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Campbell and Fiske (1959) introduced the multitrait multimethod (MTMM) approach
as a means for investigating the construct validity of measures. The universe of
observations in the MTMM approach is defined by the Cartesian product of two facets:
the trait facet and the method facet. Thus, each trait is measured with each method,
which leads to a full factorial design. Campbell and Fiske distinguish between
convergent validity and discriminant validity. Convergent validity requires close
agreement between measures of the same construct made by different methods.
Discriminant validity requires that different constructs can be differentiated evenif they
are measured using similar methods.

Campbell and Fiske proposed to arrange the correlations between measures in
a MTMM correlation matrix. The MTMM matrix thus contains correlations between
measures using the same methods, which are referred to as mono-method correlations,
and correlations between traits measured using different methods, which are referred
to as hetero-method correlations. Two types of mono-method correlations can be
distinguished: correlations between measures of different traits measured by the same
method, referred to as discriminant validity coefficients, and correlations between
identical traits measured by the same method, referred to as reliabilities. Two types of
hetero-method correlations can be distinguished: correlations between different methods
for the same trait, referred to as convergent validity coefficients, and correlations
between different traits measured by different methods, referred to as nonsense
correlations. Based on these distinctions, Campbell and Fiske (1959) suggested that four
criteria should hold if the measures possess convergent and/or discriminant validity.
These criteria are:

1. The convergent validity coefficients must be statistically significant and high.
Failure of this test implies that the different methods are measuring different traits,
meaning a lack of convergent validity.

2. The convergent validity coefficients must be higher than the nonsense
correlations in the same row and column in which the individual validity coefficient is
located. Failure of this test implies a lack of discriminant validity.

3. The convergent validity coefficients must be higher than the off-diagonal
correlations in the corresponding mono-method blocks. If the validity coefficients are not
substantially higher, this suggests that the traits are highly correlated or that there is a
strong method effect, or both. )

4. All submatrices of intertrait correlations should have the same pattern,
independent of the method used.

Compliance with these four criteria is in practice evaluated by comparing the size
of correlation coefficients between and within traits and methods. The evaluation of the
measures’ validity is based on a visual inspection of the correlation matrix, and simply
counting the number of times the criteria are violated (see also Schmidt & Stults, 1986).
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Analysis models for the MTMM matrix

Confirmatory Factor Analysis

One problem of_ the Campbell/Fiske criteria is that they are based on an inspection of
~the raw correlations, which can be attenuated by measurement error. Another problem
is that they are rather informal. In addition to these informal criteria, a number of
formal models have been proposed to describe MTMM matrices in the presence of
measurement error. The prevalent approach is to use confirmatory factor analysis to
model the. correlations or covariances in the MTMM matrix. For an overview see Alwin
(1974), Widaman (1985) and Saris and Andrews (1991). The basic MTMM confirmato:

factor model for a 3x3 MTMM matrix is given in Figure 1 below. i
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Figure 1. The basic confirmatory factor model for a 3x3 MTMM matrix.

Figure 1 implies that the factor matrix has a column for each trait and a column for each
method. Each measure has one loading on the corresponding trait factor and one loading
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on the corresponding trait factor. In the most general case there are no restrictions on
the correlations between the latent factors (cf. Schmitt & Stults, 1986). However, this
model often leads to unstable parameter estimates (Marsh, 1983). More usually the trait
factors are assumed to be uncorrelated with the method factors, which is more stable
and has the additional advantage that it leads to an orthogonal decomposition of the
measures’ variance into trait, method and residual error variance. Specific restrictions
on the factor loading matrix or the factor correlation matrix can be used to test for
special cases, such as zero correlations between method factors, equal method effects
across different traits, and so on (cf. Widaman, 1985, for an overview and an analysis
strategy).

The equation for the confirmative factor model, in the usual Lisrel notation
(Bollen, 1989), is

S=ATA + 6 (1.

In this equation, A is the factor loading matrix, ¥ the matrix of factor covariances or
correlations, and @ is the vector of residual error variances. The parameters (factor
loadings and intercorrelations) of the confirmatory factor analysis model have no direct
relationship to the Campbell and Fiske criteria, but they can nevertheless be used to
assess the convergent and discriminant validity of the measures. In general, factor
intercorrelations can be interpreted as discriminant validity. The squared factor loadings
provide an estimate of the variance related to trait, method, and residual error. The
proportion of variance attributable to the trait can be interpreted as an upper limit for
the measure’s proportion true-score variance or its construct-related reliability.

