number of kelvons can
be obtained from the mean-square displacement 〈r2〉 =
(1/Ns)

∑

i〈x2
i +y2

i 〉 of the pancake vortices, which can be
measured by imaging along the z direction the size of the
circle within which the vortex positions are concentrated
[42]. Because

b†ibi = NB
x2

i + y2
i

R2
TF

− 1

2
, (51)

this can directly be translated to the number of kelvons
at a site. It is clear that in order to have a supersym-
metric state, the kelvon and fermion modes should have
the same average occupation number, i.e.,

〈b†ibi〉 = 〈c†ici〉. (52)

This allows us to devise an experimental measure for the
proximity to the supersymmetric point, which can be di-
rectly measured, namely

(

NB
〈r2〉
R2

TF

−NF − 1/2

)2

.

This quantity has an absolute minimum of zero at the su-
persymmetric point, so that it’s magnitude is a measure

of the deviation from supersymmetry. We can extend
this to higher order correlation functions. The condition
that

〈(b†i bi)2〉 = 〈(c†i ci)2〉 = 〈c†i ci〉, (53)

can be used to prove that in order to have supersymmetry
also the condition

N2
B

〈r4〉
R4

TF

= 2NF +
1

4
(54)

should hold. The quantiy 〈r4〉 can again be measured
from the distribution of the measured vortex postions.

B. Dissipation

Another consequence of supersymmetry that can be di-
rectly measured is the reduced dissipation. Dissipation in
this context results in the vortex spiraling out of the gas.
[35, 36]. The dominant part of the dissipation is given
by the coupling to the kelvon modes and the fermionic
modes. The lowest order diagrams are given in Fig. 9
and denoted by ΠKK(k, ω) for the coupling to the kelvon
modes and ΠKF (k, ω) when there is also coupling to the
fermionic modes. The imaginary part of these diagrams
measures the dissipation. In order to be able to know the
dissipation away from the supersymmetric point we per-
form the calculation for unequal dispersions ǫK,F (k) and
unequal coupling constant UKK and UKF . We introduce
the usual notation for the Bose-Einstein and Fermi-Dirac
distribution functions

NB[ǫ(k)] =
1

eǫ(k)/kBT − 1
, NF [ǫ(k)] =

1

eǫ(k)/kBT + 1
.

The diagrams are then given by

ΠKK(k, iω) = 2U2
KK

∫

dp

2π

∫

dp′

2π

(

1 +NB[ǫK(p)] +NB[ǫK(p′)]
)

NB[ǫK(p+ p′ − k)] −NB[ǫK(p)]NB[ǫK(p′)]

i~ω − ǫK(p) − ǫK(p′) + ǫK(p+ p′ − k)

ΠKF (k, iω) = −U2
KF

∫

dp

2π

∫

dp′

2π

(

−1 −NB[ǫK(p)] +NF [ǫF (p′)]
)

NF [ǫF (p+ p′ − k)] +NB[ǫK(p)]NF [ǫF (p′)]

i~ω − ǫK(p) − ǫF (p′) + ǫF (p+ p′ − k)
,

where the minus sign in front of the expression for ΠKF (k, iω) comes from the presence of the fermion loop. Note
that due to the different combinatorial factors the diagram ΠBB comes with an extra factor of two, which is lacking
in the case of the diagram ΠBF . As a result, the two diagrams do not cancel exactly at the supersymmetric point, as
we claimed previously [16]. Instead, the dissipation is reduces by a factor 2 [52]. The imaginary part of the diagrams
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gives the following expressions

Im[ΠKK(k, ω)] = 2U2
KK

∫

dp

2π

∫

dp′

2π

{

δ(~ω − ǫK(p) − ǫK(p′) + ǫK(p+ p′ − k)) ×
((

1 +NB[ǫK(p)] +NB[ǫK(p′)]
)

NB[ǫK(p+ p′ − k)] −NB[ǫK(p)]NB[ǫK(p′)]
)}

,

Im[ΠKF (k, ω)] = −U2
KF

∫

dp

2π

∫

dp′

2π

{

δ(~ω − ǫK(p) − ǫF (p′) + ǫF (p+ p′ − k)) ×
((

−1 −NB[ǫK(p)] +NF [ǫF (p′)]
)

