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Glossary

centering Transforming a variable by subtracting the mean.
In multilevel data, there are two ways of centering:
subtracting the overall mean and subtracting group means.
Centering on the overall mean is a straightforward linear
transformation, whereas centering on the group mean leads
to a radically different model.

cross-level interaction When a regression coefficient of an
individual-level variable varies across groups, this variation
can be modeled by introducing an interaction term of that
variable with one of the group-level variables. Such cross-
level interactions are common in multilevel analysis.

cluster sampling A procedure in which data are collected in
a two-stage design, starting first with sampling of groups
(clusters), followed by sampling of individuals within
groups (clusters).

dependence The assumption in cluster sampling and multilevel
data that the observations are not sampled independently of
one another. The result of this assumption is strongly biased
standard errors when standard statistical methods are used.

design effect The amount of bias in the standard errors
introduced by having dependent observations.

intraclass correlation The expected correlation between in-
dividuals within the same group. When the intraclass correla-
tion is greater than zero, the observations are not independent.

fixed part The part of the model equation that contains the
regression coefficients.

generalized linear regression model A regression model
that is used when the linearity and distributional assump-
tions of the linear regression model are not met, for
example. when the dependent variable is categorical.

linear regression model A regressions model that describes
the relationship between one response variable and one or
more explanatory variables by calculating the best-fitting
linear line (or plane).

logistic regression A generalized linear regression model for
response variables that are dichotomous or proportions.

maximum likelihood (ML) The estimation method most
commonly used in multilevel analysis. ML estimation
produces estimated parameter values that make the
probability of observing the data highest.

multilevel analysis of longitudinal data The analysis of
longitudinal data or repeated measurements as multilevel
data by viewing these as observations nested within
individuals. The advantage is that the analysis deals easily
with missing measurement occasions.

multilevel data Data that have a hierarchical or nested
structure, usually individuals within groups.

random coefficients The regression coefficients of the low-
est-level explanatory variables; these coefficients can vary
across groups and part of this variation is assumed to be
random (stochastic).

random part The part of the model equation that contains
the residual error terms.

variance components The variances (and covariances) of the
residual errors. In multilevel analysis, there are variance
components at each distinct level.

Social research often concerns the relationship between
individuals and the groups towhich they belong. Thisleads
to hierarchical or multilevel data structures, with individ-
uals nested within the groups. Examples are educational
research with pupils nested within classes nested within
schools (a three-level data structure), cross-national
studies with individuals nested within national units,
and family research with members nested within families.
Less obvious applications of multilevel modeling are lon-
gitudinal studies with measurement occasions nested
within individuals and meta-analysis with subjects nested
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within studies. More specialized multilevel models have
been developed that can incorporate nonnested hierarchi-
cal structures and multiple response variables. Multilevel
modeling has become popular for the analysis of avariety of
problems, going beyond the classical individuals-within-
groups applications. This entry gives abrief summary of the
reasons for using multilevel models and provides examples
why these reasons are indeed valid reasons. Next, the mul-
tilevel model is introduced and illustrated with an empir-
ical example. The extension to multilevel logistic
regression is briefly discussed.

Introduction

Multilevel modeling is used in the analysis of data that have
a hierarchical or clustered structure. Such data arise rou-
tinely in various fields, for instance in educational research
in which pupils are nested within schools, in family studies
in which children are nested within families, in medical
research in which patients are nested within physicians or
hospitals, and in biomedical research, forinstance the anal-
ysis of dental anomalies in which teeth are nested within
different people’s mouths. Clustered data may also arise as
a result of the specific research design. For instance, in
large-scale survey research the data collection is usually
organized in a multistage sampling design that results in
clustered or stratified data. Another example is a longitu-
dinal design, in which the data are a series of repeated
measurements nested within individual subjects.

