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8.1 Introduction

Social and behavioral research often involves problems and data that are
viewed as a hierarchical system, with individuals and groups defined at
separate levels of this hierarchical system. Standard multivariate models are
not appropriate for the analysis of such hierarchical systems, even if the
analysis includes only variables at the lowest (individual) level, because the
standard assumption of independent and identically distributed observations
is generally not valid. The consequences of using uni-level analysis methods
on multilevel data are well known: the parameter estimates are unbiased but
inefficient, and the standard errors are negatively biased, which results in
spuriously ‘significant’ effects (cf. Snijders and Bosker, 1999; Hox, 2002).
Multilevel analysis techniques for the linear multiple regression model are
well developed and the required software is widely available (Raudenbush
and Bryk, 2002; Goldstein, 1995).

Structural equation modeling, or SEM, is a very general framework for
statistical modeling that includes as special cases several traditional
multivariate procedures, such as factor analysis, multiple regression analysis,
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discriminant analysis, and canonical correlation. Structural equation models
for multilevel data have been formulated by, among others, Goldstein and
McDonald (Goldstein & McDonald, 1988; McDonald & Goldstein, 1989,
McDonald, 1994), Muthén and Satorra (Muthén, 1989; Muthén & Satorra,
1989) and Longford and Muthén (Longford & Muthén, 1992). We refer to
McArdle and Hamagami (1996) for a comparison between multilevel
regression techniques and standard multigroup SEM.

The approach to multilevel SEM outlined by Muthén (1989a, 1994) is
particularly interesting, because he shows that structural equation modeling of
multilevel data is possible using available standard SEM software, such as
LISREL (Joreskog & Sérbom, 1996), EQS (Bentler, 1995), or AMOS (Arbucle &
Wothke, 1999). For an introductory exposition of Muthén's method, see
Muthén (1994), Kaplan and Elliot (1997) and Hox (2002). Heck and Thomas
(2000) present an extended example of multilevel SEM, using Muthén’s
method and discusses the implementation details for the programs LISREL,
STREAMS, and MPLUS.

A different approach to estimating multilevel SEM is to estimate the
covariance matrices at the distinct levels directly, using standard multilevel
regression software, as proposed by Goldstein (1987, 1995) and applied, e.g.,
by Rowe and Hill (1998) and Rowe (2002). This approach has the advantage
that it also uses standard SEM software, but the models and hence the program
setups are far less complicated than the models and setups implied by the
Muthén approach. For details, we refer to Hox (2002).

This chapter sumnmarizes both approaches in some detail, and discusses
their theoretical advantages. Next, both are compared on an exemplary data set.
The results for both approaches are very similar.

8.2 The Muthén Approach: Decomposing Multilevel Variables

Multilevel structural models assume that we have a population of individuals
that are divided into groups. The individual data are collected in a p-variate
vector Y, (subscript i for individuals, g for groups). The variates Y;; can be

decomposed into a between groups component Yy =Y,, and a within

groups component Yy, =Y, — Vg . In other words, for each individual we

replace the observed Total score Y1 = Yj, by its components: the group
component Yy (the disaggregated group mean) and the individual
component Yy (the individual deviation from the group mean.) These two
components have the attractive property that they are orthogonal and
additive (cf. Searle, Casella & McCulloch, 1992):

YT=YB+YW (1)
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This decomposition can be used to compute a between groups covariance
matrix Xy (the population covariance matrix of the disaggregated group means
Yp) and a within groups covariance matrix Xy (the population covariance
matrix of the individual deviations from the group means Yw). These
covariance matrices are also orthogonal and additive:

ZI'_—'ZB"’ZW (2)

Following the same logic, we can also decompose the sample data. Suppose
we have data from N individuals, divided into G groups of equal size n
(subscript i for individuals, i=1...N; subscript g for groups, g=1...G). If we
decompose the sample data, we have for the sample covariance matrices:

ST = SB + Sw (3)

An unbiased estimate of the population within groups covariance matrix Xy
is given by the pooled within groups covariance matrix Spw, calculated in the
sample by:

G n ’

22(Y -7 (Y, -T,)

I 4 1

S. =
PW N-GC 4

Equation (4) corresponds to the conventional equation for the covariance
matrix of the individual group-mean deviation scores, with N-G in the
denominator instead of the usual N-1.