NF [ǫF (p+ p′ − k)] +NB[ǫK(p)]NF [ǫF (p′)]
)

. (55)

At zero temperature we have that NF [ǫ(k)] = θ(ǫ(k)),
and NB[ǫ(k)] = −θ(ǫ(k)) = −NF [ǫ(k)]. Using this, we
see that if there is supersymmetry, i.e., if ǫK(k) = ǫF (k)
and UKK = UKF , we have that

ΠKK(k, ω) = −2ΠKF (k, ω),

and in particular that

Im[ΠKK(k, ω) + ΠKF (k, ω)] =
1

2
Im[ΠKK(k, ω)],

such that at zero temperature supersymmetry results in a
dissipation rate that is only half as large as in the case of
a ordinary vortex-line. Using these expressions, it is also
possible to calculate the quantum dissipation at nonzero
temperature, or when supersymmetry is broken. In par-
ticular, when the interaction coefficients are tuned away
from the supersymmetric point such that UBF =

√
2UBB

and supersymmetry is maintained at the quadratic level,
the dissipation exactly vanishes and the superstring is
extremely stable in the center of the condensate.

C. Spontaneous supersymmetry breaking

When the hamiltonian is supersymmetric, the ground
state still can break supersymmetry. This is the phe-
nomenon of spontaneous supersymmetry breaking. For
Ω < Ωc, the ultracold superstring is unstable against
Bose-Einstein condensation of kelvons. This breaks su-
persymmetry, because the fermionic modes cannot Bose-
Einstein condense. Bose-Einstein condensation implies
that the kelvon annihilation operator obtains an expec-
tation value

〈bi〉 6= 0. (56)

From the definition of the kelvon operator we conclude
that as a consequence

〈x〉2 + 〈y〉2 > 0. (57)

This means that the vortex moves out of the center of the
trap. Experimentally this is easy to measure. Moreover,
by monitoring the vortex position when it moves out of
the center of the trap, this also allows for the experi-
mental investigation of the dynamics of supersymmetry

breaking. As a consequence of the breaking of the U(1)
symmetry because of the Bose-Einstein condensation, the
dispersion of the kelvon modes becomes gapless. The dis-
persion becomes the usual Bogoliubov dispersion, which
reads

~ωB(k) =
√

ǫ(k)2 + 2µǫ(k), (58)

with ǫ(k) = ~
2k2/2m∗. For long wavelengths this yields

a linear behaviour. Also the fermionic modes become
gapless. This is a result of the breaking of supersymmetry
and this mode is called the goldstino. Because 〈b〉 =
√

µ/U , the dispersion for the goldstino is given by

~ωF (k) = ǫ(k) − µ+ |〈b〉|2 = ǫ(k), (59)

which results in a quadratic dispersion. Clearly the
bosonic and fermionic dispersion in Eqs. (58) and (59)
are now different, which signals a nonsupersymmetric sit-
uation.

IV. SUPERSYMMETRY

In this section we review the algebra associated with
supersymmetric field theories both in the relativistic (su-
per Poincaré algebra) and the non-relativistic limit (su-
per Galilei algebra). We give an explicit representation
of the super Galilei algebra in terms of the bosonic and
fermionic operators.

A. Super Poincaré algebra

Associated with a relatistic field theory in D = d+1 di-
mensions is the Poincaré algebra, whose generators con-
sist of a vector Pµ, that generates translations and an
antisymmetric tensor Jµν , that generates Lorenz tran-
sormations. The greek indices run from 0 to d = D − 1,
such that P 0 should be identified with the hamiltonian
H, up to a constant. The algebra is then given by

[Pµ, P ν ] = 0 (60)

[Jµν , P ρ] = i(ηµρP ν − ηνρPµ)

[Jµν , Jρσ] = i(ηµρJνσ + ηµσJρν − ηνρJµσ − ηνσJρµ),
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where ηµν is the flat space Minkowski metric. When
there is supersymmetry we can extend this to the super
Poincaré algebra. For N = 1 supersymmetry in 1 + 1
dimensions this involves the two-component Majorana
spinor Qα, α = 1, 2, which is the generator of supersym-
metry transformations. The algebra is then extended to
include also