A crucial problem in the statistical analysis of hierar-
chically structured data is the dependence of the obser-
vations at the lower levels. Older approaches to the
analysis of multilevel data simply ignore this problem
and commonly perform the analysis by disaggregating
all data to the lowest level and subsequently applying
standard analysis methods. The magnitude of the statis-
tical bias introduced by this approach can be illustrated by
a simple example from sample surveys. Survey statisti-
cians have long known that the extent to which samples
are clustered affects the sampling variance and, hence,
causes a bias in statistical significance tests. In his classic
1965 work, Kish defines the design effect (deff) as the
ratio of the operating sampling variance to the sampling
variance that applies to simple random sampling. Thus,
deff is the factor with which the simple random sampling
variance must be multiplied to provide the actual oper-
ating sampling variance. In simple cluster sampling with
equal cluster sizes, deff can be computed by
deff =[1 + p(ngys — 1)], where p is the intraclass corre-
lation, and ny, is the common cluster size. (The intraclass
correlation p indicates the degree of similarity between
respondents within the same cluster; the formula is pre-
sented in the next section.) It is clear that deff equals 1
only when either the intraclass correlation is zero or the

cluster size s 1. In all other situations, deffis larger than 1,
which implies that standard statistical formulas will un-
derestimate the sampling variance and therefore lead to
biased significance tests with an inflated Type I error rate.

The impact of cluster sampling on the operating o level
is often large. For example, assume that we carry out
a t test at a nominal o level of 0.05. If we have a cluster
sample, with a small intraclass correlation of p =0.05 and
a cluster size of 10, the actual operating o level is 0.11.
With larger intraclass correlations and larger cluster sizes,
the operating a level increases rapidly. Consider the effect
of cluster sampling in educational research, in which data
are often collected from classes. Assuming a common
class size of 25 pupils, and a typical intraclass correlation
for school effects of p = 0.10, the operating o level is 0.29
for tests performed at a nominal o level of 0.05! Clearly, in
such situations not adjusting for clustered data produces
very misleading significance tests. In addition, for non-
linear models such as logistic regression, not only the
standard errors, but also the regression coefficients them-
selves are biased.

If we have clustered data, the standard statistical tests
can be adjusted using deff. However, multilevel modeling
is more general. In most multilevel problems, we have not
only clustering of individuals within groups, but we also
have variables measured at all available levels. Combining
variables from different levels in one statistical model is
adifferent problem than estimating and correcting for de-
sign effects. Multilevel models are designed to analyze
variables from different levels simultaneously, using
a statistical model that includes the various dependencies.
This leads to research into the direct effects and the
interactions between variables that describe the individu-
alsandvariables thatdescribe the groups, akind of research
that is now often referred to as multilevel research.

Multilevel research requires multilevel theories, an
area that seems underdeveloped compared to the statis-
tical and computational advances. If there are effects of
the social context on individuals, these effects must be
mediated by intervening processes that depend on char-
acteristics of the social context. Multilevel models in gen-
eral assume that the grouping criterion is clear and that
variables can be assigned unambiguously to their appro-
priate level. In reality, group boundaries may be somewhat
arbitrary and the assignment of variables is not always
obvious and simple. In addition, if we have many variables
at many levels, there is an enormous number of possible
interactions between different levels. Ideally, a multilevel
theory should specify which variables belong to which
level and which direct effects and cross-level interaction
effects can be expected. The common denominator in
such theories is that they all postulate processes that me-
diate between individual variables and group variables,
such as communication processes, social comparison
processes, and the internal structure of groups.



The Multilevel Regression Model

The multilevel regression model is known in the statistical
literature under a variety of names: hierarchical linear
model, random coefficient model, variance component
model, and mixed (linear) model. Most often it assumes
hierarchical data, with one response variable measured at
the lowest level and explanatory variables at all existing
levels. Conceptually, the model is often viewed as
a hierarchical system of regression equations. For exam-
ple, assume we have data in | groups or contexts and
a different number of individuals N; in each group. On
the individual (lowest) level we have the dependent var-
iable Y;; and the explanatory variable Xj;, and on the group
level we have the explanatory variable Z;. Thus, we have
a separate regression equation in each group:

In Eq. (1) By is the usual regression intercept, B; is the
regression slope for the explanatory variable X, and e;; is
the residual term. The regression coefficients B carry
a subscript j for the groups, which indicates that the
regression coefficients may vary across groups. The
variation in the regression coefficients B; is modeled by
explanatory variables and random residual terms at the
group level:

Boj = Yoo T YorZj + ug (@)

By = Y10 + Y% +uy (3)

Substitution of Egs. (2) and (3) into Eq. (1) produces
the single-equation version of the multilevel regression
model:

Yy = Yoo + Y10Xij + Yo Zj + v114 Xy + uyXyy +ug + ey

(4)
In general, there will be more than one explanatory
variable at the lowest level and also more than one
explanatory variable at the highest level. Assume that we
have P explanatory variables X at the lowest level,
indicated by the subscript p (p=1,..., P), and Q
explanatory variables Z at the highest level, indicated by
the subscript g (¢=1,...,Q). Then, Eq. (4) becomes
the more general equation:

Yij = Yoo + Z VpoXpij + Z TogZqi + Z Z TpoZaiXpi
p q q P

+ Dty g +ey (5)

P
In Eq. (5), the y are the usual regression coefficients, the
u terms are residuals at the group level, and the e term
represents the residual at the individual level. The
regression coefficients are identified as the fixed part of
the model because this part does not change over groups
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or individuals. The residual error terms are identified as
the random or stochastic part of the model.

The assumptions of the most commonly used multi-
level regression model are that the residuals at the lowest
level e;; have a normal distribution with a mean of zero and
a common variance ¢ in all groups. The second-level
residuals ug; and u,; are assumed to be independent of
the lowest level errors e;; and to have a multivariate normal
distribution with means of zero. Other assumptions, iden-
tical to the common assumptions of a multiple regression
analysis, are fixed predictors and linear relationships.
Most multilevel software assumes by default that the var-
iance of the residual errors e;; is the same in all groups.
However, certain forms of heteroscedasticity can be ex-
plicitly modeled.

The estimation of parameters (regression coefficients
and variance components) in multilevel modeling is gen-
erally done using the maximum likelihood (ML) method.
The standard errors (SEs) generated by the ML proce-
dure are asymptotic, meaning we need fairly large samples
atalllevels. These standard errors can be used to establish
a p value for the null hypothesis that in the population
a specific regression coefficient is zero. Thus, the signif-
icance of a regression coefficient can be tested by refer-
ring Z = B/SE(p) to the standard normal distribution. The
ML procedure also generates a value for the deviance that
is based on the likelihood (the deviance equals —2 times
the log-likelihood). In addition to the standard errors, the
deviance can also be used to test parameters for signifi-
cance. When two models are nested, which means that the
smaller model can be obtained by removing terms from
the larger model, the difference between the deviances of
these two models has a chi-square distribution, with
degrees of freedom being the difference in numbers of
estimated parameters. This is useful for testing the sig-
nificance of variance terms. The asymptotic Z test previ-
ously described is not optimal for testing variances. First,
it assumes normality, and variances do not have a normal
distribution. Second, testing the null hypothesis that
a variance is zero is a test on the boundary of the param-
eter space (variances cannot be negative), where standard
likelihood theory is no longer valid. The significance of
a variance component can be tested by comparing the
deviance of a model containing this parameter to the de-
viance of the same model without this one variance pa-
rameter. This value can be treated as a chi-square variate
with one degree of freedom, and this can be used to test
the significance of that variance component. It should be
noted that Raudenbush and Bryk present a different chi-
square test for variance components, which is not based
on the deviance.

Two different likelihood functions are commonly
used in multilevel regression analysis. The first is full
maximum likelihood (FML). The second is restricted
maximum likelihood (RML). The difference is that
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RML maximizes a likelihood function that is invariant for
the fixed effects. Because RM L is more realistic, it should,
in theory, lead to better estimates of the variance compo-
nents, especially when the number of groups is small.
Nevertheless, FML has one advantage over RML—
because the likelihood is maximized over both the fixed
and the random part, the difference between two devi-
ances can be used to test for differences between two
nested models that differ only in the fixed part (the
regression coefficients). With RML, only differences in
the random part (the variance components) can be tested
this way.