For computational reasons it is convenient to calculate not the between
groups covariance matrix Sg itself but the scaled between groups covariance
matrix for the disaggregated group means S*3, given by:

S, = £— S)

In equation (5), Y is the vector of overall means, and l7g is the vector of

group means. Muthén (1989a, 1990) shows that Spy, is the maximum likelihood
estimator of Xy, with sample size N-G, and S*B is the maximum likelihood

estimator of the composite Ly + cZp, with sample size G, and ¢ depending on
the group sizes:
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Spw =2y )
and
S, =%, +c&, Q)

Equations 6 and 7 suggest using the multi-group option of conventional
SEM software for a simultaneous analysis at both levels. If we model the
between groups structure, we cannot simply construct and test a model for X,
because S*; estimates a combination of Xy and Xg. Instead, we specify for the
S* ‘group’ two models: one for the within groups structure and one for the
between groups structure, with covariance matrices Spw and S* (based on N-G
and G observations). The model for Xy is specified for both Spw and S*5, with
equality restrictions between both ‘groups’ to estimate the same model in both
covariance matrices, and the model for Xy is specified for S*5 only, with the
scale factor ¢ built into the model.

This reasoning strictly applies only to the balanced case, that is, if all
groups have the same group size n. In the balanced case, the scale factor ¢ is
equal to the common group size n. The unbalanced case, where the group sizes
differ, with G groups of unequal sizes n,, is more complicated. In this case, Spw
is still the maximum likelihood estimator of Ty, but Sp now estimates a
different expression for each set of groups with distinct group size d=n,:

Sps =2y +¢, 2y ‘ ®)

where equation 8 holds for each distinct set of groups with a common group
size equal to ny, and c,=n; (Muthén, 1990, 1994). Full Information Maximum
Likelihood (FIML) estimation for unbalanced groups implies specifying a
separate between-group model for each distinct group size. These between
groups models have different scaling parameters c,;, and require equality
constraints across all other parameters and inclusion of a mean structure
(Muthén, 1994, p. 385). Thus, using conventional SEM software for the
unbalanced case requires a complicated modeling scheme that creates a
different ‘group’ for each set of groups with the same group size. This results in
large and complex models, with possibly groups with a sample size less than
the number of elements in the corresponding covariance matrix. This makes
full Maximum Likelihood estimation problematic, and therefore Muthén
(1989a, 1990) proposed to ignore the unbalance, and to compute a single S%s.
The model for S’y includes an ad hoc estimator ¢ for the scaling parameter,
which is close to the average sample size:
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The result is a Limited Information Maximum Likelihood (LIML) solution,
which McDonald (1994) calls a pseudobalanced solution, and Muthén (1989a,
1994) the MUML (for MUthén’s ML) solution. Muthén (1989a, 1990) shows
that S'5 is a consistent and unbiased estimator of the composite Xw + cXg. This
means that with large samples (of both individuals and groups!) S* becomes a
close estimate of Zg, and the pseudobalanced solution should produce a good
approximation given adequate sample sizes.

Since S*p is not a maximum likelihood estimator, the analysis produces
only approximate parameter estimates and standard errors. However, when the
group sizes are not extremely different, the pseudobalanced estimates are close
enough to the full maximum likelihood estimates to be useful in their own
right. Comparisons of pseudobalanced estimates with full maximum likelihood
estimates or with known population values have been made by Muthén (1990,
1994), Hox (1993), and McDonald (1994). Their main conclusion is that the
pseudobalanced parameter estimates and the standard errors are fairly accurate
and useful for a variety of multilevel problems. A large simulation study by
Hox and Maas (2001) assesses the robustness of the pseudobalanced method
against unequal groups and small sample sizes at both the individual and the
group level, in the presence of a low or a high intraclass correlation (ICC). In
this study, the within groups part of the model poses no problems in any of the
simulated conditions. The most important problem in the between groups part
of the model is the occurrence of inadmissible estimates when the group level
sample size is small (50) and the intracluster correlation is low. When an
admissible solution is found, the factor loadings are generally accurate.
However, the residual variances are underestimated, and the standard errors are
generally too small. Having more or larger groups or a higher ICC does not
effectively compensate this. Therefore, while the nominal alpha level is 5%, the
operating alpha level is about 8% in all simulated conditions with unbalanced
groups. The strongest contributing factor is an inadequate sample size at the
group level. Imbalance is also a problem for the overall goodness-of-fit test.
For balanced data, the' chi-square test for goodness-of-fit is accurate. For
unbalanced data, the model is rejected too often, which again results in an
operating alpha level of about 8%. The size of the biases is comparable to the
effect of moderate non-normality in ordinary modeling. Hox and Maas
conclude that the approximate solution is useful, if the group level sample size
is at least 100, and keeping in mind that the operating alpha level is somewhat
higher than the nominal alpha level.