[Pµ, Qα] = 0 (61)

[Pµ, Q̄α] = 0 (62)

[Jµν , Qα] = − i

4
[γµ, γν ]αβQβ (63)

{Qα, Q̄β} = 2γµ
αβPµ, (64)

where the γµ are again the Dirac matrices. We use con-
ventions such that Qα has two real components. To make
connection with the supersymmetry in the ultracold su-
perstring we combine these two components in one com-
plex supersymmetry operator

Q =
Q1 + iQ2

2
. (65)

This decomposition breaks manifest Lorentz symmetry,
but since we are ultimately interested in the nonrelativis-
tic limit, this is of no concern to us here. As a result we
obtain the following algebra

[Pµ, Q] = 0 (66)

[Jµν , Q] = − i

2
ǫµνQ† (67)

{Q,Q†} = P 0 (68)

{Q,Q} = {Q†, Q†} = −P 1. (69)

In particular, we see that the hamiltonian P 0 is fixed by
the supersymmetry generator. This is a very peculiar re-
striction on the hamiltonian, which is only true for the
relativistic theory. In the nonrelativistic limit, the su-
persymmetry decouples from the space-time translation
symmetry as we show now.

B. Super Galilei algebra

The Galilei algebra can be derived as a limit of the
Poincaré algebra by performing a Inönü-Wigner contrac-
tion [53] in the following way [31, 32]. We write

P 0 =
1

c
(m∗N c2 + H) (70)

P 1 = P (71)

J01 = cK (72)

Q =
√
cQ, (73)

where c is the speed of light and m∗ denotes the mass,
which is the same for the bosonic and fermionic degrees
of freedom. We also defined a number operator N , which
counts all the particles in the system, and boost opera-
tors K. Furthermore, we still have the space translation

generators P and the hamiltonian H. We can now take
the limit c→ ∞ to obtain the super Galilei algebra. The
Galilei algebra obtained in this manner has nonvanishing
commutators

[P,K] = im∗N (74)

[H,K] = iP. (75)

The part involving the supersymmetry becomes only

{Q,Q†} = N . (76)

This defines the algebra S1G [33]. As is clear, in this case
the hamiltonian is decoupled form the supersymmetry.
In 1 + 1 and 2 + 1 dimensions, it is sometimes possible
to define an extended superalgebra S2G, which again in-
volves the hamiltonian [33, 54, 55]. In d = 1 this amounts
to introducing an extra scalar supersymmetry generator
R with the algebra:

{Q,R†} = −P (77)

{R,R†} = H/2. (78)

C. Representation

The representation for the S1G algebra in terms of the
bosonic and fermionic operators b and c, can easily be
found to be

N =

∫

dz{b†(z)b(z) + c†(z)c(z)}, (79)

P = − i~

m∗

∫

dz{b†(z)∂zb(z) + c†(z)∂zc(z)}, (80)

Q =

∫

dz c†(z)b(z), (81)

Q† =

∫

dz b†(z)c(z). (82)

(83)

In addition, we can thus also define

R =
~√
m∗

∫

dz c†(z)∂zb(z), (84)

R† = − ~√
m∗

∫

dz b†(z)∂zb(z). (85)

This produces

{R,R†} =

∫

dz

{

−b†(z) ~
2

m∗

∂2

∂z2
b(z)− c†(z)

~
2

m∗

∂2

∂z2
c(z)

}

,

(86)
which indeed is the kinetic energy part of the hamilto-
nian. The full quadratic part of the hamiltonian can be
expressed as

H =
1

2
{R,R†} − µ{Q,Q†}. (87)
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For completeness, we mention that we can also use su-
perspace techniques to write the hamiltonian in a mani-
fest supersymmetric way. This involves the introduction
of a complex superfield

Ψ(z, θ) = e−θ∗θ/2(b(z) + θ∗c(z)) (88)

Ψ∗(z, θ) = e−θ∗θ∗/2(b∗(z) + c∗(z)θ), (89)

where θ is a Grassman variable such that {θ, θ} =
{θ∗, θ∗} = 0 and {θ, θ∗} = 0. The hamiltonian is in
terms of the superfield given by

H =

∫

dθ∗dθ

∫

dz
{

~
2

2m∗
|∂zΨ(z, θ)|2 − µ|Ψ(z, θ)|2

+
U

2
|Ψ(z, θ)|4

}

. (90)

In this formulation the spontaneous breaking of super-
symmetry is particularly elegant, because the hamilto-
nian has the form of a standard Landau theory of a
second-order phase transition with 〈Ψ(z, θ)〉 as the or-
der parameter.