The proportion of variance in the population explained
by the grouping structure is indicated by the intraclass
correlation p. The model used to estimate p is the model
that contains no explanatory variables at all, called the
intercept-only model:

Using this model, the intraclass correlation p is
estimated by the equation:
2
oo,
=0 7
P o2 v ol @
where 050 is the variance of the second-level residuals u;
and o2 is the variance of the lowest level residuals e;.

Example of Multilevel Regression
Analysis

Assume that we have data from school classes. On the
pupil level, we have the outcome variable Popularity mea-
sured by a self-rating scale that ranges from 0 (very un-
popular) to 10 (very popular). We have one explanatory
variable Gender (0 = boy, 1 = girl) on the pupil level and

Table I Multilevel Models for Pupil Popularity

one class level explanatory variable Teacher experience
(in years). We have data from 2000 pupils from 100
classes, so the average class size is 20 pupils. The data
are described and analyzed in more detail in Hox’s 2002
handbook.

Table I presents the parameter estimates and standard
errors for a series of models. Model MO0 is the null model,
the intercept-only model. The intercept-only model
estimates the intercept as 5.31, which is simply the
weighted average popularity across all schools and pupils.
The variance of the pupil-level residuals is estimated as
0.64. The variance of the class-level residuals is estimated
as 0.87. The intercept estimate is much larger than the
corresponding standard error, and the calculation of the
Z test shows that it is significant at p < 0.005. As previ-
ously mentioned, the Z test is not optimal for testing
variances. If the second-level variance term is restricted
to zero, the deviance of the model goes up to 6489.5. The
difference between the deviances is 1376.8, with one
more parameter in the intercept-only model. The chi-
square of 1376.8 with one degree of freedom is also
significant at p < 0.005. The intraclass correlation is
p=o2/(c2 +02) =0.87/(0.87 + 0.64) = 0.58. Thus,
58% of the variance of the popularity scores is at the
group level, which is very high. Because the intercept-
only model contains no explanatory variables, the
variances terms represent unexplained residual variance.

Model M1 predicts the outcome variable Popularity by
the explanatory variables Gender and Teacher experi-
ence, with a random component for the regression coef-
ficient of gender, and model M2 adds the cross-level
interaction term between Gender and Teacher experi-
ence. We can view these models as built up in the follow-
ing sequence of steps:

P opularityij = By + ByyGender; +¢; (8)

M1: +Pupil gender and M2: +Cross-level

Model MO: Intercept-only Teacher experience interaction
Fixed part
Predictor Coefficient (SE) Coefficient (SE) Coefficient (SE)
Intercept 5.31 (0.10) 3.34 (0.16) 3.31 (0.16)
Pupil gender 0.84 (0.06) 1.33 (0.13)
Teacher experience 0.11 (0.01) 0.11 (0.01)
Pupil gender Teacher exprience —0.03 (0.01)
Random part
o2 0.64 (0.02) 0.39 (0.01) 0.39 (0.01)
quo 0.87 (013) 0.40 (0.06) 0.40 (0.06)
cﬁl 0.27 (0.05) 0.22 (0.04)
Gy 0.02 (0.04) 0.02 (0.04)
Deviance 5112.7 4261.2 4245.9




In this regression equation, Boj is the usual intercept,
By is the usual regression coefficient (regression
slope) for the explanatory variable gender, and e;; is
the usual residual term. The subscript j is for the classes
(=1,...,]) and the subscript i is for individual pupils
(i=1,...,N;). We assume that the intercepts Boj and the
slopes By; vary across classes.