The multilevel part of the structural equation model outlined above is
simpler than that of the multilevel regression model. It is comparable to the
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multilevel regression model with random variation of the intercepts. There is
no provision for randomly varying slopes (factor loadings and path
coefficients). Although it would be possible to include cross-level interactions,
introducing interaction variables of any kind in structural equation models is
neither simple nor elegant (cf. Bollen, 1989; Marcoulides & Schumacker,
2001). An interesting approach is allowing different within groups covariance
matrices in different subsamples.

Since the pseudobalanced approach needs the within groups model both for
the pooled within groups and the scaled between groups model, and needs to
incorporate the scaling factor for the between groups model, the actual model
can become quite complicated. In addition, some software has difficulties
finding good starting values. Several software writers have addressed these
problems. The program STREAMS (Gustafsson & Stahl, 1999) acts as a
preprocessor for standard SEM software. For two-level SEM, it calculates the
pooled within and scaled between matrices, and writes the complicated setup,
including starting values based on previous analyses. The program MPLUs
(Muthén & Muthén, 1998) hides all the complications of the pseudobalanced
approach from the user. It also uses by default robust estimators for the
standard errors and adjusts the chi-square test statistic for the heterogeneity that
results from mixing groups of different sizes (cf. Muthén & Satorra, 1995).

8.3 The Multivariate Multilevel Approach: Direct Estimation of the
Covariance Matrix at Each Level

Goldstein (1987, 1995) suggested using a multivariate multilevel (MVML)
regression model to produce a covariance matrix at the different levels, and
to input these in a second step into a standard SEM program for further
analysis. Multivariate multilevel regression models are multilevel regression
models that contain more than one response variable.

In multivariate multilevel models, the variables define a separate level. In
most applications, the variables would be the first level, the individuals the
second level, and if there are groups, these form the third level. If we have P
response variables, Y, is the response on measure p of individual i in group g.
We define a total of P dummy variables scored 0/1, one for each response
variable. To use these P dummy variables in a model, we exclude the usual
intercept from the model. Hence, on the lowest level we have

Y, =n,d

1gGiig T gy +. -+ 7, d 10

2ig pig™" pig

The extra level, the dummy-variable level, exists solely to specify a
multivariate response structure using software that is essentially developed for
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univariate analyses. Therefore, there is no lowest-level error term in equation
(10). If there are no explanatory variables, we have at the individual level:

”pig = Ppe +upig i (1)

where the u,;, terms are the residual errors for each variable at the individual

level.
At the group level (the third level in the multivariate model), we have

'Bpg =V, Uy, (12)

where the u,, terms are the residual errors for each variable at the group
level.
By substitution we obtain

Ypig = yld“g + yzdz,.g +...+ 7pd

pig (13)
tugdy, tuyd, +.. tu,d, +ud, tud, +. . +u,d,
Equation (13) is more conveniently expressed using sum notation:
P P P
Y, pig Z{ ypdpig +z; upigdpig +Z upgdpig (14)
p= p= p=t

In this multivariate multilevel model, the fixed part contains P regression
coefficients for the dummy variables, which are the P overall means for the P
outcome variables. The random part contains two covariance matrices, X, and
,, which contain the variances and the covariances of the regression slopes for
the dummies on the individual and the group level. Since individual level and
group level covariances are estimated directly, they can be modeled directly
and separately by any SEM program, using standard Maximum Likelihood
estimation techniques. As 4 result, we get separate model tests and fit indices at
all levels. The straightforward approach is a distinct advantage of the
multivariate multilevel approach.