V. CONNECTION WITH STRING THEORY

In this section, we discuss the similarities and differ-
ences with superstring theory. For some textbooks on the
subject, we refer to Refs. [51, 56, 57]. In string theory,
one usually starts with the Polyakov action [58], describ-
ing the coordinates Xµ(σ, τ), with µ = 0, 1, ..., D− 1, of
the string propagating in a D-dimensional curved space-
time with metric Gµν(X),

S = −T
2

∫

d2σ
√
hhαβ∂αX

µ∂βX
νGµν(X) . (91)

Here σα = {σ, τ} are coordinates on the worldsheet
sweeped out by the string, τ is the worldsheet time, and
σ runs longitudinally over the string. Furthermore, T is
the string tension, and hαβ is a two-dimensional metric
on the worldsheet with h = −Det[hαβ ]. In agreement
wit the standard practice in high-energy physics we are
momentarily using units such that ~ = c = 1. We restore
units when we come to the precise connection with our
ultracold superstring. In fully quantized string theory,
one also performs a path integral over these metrics, and
this leads to the string loop expansion where one sums
over all two-dimensional surfaces containing an arbitrary
number of holes. In our setup, the worldsheet of the
string is completely fixed, and contains no holes, i.e., it
is just the two-dimensional plane. On the plane, we can
then make use of the local symmetries of the Polyakov ac-
tion, that are the reparameterizations of the worldsheet
coordinates and the Weyl rescalings of the metric. Doing
so, we can make the gauge choice

hαβ =

(

1 0
0 −1

)

. (92)

This gauge choice is referred to as the conformal gauge.
The space-time in which the string propagates is coor-

dinatized by Xµ, µ = 0, ..., D − 1. In quantized super-
string theory one has that D = 10, but at the classical
level one can have D = 4 as well. We come back to this
issue below. It is useful to introduce light-cone variables

X± =
1√
2
(X0 ±XD−1) , (93)

and X i, i = 1, . . . , D − 2. Then X± and X i describe
the longitudinal and transversal degrees of freedom of the
string, respectively. String theory has the special feature
that there are only transversal physical degrees of free-
dom. This is because string theory has an additional con-
straint that can be understood as the equation of motion
of the worldsheet metric hαβ . Defining σ± = τ±σ, these
constraints read in conformal gauge

∂±X
µ∂±X

νGµν(X) = 0 , (94)

and are sometimes called the Virasoro constraints. In
practice, solving the constraints is difficult, but in the
so-called light-cone gauge

X+ = 2α′p+τ, (95)

where α′ ≡ (2πT )−1 and p+ is the center-of-mass mo-
mentum in the X+ direction, the longitudinal modes X±

can be eliminated explicitly, at least for certain space-
time metrics Gµν . The light-cone gauge can always be
taken as a consequence of the residual gauge symme-
try after the gauge choice of Eq. (92) has been imposed
[51, 56, 57].

The implementation of the constraints in Eq. (94)
in the quantum theory leads to the critical dimension,
namely D = 26 for the bosonic string and D = 10 for
the superstring. In our condensed-matter setup, these
constraints are not present. There are physical longitu-
dinal degrees of freedom, so this makes it different from
the superstring. However, the longitudinal modes are
suppressed and at the energy scales we are looking at,
it suffices to study only the transversal degrees. It is in
this transversal sector that we connect to string theory.
To make this connection, we have to specify the space-
time metric Gµν . A class of backgrounds that has been
intensely studied in the string literature is that of plane
wave metrics [59, 60]. The simplest of these backgrounds,
and also the one relevant for our case, is given by

ds2 ≡ Gµν(X)dXµdXν (96)