Inour example data, the model corresponding to Eq. (8)
results in significant variance components at both levels (as
determined by the deviance-difference test). In the next
step, we hope to be able to explain at least some of this
variation by introducing class-level variables. Generally,
we will not be able to explain all the variation of the
regression coefficients, and there will be some unexplained
residual variation—hence the name random coefficient
model, the regression coefficients (intercept and slopes)
have some amount of (residual) random variation between
groups. Variance component model refers to the statistical
problem of estimating the amount of random variation. In
our example, the specific value for the intercept and the
slope coefficient for the pupil variable Gender are class
characteristics. A class with a high intercept is predicted
to have more popular pupils than a class with a low value
for the intercept. Similarly, differences in the slope coef-
ficient for gender indicate that the relationship between
the pupils’ gender and their predicted popularity is not the
same in all classes. Some classes may have a high value for
the slope coefficient of gender; in these classes, the differ-
ence between boys and girls is relatively large. Other
classes may have a low value for the slope coefficient of
gender; in these classes, gender has a small effect on the
popularity, which means that the difference between
boys and girls is small.

The next step in the hierarchical regression model is to
explain the variation of the regression coefficients B; and
By; by introducing the explanatory variable Teacher ex-
perience at the class level. Model M1 models the intercept
as follows:

By = Yoo + Yor Teacher experience; + ug;  (9)
and model M2 models the slope as follows:
By = 710 + v1 Teacher experience; + uy;  (10)

Equation (9) predicts the average popularity in a class
(the intercept By;) by the teacher’s experience. Thus, if
Yo1 is positive, the average popularity is higher in classes
with a more experienced teacher. Conversely, if yo; is
negative, the average popularity is lower in classes with
a more experienced teacher. The interpretation of
Eq. (10) is more complicated. Equation (10) states that
the relationship, as expressed by the slope coefficient
By, between the popularity and the gender of the pupil,
depends on the amount of experience of the teacher. If
Y11 is positive, the gender effect on popularity is larger
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with experienced teachers. On the other hand, if vy; is
negative, the gender effect on popularity is smaller with
experienced teachers. Thus, the amount of experience of
the teacher interacts with the relationship between
popularity and gender; this relationship varies according
to the value of the teacher experience.

The u terms ug and uy; in Eqgs. (9) and (10) are
the residual terms at the class level. The variance of the
residual ug; is denoted by o, and the variance of
the residual u ;; is denoted by 631 . The covariance between
the residuals ug; and uy; is o, , which is generally not
assumed to be zero.

Our model with one pupil-level and one class-level
explanatory variable including the cross-level interaction
can be written as a single complex regression equation by
substituting Eqs. (9) and (10) into Eq. (8). This produces:

Popularityij = Yoo + Y10 Gendery
+ Yo1 Teacher experience;
+ v1; Teacher experience; X Gender;

+uy; Gender;; +ug; + e (11)

Note that the result of modeling the slopes using the
class-level variable implies adding an interaction term
and second-level residuals u); that are related to the
pupil-level variable Gender. Model M2 is the most
complete, including both available explanatory variables
and the cross-level interaction term. The interaction
term is significant using the Z test. Because we have
used FML estimation, we can also test the interaction
term by comparing the deviances of models M1 and M2.
The deviance-difference is 15.3, which has a chi-square
distribution with one degree of freedom and p <0.005.
Using a deviance-difference test on the second-level
variance components in model M2, by restricting vari-
ance terms to zero and then comparing deviances, leads
to the conclusion that all variance terms are significant
and that the covariance term is not. This means, that not
all residual variation in the intercept and slope can be
modeled by the explanatory variables. :
The interpretation of model M2 is straightforward. The
regression coefficients for both explanatory variables are
significant. The regression coefficient for pupil gender is
1.33. Because pupil gender is coded 0 =boy and 1 = girl,
this means that on average the girls score 1.33 points
higher on the popularity measure. The regression coeffi-
cient for teacher experience is 0.11, which means that for
each year of experience of the teacher, the average pop-
ularity score of the class goes up with 0.11 points. Because
there is an interaction term in the model, the effect of 1.33
for pupil gender is the expected effect for teachers with
zero experience. The regression coefficient for the cross-
level interaction is —0.03, which is small but significant.
The negative value means that with experienced teachers,
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the advantage of being a girl is smaller than expected
from the direct effects only. Thus, the difference between
boys and girls is smaller with more experienced teachers.
A comparison of the other results between the two models
shows that the variance component for pupil gender goes
down from 0.27 in the direct effects model (M 1) to 0.22 in
the cross-level model (M2). Hence, the cross-level model
explains about 19% of the variation of the slopes for pupil
gender.