There are some disadvantages to the multivariate multilevel approach. An
potential problem is that the covariances produced by the multivariate
multilevel approach are themselves estimated values. They are not directly
calculated, as the pooled within groups and scaled between groups covariances
are, but they are estimates produced by a complex statistical procedure. If the
data have a multivariate normal distribution, the pooled within groups and
scaled between groups covariances can be viewed as observed values, which
have a known sampling distribution. This sampling distribution is used by
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SEM programs for the chi-square model test and the standard errors of the
parameter estimates. It is unknown how well the sampling distribution of the
multivariate multilevel covariance estimates follows the sampling distribution
of the observed covariances.

F1W Faw
03 04 0.5 03 04 0.5
x1w x2w X3w x4w x5w x6w
1 1 1 1 1 1
0.25 025 025 025 0.25 0.25

x2b x3b x4b “ x5b x6b

1 1 1 1 1 1
0.25 0.25 0.25 025 0.25 0.25
elb e2b @ edb @

Figure 8.1. Individual level (within) and group level (between) population model.
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8.4 Comparing the Two Approaches

We compare the Muthén approach and the multivariate multilevel approach to
multilevel SEM. Our benchmark model is a two-level factor model with six
observed variables, one factor at the group level, and two factors at the
individual level.

The model and population parameter values are presented in Figure 8.1.
The covariance matrices are given in Appendix 8.1. Using procedures outlined
by Bollen and Stine (1993), we have constructed a two-level data set that
exactly reproduces the benchmark model. The multilevel structure has 100
groups all of size 50. The group size and the number of groups have been
chosen to be both large enough to ensure accurate estimation of both
parameters and standard errors at all levels (cf. Hox & Maas, 2001).

Since the data are balanced, Muthén’s method in this case is a full
information Maximum Likelihood method. The multivariate multilevel
approach produces Maximum Likelihood estimates, and since the input are two
covariance matrices estimated by Maximum Likelihood methods the results
should be comparable to the estimates produced by the Muthén method.

8.5 Results

Both methods lead to a model with an almost perfect fit. The Muthén approach
leads to a chi-square of 0.059 (df=18, p=1.000); the multivariate multilevel
approach leads to a chi-square of 0.000 for the within model (df=0, p=1.000)
and a chi-square of 0.063 for the between model (df=9, p=1.000). The
difference between the two approaches is tiny and totally immaterial. Table 8.1
shows the population values of the factor loadings and variances in the two-
level factor model. In addition, it shows the estimates produced by Muthén’s
method and by the multivariate multilevel (MVML) method.

It is clear from Table 8.1 that the individual level loadings are estimated
with total accuracy. Since the individual-level sample size is N-G = 4900 this is
not surprising. At the group level, where the sample size is 100, the loading
estimates are very close to,the population values. The estimates produced by
the MVML method are somewhat closer to the known population values, but
both sets of estimates are so close to the true values that this difference is
utterly trivial.

The doubts expressed in section 8.3 about the MVML approach concern
mainly the effect on the standard errors. Table 8.2 shows asymptotic values of
the standard errors for the factor loadings and variances, and the standard errors
produced by Muthén’s method and by the multivariate multilevel (MVML)
method.
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Table 8.1. Population and estimated values of the model parameters.

Loadings  Population Muthén method ~ MVML method
Variables WF1 WF2 BFI WF1 WF2 BF1 WF1 WF2 BFl

X1 3 .5 .300 497 300 499
X2 4 4 400 395 400 397
X3 S 3 500 293 500 295
X4 3 5 300 497 300 .499
X5 4 4 400 395 400 397
X6 5 3 500 .293 500 .295
Res. var. Population Muthén method MVML
method
Variables With./Betw. With. Betw.  With. Betw.
X1 25 250 241 250 244
X2 25 250 241 250 243
X3 25 250 239 250 242
X4 25 250 241 250 244
X5 25 250 241 250 243
X6 25 250 239 250 242

It is clear from Table 8.2 that the standard errors of the individual level
loadings are estimated with total accuracy. Since the individual-level sample
size is N-G = 4900 this is not surprising. At the group level, where the sample
size is 100, the standard errors produced by the Muthén and MVML method
are very similar. To check the standard errors, we carried out a parametric
bootstrap (10,000 bootstrap samples) on the covariance matrices produced by
the MVML method. The bootstrapped standard errors are very close (all within
[0.002)) to the asymptotic standard errors. Interestingly enough, the bias-
correction based on the bootstrap (Stine, 1989) almost totally removes the tiny
bias in the MVML-based estimates.
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Table 8.2. Asymptotic and estimated values of the standard errors.