Geometric Representation

Graphical representation of similarity data have for a long time been a mainstay of
Facet Analysis (cf. Lingoes, Roskam & Borg, 1979). Campbell and Fiske discuss the
MTMM in terms of the evaluation of the validity of measures, but the MTMM is also
a special case of a factorial Facet Design with a trait and a method facet, and each
structuple defining a measure (cf. Borg & Shye, 1995). A minimal mapping sentence for
the basic MTMM has the form:

(mi methodl) (¢l traitl)
The (m2 method2) assessment of (12 trait2)
(m3 method3) (3 trait3)

> (response range)

The MTMM correlation matrix can be analyzed using Smallest Space Analysis (SSA) or
other geometric approaches to establish a low dimensional representation of the
similarities in the MTMM matrix. Arguments for various ways in which the space can
be partitioned can be found in reflecting on the order among elements in the trait and
method facets. In general, Facet Theory does not focus on similarities and dimensions,
but on partitions in the geometric space (Borg & Shye, 1995). In general, the traits will
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be qualitative of nominal; no particular order is assigned to the trait facet. Assuming
valid measures, the Campbell and Fiske criteria imply that the points representing
identical traits should be close to each other, and well separated from the points
representing different traits. Thus, valid measures in a MTMM design should partition
the space into regions that correspond to the traits, with the points representing identical
traits preferably concentrated in clearly separated clusters. On the other hand, the
method facet is probably more often assigned an (empirical) order. One purpose of the
MTMM approach is to identify valid methods, that is, methods that produce little
specific method variance. Methods that produce much method variance will increase the
correlation between measures that share that method. The average correlation of
yariables is higher in the central region of the geometrié space. As a consequence, if the
MTMM matrix under consideration contains methods that differ in the amount of

method variance they produce, this will show up in a radial partitioning of a two-
dimensional representation.

The Composite Direct Product Model

The confirmatory factor analysis approach to the MTMM matrix suffers from a number
of problems. To be identified, it requires at least three traits and three methods. The
parameter estimates are often improper (e.g., negative variances) and contradictory to
the patterns observed in the correlation matrix. Such problems may be the result of
problems in the observed correlation matrix, but more probable causes are empirical
under-identification, misspecification, and estimating too many parameters with too few
measures (for an overview of these and other issues see Wothke, 1995). An alternative

for the analysis of MTMM matrices with covariance structure models is the direct
product model (Browne, 1984), given by:

=D, el + E)D, ).

In this equation, I, and I1, are respectively the method and trait correlation matrices of

the multiplicative tactors, E is a diagonal matrix of residual errors, andDisa diagonal

[matrix of scaling constants t0 make the model describe a correlation matrix. The model
_ expresses the observed correlations corrected for attenuation as a multiplicative function

of the trait and method correlations in IL, and I,. The discriminant validity coefficients
can be found in the trait intercorrelations which are the elements of II. Convergent
validity is maximal when the off-diagonal elements in IL, approach unity (cf. Wothke,
1995).
The direct product model has the advantage that it is identified with fewer than
three traits and methods, and that its parameter estimates are more stable. In additional,
Campbell and O'Connell (1982) showed that many observed MTMM matrices appear
to have a multiplicative rather than an additive structure.

Since the direct product mode! produces generally stable estimates for the
disattenuated correlations between iraits and methods, an interesting approach is to
apply SSA or similar analysis methods to the disattenuated facet correlations in L and
0, This makes it possible to investigate geometrical patterns for separate facets,
partialing out both error variance and the variance from other content facets. Because
of its inherent instabilities, the confirmatory factor model is less suitable for this

approach.
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An Empirical Example

The data of i
e l\/H\lAe ;)i;?flfer gl(;nflst of the responses of 473 respondents to 25 questions i
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well.

Confirmatory Factor Analysis

For these dat: i i

holans gez:;;ll;esgzs;{c M”[l‘MM model indeed runs into the kind of problems described

s oduoms & robst ;)zx:)f g:g) Ttg (t))zst estimation method is robust GLS ~estimatioen

b on egrees of freedom (p=.01 it
ices of 1.00 (GFI, AGFl, IF1). The factor matrix is givexgpin tatzl:nld goodness-of-i

Tabl i
able 1. Factor loadings and standard errors (GLS, decimal point omitted)

Var. Method Factors Trait fact
ors

1 I
1o v 56 m vV
56 (05) ( )6

3 32 (04) 7 (05)
4 28 (04) 76 (04)
2 27 (04)50 74 (04)

(05) 79 (04
; 65 (05) 52 (05)44 05 )
8 37 (05) ( )55
0 29 (04) (04)
0 37 (04) 63 (04)
: 2 o 00 oo

6
3 24 (04) ’ (05)87 (04)
15 200 83 (04
e 21 (03) (04)
17 28 (08) 83 (05) 83 (04)
18 - 29(04) 81 (05)
19 28 (04) &7 (04)
20 28 (04) ' 86 (04
21 2109 )87 04
22 56 (06) 68 (06) ©4)
23 49 (06) 75 (05)
24 28 (04) 86 (04)
25 30 (04) 80 (04)
26 (04) 53 (04)
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The factor loadings in table 1 show that trait factors I (general happiness) and II
(general satisfaction) are not measured very well, which points to a relatively low
convergent validity. The specific well-being factors IIl (income), IV (health) and V
(housing) are measured with high accuracy. The fourth measure (happy/unhappy faces)
has the least amount of specific measurement variance. The correlation between the trait
factors is generally low (around .40), with the exception of general happiness and
general satisfaction; these correlate 0.83. Thus the two traits general happiness and
general satisfaction also show a lack of discriminant validity.