= −2dX+dX− +H(X i)(dX+)2 + dX idX i,

where H(X i) is a function of the transverse coordinates
only. In light-cone gauge, the lagrangian for the string
propagating in this background now becomes

T−1L =
1

2

D−2
∑

i=1

[

(

∂X i

∂τ

)2

−
(

∂X i

∂σ

)2
]

− V (X i) , (97)
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where V (X) = −2(α′p+)2H(X). To derive this result,
we simply substitute the background in Eq. (96) into
Eq. (91), and use the light-cone gauge from Eq. (95) to
produce the potential V (X) term in the lagrangian [63].
Furthermore, this produces a term proportional to X−

that is decoupled from the X i. Therefore this term can
be dropped. In fact X− is fixed by the Virasoro con-
straints in Eq. (94), so we only need a lagrangian for the
transverse degrees of freedom.

One of the remarkable facts of string theory is that
its conformal symmetry at the quantum level forces the
metric to satisfy Einstein’s equations in general relativity.
This is the way in which gravity emerges from string the-
ory. When there are no other background fields present,
as in our case, Einstein’s equations reduce to a single
constraint on the function H given by

∆H ≡
D−2
∑

i=1

∂2

(∂X i)2
H = 0 . (98)

In other words, H has to satisfy the Laplace equation
in the transverse space. This constraint has to be un-
derstood on an equal footing as the constraint on the
space-time dimension. They both follow from a consis-
tent implementation of the conformal symmetry at the
quantum level. Since we are not taking into account the
Virasoro constraints in our system, and hence the con-
formal symmetry, we therefore also ignore the constraint
in Eq. (98). Doing so, we can work with arbitrary poten-
tials V (X). When we take D = 4, as we shall below, the
scalar potential depends on two real fields.

We now include the fermions, and discuss supersym-
metry. To make a superstring we have to add addi-
tional terms to the lagrangian in Eq. (91) containing the
fermions in such a way that there is supersymmetry. We
can then impose the conformal or light-cone gauges to ar-
rive at a supersymmetric generalization of the lagrangian
in Eq. (97). Alternatively, we can directly study su-
persymmetric extensions of Eq. (97) as two-dimensional
field theories. The general construction of supersymmet-
ric two-dimensional field theories with scalar potentials
V (X) was given in Ref. [62]. Not all potentials lead to
lagrangians that can be supersymmetrized. For the case
of minimal supersymmetry with two supercharges, some-
times denoted by (1,1) SUSY, the potential needs to be
of the following type

V (X i) =

D−2
∑

i=1

(

(∂iW )2 +G2
i (X)

)

, (99)

where W is a real function, ∂i stands for the deriva-
tive with respect to X i, and the quantities Gi(X) satisfy
∂iGj + ∂jGi = 0 together with

∑

i G
i∂iW = constant.

The supersymmetric lagrangian can then be written as

2T−1L = ∂αX
i∂αX i + iψ̄iγα∂αψ

i − V (X) (100)

−Wij(X)ψ̄iψj −W
(5)
ij (X) ψ̄iγ5ψj ,

with

Wij = ∂i∂jW , W
(5)
ij = ∂iGj . (101)

The supersymmetry variations are

δX i = ǭψi, (102)

δψi = −iγα∂αX
iǫ− ∂iWǫ−Giγ5ǫ, (103)

and leave the lagrangian invariant, up to a total deriva-
tive. Here ψi and ǫ are two-component Majorana spinors,
and in our model we thus have two Majorana spinors.
The γ-matrices are related to the Pauli matrices as
γ0 = σy, γ

1 = iσx and γ5 = σz as before. For more
details on the spinor conventions, see Ref. [62].