Loadings  Asymptotic Muthén method MVML method
Variables WF1 WF2 BF1I WF1 WF2 BF1 WF1 WEF2 BFl1

X1 010 102010 102 .010 101
X2 .012 096 012 096 .012 .095
X3 .014 092 014 092 014 .090
X4 010 .102 .010 .102 .010 .101
X5 012 .096 012 .096 012 .095
X6 .014 092 014 092 014 .09
Res. var.  Asymptotic Muthén method MVML
method

Variables  With. Betw. With. Betw With. Betw
X1 006 .047 006 .047 006 .047
X2 008 .042 008 .042 .008 .041
X3 012 .039 012 .038 .012 .038
X4 006 .047 .006 .047 .006 .047
X5 008 .042 008 .042 .008 .041
X6 012 .039 012 038 .012 .038

8.6 Discussion

When the individual level and group level sample sizes are adequate, both
approaches appear to produce accurate parameter estimates. The standard
errors are also very close to their asymptotic values. The conclusion is that the
multivariate multilevel approach to multilevel SEM is a viable method. It’s
simplicity compared to the Muthén pseudobalanced approach is an advantage.
It does require that analysts have access to a multilevel regression program that
can produce the required individual level (within groups) and group level
(between groups) covariance matrices. The procedure described in this paper
requires a three-level program that can constrain the lowest level variance to
zero. Currently, the progtams aML, HLM, MLwiN, Lisrel/Prelis and SAS Proc
Mixed all can do this. The multivariate multilevel approach to multilevel SEM
also generalizes straightforwardly to more than two levels, but this requires a
multilevel regression program that can handle more than three levels.
Currently, only aML and MLwiN have this capability. MLwiN can handle up
to 50 levels, but the requirement that the highest level has an adequate sample
size (Hox and Maas, 2001, suggest a lower limit of 100 for the FIML
approach) puts strong practical limits to such endeavors.
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There are other advantages to the MVML approach. First, it does not
assume that the group sizes are all equal, an assumption made in Muthén’s
approach. If the group sizes are unequal, Muthén’s LIML approach produces
unbiased and consistent parameter estimates, but the standard errors are
underestimated. As Hox and Maas (2001) show, this bias is relatively small,
which justifies using the LIML approach with unequal group sizes. A second
advantage of the multilevel multivariate model is that it does not assume
having a complete set of variables for each individual; incomplete data are
accommodated without special effort. Finally, if we have dichotomous or
ordinal categorical variables, we can use the multilevel generalized linear
model to produce the covariance matrices, again without special effort. The
problem here is, of course, that in this case we know for certain that the
covariance matrices so produced do not follow a Wishart distribution. In the
incomplete data case, different parts of the covariance matrix will be based on
different subsets of cases, a fact that is not reflected in the covariance matrices
themselves. If we analyze dichotomous or ordered categorical variables using
the probit link-function instead of the more usual logit link-function (cf. Hox,
2002), the covariances produced are polychoric correlations (cf. Olsson, 1979).
Polychoric correlations have larger sampling variances than Pearson
correlations (Muthén, 1989b) and require special estimation methods. The
appropriate estimation method here is weighted least squares, but this requires
very large sample sizes (1000 or more) for accurate estimation (Muthén &
Kaplan, 1985). In multilevel SEM, this means that the highest-level sample size
must be very large, a requirement that is in practice difficult to meet.
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Appendix.

Population covariances on within and between level

Covariances, Within Model

Var.
xlw
X2w
x3w
x4w
xSw
X6w

Covariances, Between Model

Var.
x1b
x2b
x3b
x4b
x5b
x6b

xlw x2w x3w

0.34
0.12
0.15
0.00
0.00
0.00

x1b
0.375

0.100 0.330
0.075 0.060 0.295
0.125 0.100 0.075 0.375

0.41
0.20
0.00
0.00
0.00

0.50
0.00
0.00
0.00

x4w

0.34
0.12
0.15

x2b x3b x4b

XSw  x6bw

041
020 050

x5b  x6b

0.100 0.080 0.060 0.100 0.330
0.075 0.060 0.045 0.075 0.060 0.295
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