The significant and quite large variance of the
regression slopes for pupil gender implies that we should
not interpret the estimated value of 1.33 without consid-
ering this variation. In an ordinary regression model, with-
out multilevel structure, the value of 1.33 means that girls
are expected to differ from boys by 1.33 points, for
all pupils in all classes. In our multilevel model, the
regression coefficient for pupil gender varies across
the classes and the value of 1.33 is just the expected
value across all classes (for teachers with zero experience).
The variance of the slope is estimated in model M1 as 0.27.
Model M2 shows that part of this variation can be ex-
plained by variation in teacher experience. The interpre-
tation of the slope variation is easier when we consider
their standard deviation, which is the square root of the
variance, or 0.52 in our example data. The varying
regression coefficients are assumed to follow a normal
distribution. Thus, we may expect 95% of the regression
slopes to lie between two standard deviations above or
below their average. Given the estimated values of 1.33 (in
model M2, for inexperienced teachers) or 0.84 (in model
M1, average for all teachers) the vast majority of the
classes are expected to have positive slopes for the effect
of pupil gender. Figure 1 provides a graphical display of
the slope variation, which confirms the conclusion that
almost all class slopes are expected to be positive.

w

4 £

Predicted popularity

Pupil gender
Figure 1 One hundred class slopes for pupil gender.

Analysis of Proportions and
Binary Data

The multilevel regression model discussed so far ass-
umes a continuous dependent variable and normal dis-
tributions for the residuals. When the response variable is
a dichotomous variable or a proportion, both the assump-
tions of continuous scores and of normality are not met.
In addition, the assumption of homoscedastic errors is
violated.

The classical approach to the problem of nonnormally
distributed variables and heteroscedastic errors is to apply
a transformation to achieve normality and reduce
heteroskedasticity, followed by a traditional multiple
regression analysis. The modern approach to the problem
of nonnormally distributed variables is to include the nec-
essary transformation and the choice of the appropriate
error distribution (not necessarily a normal distribution)
explicitly in the statistical model. This class of statistical
models is called generalized linear models. Generalized
linear models are defined by three components: (1)
a linear regression equation, (2) a specific error distribu-
tion, and (3) a link function which is the transformation
that links the predicted values for the dependent variable
to the observed values. If the link function is the identity
function (f(x) =x) and the error distribution is normal,
the generalized linear model simplifies to the ordinary
multiple linear regression model.

Multilevel generalized linear models are described by
Raudenbush and Bryk and by Goldstein. Estimating the
parameters (regression coefficients and variance compo-
nents) for such models is more complicated than ordinary
multilevel analysis because the likelihood function used in
the ML estimation is nonlinear. One approach to estimat-
ing such nonlinear models is to linearize the likelihood
function. This results in an approximation to the likeli-
hood, and as a result statistical tests based on the likeli-
hood (such as the deviance-difference test) cannot be
used. The second approach is to maximize the nonlinear
likelihood itself. This is difficult, and therefore it is im-
plemented only in some of the available software and only
for a limited set of models. The link functions presently
supported in most software are the logistic link function
for binary (dichotomous) and binomial data (proportions),
the logarithmic function for Poisson data, and the recip-
rocal link function for y-distributed data.

The example presented in what follows concerns data
from a meta-analysis of studies that compared face-to-
face, telephone, and mail surveys on various indicators
of data quality. One of these indicators is the response
rate—the number of completed interviews divided by the
total number of eligible sample units. Overall, the re-
sponse rates differ among the three data collection
methods. In addition, the response rates also differ across



studies, which makes it interesting to analyze if study
characteristics account for these differences.