Geometric Representation

Figure 2 on the next page shows a 2-dimensional coordinate mapping of the 25
questions, with symbols representing the 5 traits. It is clear that the specific satisfaction
traits are well separated, while the global happiness and satisfaction traits are not. It is
also clear that the space can be partitioned into four regions, one for each specific
satisfaction, and one for global well-being (happiness +satisfaction).

Figure 2. Two-dimensional mapping of well-being MTMM items.
Symbols: * satisfaction; 0 happiness; - house; + income; = health
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Figure 3 below shows the same mapping, but now the symbols denote the different
methods. There is no well-defined pattern in this mapping. There is some tendency for
method b to be in the center of the space, meaning that method b (social comparison
question) has a relatively high specific method effect.

ea

Figure 3. Two-dimensional mapping of well-being MTMM items.
Symbols: a standard question; b social comparison; ¢ ladder; d faces; e circles

The Composite Direct Product Model

The composite direct product model assumes a multiplicative rather than an additive
structure. Cudeck (1988) describes an informal test for the relation between hetero-
method and mono-method correfations, based on comparing two loss-functions ¢, and
¢, for different blocks of the MTMM matrix. For these data, this procedure favors the
multiplicative model (most tests in favor of the multipticative model, some undecided).
Table 2 below presents the disattenuated correlations between trait and method factors
in the direct product model.
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Table 2. Correlations between traits and methods, direct product model

Tiaits 1 H 111 1AY v Methods I 11 11 v v

11 89 -
62 -
I 35 30 - 77 62 -
v 57 42 31 - 83 65 85 -
vV s1 51 19 26 - 79 62 83 88 -

The tlrait correlz.ition‘s shqw again t_hat the general happiness and satisfaction factors
correlate very hxgh,.lmplymg low discriminant validity. In the ideal case, the methods
matrix should contain all ones. Here, the three graphic question formats (ladder, faces,

and circles) are clearly the best, with the soci i i
> cle: . cial comparison question the worst
standard question in between. P 4 rand the

Geometric Representation of the Direct Product Model Results

It is, of course, possible to produce a 2-dimensional mapping of the disattenuated trait

and method ¢ lati i : " ¢
. orrelations in Table 2. Figure 4 below shows the mapping for the five

Traits Methods
¥ 10
) ce
= + d
b
Sysbols: # satisfaction, 0 happiness, - house, Symbols: a standard question, b social

A . ?
income, = health comparison, ¢ ladder, d faces, e circles.

Figure 4. Two-dimensional plots of trait and method matrices in direct product model.
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The plots on the previous page have a very straightforward interpretation. The traits plot
shows again that the specific trait factors separate very well, while the global traits
factors are close together and also closer to the center of the plot. Especially satisfaction
with housing shows a very high discriminant validity. In the direct product model, those
methods have the highest convergent validity which have the highest correlations in the
methods correlation matrix. Those methods should also be the most central in the
methods plot. Thus, the methods plot shows that method b (social comparison question)
is the worst on this criterium, and method d (faces) the best. The other two graphical
methods ¢ (ladder) and e (circles) also perform well, and method a (standard question)
is somewhere in between.

Discussion

The various methods to evaluate the validity of measures in a multitrait-multimethod
design do in general lead to similar results. This is in itself reassuring, if only because
it represents a case of convergent validity of analysis methods. There are some
noteworthy differences also. The confirmatory factor model, which appears to work
fairly well in this presentation, actually was rather difficult to manage. Different
estimation methods had to be tried (not reported here, see Hox, 1995 for details) before
a satisfactory solution could be found. The instability of the confirmatory factor model
for these data is of course disturbing, and reflects negatively on its utility in general.

The geometric representation of the raw correlation matrices is by itself
informative. It shows that the specific traits separate well, and that the global traits do
not. It does not give so much information about the methods. A problem with an
analysis of the raw correlations is that they may be attenuated by unreliability. Since the
variables are single questions. it is not possible to use a reliability coefficient such as
coefficient alpha to disattenuate the correlations.

The direct product model produces trait and method correlation matrices which
can be directly inspected and interpreted. Nevertheless, it is surprising how much detail
is gained if we inspect a geometrical representation of these correlation matrices.
Especially the relative merit of the methods can be simply read from the methods plot.
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