Examples of supersymmetric models are given by

Gi = αǫijX
j , W (r) = βR + γR3 , (104)

where R ≡
√

(X1)2 + (X2)2 and α, β, γ are arbitrary
parameters. Plugging this into Eq. (99) leads to [64]

V (R) =
(

β + 3γR2
)2

+ α2R2. (105)

Up to an irrelevant additive constant, the coefficients
α, β, γ can be chosen such that the potential is as in
our condensed-matter setup. Furthermore, we have that

W
(5)
ij = αǫji which leads to mass terms for the fermions,

and supersymmetry variations of the fermions of the form

δψi = · · · + αǫijXjγ
5ǫ . (106)

This term rotates the fermions into the bosons, just like
for the ultracold superstring. If we compute Wij to de-
termine the interactions between bosons and fermions, it
produces complicated interaction terms,

Wij = δij

(

β

R
+ 3γR

)

+XiXj

(

− β

R3
+

3γ

R

)

, (107)

as a result of the supersymmetry constraints.

A. Nonrelativistic limit

To connect to our condensed-matter setup, we have
to take the nonrelativistic limit in which only particle
excitations of the two-dimensional field theory survive,
and the anti-particle excitations are absent. To illustrate
this procedure, we start with the bosonic part of the la-
grangian in Eq. (100), based on two real scalar fields. In
terms of the complex field

X = X1 + iX2 , X∗ = X1 − iX2 , R2 = |X |2,
(108)

the lagrangian reads

T−1L =
1

c2
|∂τX |2 − |∂σX |2 − V (|X |) , (109)
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where we have reinserted the speed of light c in order
to take the nonrelativistic limit c → ∞ below, and we
further used that the potential is a function of R only
since this is the case of interest.

Using now the mass m∗, we decompose the complex
scalar field in terms of positive and negative frequency
modes

X(σ, τ) =
1√

2m∗T

(

e−im∗c2τb(σ, τ) + eim∗c2τa(σ, τ)
)

,

(110)
and call b the particle field and a the antiparticle field.
Both b and a are complex. We now substitute Eq. (110)
into Eq. (109) and send c → ∞. In this limit, the
lagrangian becomes first order in time derivatives, and
particles and antiparticles decouple from each other such
that we can effectively set a = 0. The remaining terms
in the nonrelativistic limit are

L = i~b∗∂τ b−
~

2

2m∗
|∂σb|2 − V (|b|), (111)

where we have reinserted the various factors of ~. More-
over, we have absorbed a mass term proportional to |b|2
into the potential. Remind that we have chosen a po-
tential of the form given in Eq. (105), so this mass term
can easily be absorbed into a change of the coefficients
α or βγ. Notice that this lagrangian precisely coincides
with the bosonic sector of lagrangian of the ultracold su-
perstring given in Eq. (43). The fermionic sector can be
obtained in a similar way.

VI. CONCLUSION

In this paper we presented a detailed account of the
conditions under which the ultracold superstring can be
created. The requirements for the laser parameters and
the atomic interactions were given. Moreover we payed
attention to the experimental signatures of supersymme-
try. The supersymmetry in the problem was investigated
by studying the appropriate super algebra. Finally, a pre-

cise mathematical connection with string theory in 3 + 1
dimensions was made.

The discussions in this article were limited to the case
of a single string. It is left for future investigation to ex-
tend the analysis to involve more strings. A complication
in this case is that for parallel vortex lines, supersymme-
try is not possible, because of the different way vortices
and fermions interact with each other. A proposal to
overcome this problem is to study the interaction of two
superstrings that are both in the center of the condensate,
but are seperated on the z axis. This would correspond
to merging and splitting of ultracold superstrings.

The typical fermionic number of particles that is
needed to obtain supersymmetry is typically around 0.1
per site. This is rather low, both to control and to ob-
serve. However, the density is rather high and can be
estimated to be at least 1013 cm−3. Moreover, a dis-
advantage of a higher fermionic atomic density is that
this makes also the contribution of the kelvon-fermion
hopping interaction more important. It remains to be
investigated, whether a change of the varous parameters
can improve on this situation.

Apart from the other possibilities mentioned in this
article, it is also possible to gain experimental insight
in the system by coupling the vortex motion to reso-
nant quadrupole modes [42]. This gives the possibility
to measure the kelvon dispersion directly. If the system
is brought out of equilibrium by populating a high-lying
kelvon mode, it also opens up the exciting possibility
to study collapse and revival phenomena between the
bosonic and fermionic modes.
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