These data have a multilevel structure. The lowest level
is the condition-level, and the higher level is the study-
level. There are three variables at the condition level: the
number of completed interviews in that specific condi-
tion, the number of eligible respondents in that condition,
and an explanatory categorical variable indicating the data
collection method used. The categorical data collection
variable has three categories: face-to-face, telephone, and
mail. It is recoded into two dummy variables: a telephone-
dummy and a mail-dummy; this makes the face-to-face
condition the reference condition. We use one variable at
the study level: the saliency of the questionnaire topic. We
have 45 studies in which a total of 99 data collection
conditions are compared.

The dependent variable is the response rate. This var-
iable is a proportion—the number of completed inter-
views divided by the number of eligible respondents.
Proportions are analyzed using logistic regression,
which is a specific generalized linear model. The link
function for binomial data and proportions is the logit
function, which is defined as logit(x) =In[x/(1 —x)].
The corresponding error function is the binomial distri-
bution.

Let P;; be the observed proportion respondents in con-
dition i of study . Although P;; has a binomial distribution,
logit(P;) has a distribution that is approximately normal,
and so we use a linear regression equation at the lowest
level. The simplest model, corresponding to the intercept-
only model in ordinary multilevel regression analysis, is

given by:
logit (Py) = By (12)

Note that the usual lowest level error term e; is not
included in Eq. (12). In the binomial distribution, the
variance of the observed proportion depends only on
the population proportion m. As a consequence, the
lowest level variance is determined completely by the

Table II  Multilevel Logistic Models for Survey Response
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predicted value for Py, and it does not enter the model
as a separate term.

The model in Eq. (12) can be extended to include an
explanatory variable X;; (e.g., the mail or face-to-face con-
dition) at the condition level:

The regression coefficients B are assumed to vary across
studies, and this variation is modeled by the study
level variable Z; in the usual second-level regression
equations:

Boj = Yoo + Yor1Zj + ug (14)

By = Y10 + V1% +uy (15)

By substituting Eqgs. (15) and (14) into Eq. (13), we get
the single—equation version:

logit(Py) = Yoo + v10Xy + Y012 + Y112 X5 + uo; +uyXy
(16)

It should be kept in mind that the interpretation of the
regression parameters is not in terms of the response
proportions we want to analyze but instead in terms of
the underlying variate defined by the logit transforma-
tion logit(x) =In[x/(1 —x)]. The logit link function is
nonlinear and transforms the proportions, which are
between 0.00 and 1.00 by definition, into values that
range from —oo to +oc0. For a quick examination of the
analysis results, we can simply inspect the regression
parameters. To understand the implications of the
regression coefficients for the proportions we are
modeling, we must transform the predicted values back
to the original scale or transform the regression
coefficients to odds ratios. This problem is not specific
to multilevel logistic regression.

Table II presents the results for a sequence of three
models: the intercept-only model, a model with the two
condition dummies, and a model with the two condition
dummies and the study-level variable Saliency. In the

Model MO: intercept-only M1: +conditions M2: +saliency
Fixed part
Predictor Coefficient (SE) Coefficient (SE) Coefficient (SE)
Intercept 1.02 (0.13) 1.29 (0.14) 0.54 (0.22)
Telephone —0.21 (0.09) —0.19 (0.10)
Mail —0.58 (0.16) —0.56 (0.15)
Saliency 0.68 (0.17)
Random part
0'3” 0.84 (0.17) 0.83 (0.19) 0.63 (0.14)
0'31 0.26 (0.07) 0.27 (0.08)
Ouy 0.60 (0.20) 0.56 (0.18)
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intercept-only model, the intercept voo is estimated as
1.02. As noted before, this refers to the underlying dis-
tribution established by the logistic link function and not
to the proportions themselves. To determine the expected
proportion, we must use the inverse transformation for
the logistic link function, given by:

g(x)

:1+ejc

Using this inverse function, the estimated intercept of
1.02 translates back to an expected proportion of 0.73.
The study-level variance is considerable and significant
by the Z test. Because the estimation method used here
is based on the linearization approach, the deviance is
approximate and not available for the deviance-difference
test. Hence, in this specific case the significance of the
variance components is assessed using the Z test.

The next model adds the condition-level variables
Telephone-dummy and Mail-dummy, assuming random
regression slopes. In this model, the intercept represents
the condition in which both explanatory variables are zero,
which is the face-to-face condition. Thus, the value for the
intercept in model M1 in Table II estimates the expected
response in the face-to-face condition, which is 1.29. This
corresponds to an expected response proportion of
0.78. The large negative values for the slope coefficients
for the Telephone-dummy and Mail-dummy variables in-
dicate that in these conditions the expected response is
lower. To find out how much lower, we must use the
regression equation to predict the response in the three
conditions and transform these values (which refer to the
underlying variate) back to proportions. For the telephone
condition, which is coded by Telephone = 1 and Mail =0,
the regression equation reads: ¥ =129 —0.21=1.08,
which transforms to an expected response proportion of
0.75. For the mail condition, which is coded by Tele-
phone =0 and Mail =1, it reads Y =1.29 — 0.58 =0.71,
which transforms to an expected response proportion of
0.67. The variance components for the regression coeffi-
cients are significant by the (approximate) Z test.

The final model includes the study-level variable Sa-
liency. Compared to the earlier results, the regression co-
efficients are about the same, but the value for the intercept
is different. This is not informative, because the intercept
almost always changes when other variables are added to or
deleted from the regression equation. In our case, includ-
ing the study-level explanatory variable Saliency in the
model causes the shift of the intercept value. Saliency is
coded as 1=very salient, 2=somewhat salient, and
3 =not salient. The coded values for Saliency do not in-
clude the value 0. Hence, the estimated value of the inter-
cept has no meaningful interpretation. The regression
coefficient for Saliency is positive, indicating that the re-
sponse rate increases when the study’s topicis more salient.

The last logical step is to introduce interaction
variables of Saliency with the two condition variables to
model the random coefficients. In our example data, it
turns out that this interaction variable does not explain any
variation of the regression coefficients.

The random coefficient model leads to another inter-
esting conclusion. In general, telephone and mail surveys
obtain a lower response rate than face-to-face surveys. For
instance, on the underlying scale, the regression coefhi-
cient for Telephone is —0.19 in the final model. However,
this regression coefficient has a large variance across
studies: 63, = 0.27. The corresponding standard devia-
tion is 0.52. Using the standard normal distribution, we
can calculate that in 36% of similarly conducted studies
this regression coefficient is expected to be larger than
zero! It is instructive to see that, even if there is little doubt
that on the average the telephone interview has a lower
response rate than the face-to-face interview, there is still
a chance that in a specific study we will find the opposite
relation.

Further Topics

Extensions of the Multilevel
Regression Model

The multilevel regression model is one attractive
approach to analyzing longitudinal data. In this case,
the hierarchical structure is viewed as measurement oc-
casions nested within individuals. Extensions of the mul-
tilevel regression model are models for data that are not
fully nested, such as cross-classified data, and models in
which group membership may not be fully known. The
nonlinear regression model discussed in the previous
section has been extended to models for ordered or un-
ordered categorical response variables and models for
the analysis of counts. Finally, multilevel factor analysis
and multilevel structural equation models are becoming
available.

Software and Internet Resources

Multilevel analysis modules have appeared in most of the
large statistical packages, such as SPSS, SAS, Stata, and
SPLUS. Although these modules are quite powerful, spe-
cialized software for multilevel tends to have more anal-
ysis options and more coverage of the model extensions
previously mentioned. The best-known specialized mul-
tilevel software are HLM and MIwiN. Don Hedeker pro-
vides a set of freeware programs for multilevel regression
modeling. A 2001 review of some of these packages was
given by De Leeuw and Kreft. The multilevel models
project in London maintains a large homepage on mul-
tilevel modeling, with emphasis on their own product



MIwiN, but also including much general information.
Their website also provides links to other multilevel web-
sites, including one to Don Hedeker’s freeware packages.
There is also an ongoing review of all software that is
able to analyze multilevel data. Finally, there is an active
Internet multilevel discussion group.

See Also the Following Articles

Clustering o Internet Measurement e Maximum Likelihood
Estimation e Misspeciﬁcation in Linear Spatial Regression
Models
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