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13.1 Introduction

Latent growth curve analysis (McArdle, 1986, 1988; Meredith & Tisak,
1990; Willett & Sayer, 1994) is well suited to analyze systematic change in
longitudinal data collected from a panel design. It represents outcome
variables explicitly as a function of time and other measures. Specifically,
latent growth curve analysis is a statistical technique to estimate the
parameters that represent the growth curves that are assumed to have given
rise to the structure of thé repeatedly measured outcome variable over time.
Growth curve analysis can be applied just to get a (unconditional)
description of the mean growth over a certain period of time. However, the
emphasis of this technique lies in explanation of differences between
subjects in the parameters describing the growth curves; in other words, in
the systematic inter-individual differences in intra-individual change.

As a special case of the general structural equation model, the latent
growth curve model can benefit from the advantages of structural equation
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modeling approach. As such, the latent growth curve model can be extended
in several ways. Two of such extensions have been proven to be of special
value: (1) fixed factor loadings can be estimated to account for nonlinear
growth, and (2) the factorial structure of the repeatedly measured variable
can be incorporated explicitly in the latent growth curve model (see for
instance McArdle, 1988; McArdle & Hamagami, 1996; Hancock, Kuo &
Lawrence, 2001). This chapter provides a demonstration of these two
extensions, together with a discussion and clarification of two
methodological issues that may hinder the interpretation of the results of
these extended latent growth curve models. Both issues are related scaling
problems concerning the latent variable structure, and will be introduced in
the next paragraphs.

Regarding the first issue, the linear latent growth curve model is often
too restricted to fit the data. A possible way out of this type of situation is to
include one or more higher-order polynomial terms into the growth model to
account for the nonlinear growth or development present in the data or
theory, for instance, via a quadratic or cubic term in a polynomial growth
curve model. An alternative approach to the inclusion of higher-order
polynomial terms is the “latent basis™ approach, originating from the work of
Rao (1958) and Tucker (1958), and introduced in SEM by McArdle (1986)
and Meredith and Tisak (1990). In contrast to higher-order polynomial
growth curve models, in which all coefficients of the basis functions (i.c. the
factor loadings) are fixed to known values, the “latent basis” approach
describes nonlinearity in the growth curves by estimating the basis function
coefficients for the growth factor, instead of including higher-order
polynomials. While this model presents a challenging and elegant way of
modeling growth, it contains some inherent pitfalls, which are only partially
known in the literature. The problems are recognized in common factor
analysis. It is important to recognize these problems also in latent growth
curve modeling, for they may play an essential role. The pitfalls concern the
apparent differences of the growth parameter estimates and of the standard
errors due to the scaling of the latent growth factor. De Pijper and Saris
(1982) reported already, for the general confirmatory factor model, that
standard errors might change as the model incorporates a different scaling of
the latent variable structure. The differences in these statistics can be so large
that on the same data one set of restrictions can lead to the conclusions that a
correlation between two factors is not significantly different from zero, while
another set of restrictions can lead to the opposite conclusion (de Pijper and
Saris, p.182; cf. Mellenbergh, Kelderman, Stijlen & Zondag, 1979; Saris,
1978). The aim of this part of the chapter is to clarify by demonstration that
this scaling issue is also present in the latent growth curve model since it can
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be regarded as a special case of the general common factor model'. It is
illustrated that standard errors and test statistics (i.e. the Wald statistic) of
some of the parameters of the latent growth curve model change as a
consequence of a different scaling of the basis function of growth rate.
Furthermore, regarding this scaling issue, the question is explored whether a
two-stage approach (cf. Joreskog & Sorbom, 1988) can overcome these
differences. This is important because the Wald statistic is used to test model
parameters in many tutorials and applications of the latent growth curve
model.

The second issue this chapter addresses concerns the fact that often the
same set of indicators is assessed at each measurement occasion of a
longitudinal study. A possible approach to such multiple indicators is to
create summated scale-scores at each time point for each individual, also
known as ‘item partialling’. Subsequently, a growth model, or some other
type of longitudinal model (e.g. an autoregressive model), may be built for
this new variable. Although item partialling appears a natural way to deal
with multiple indicators, it has some important drawbacks (Bandalos, 2002;
Hall, Snell & Singer Foust, 1999). It may lead to biased estimates of the
model parameters if the indicators within each measurement occasion violate
the assumption of unidimensionality (Bandalos, 2002). In addition, item
partialling will not yield as stringent a test of structural equation models
because the reduction of data points relative to the original items may be too
influential (Bandalos, 2002).

A better approach to multiple indicators may be to model them,
explicitly, as indicators of a latent construct or factor at each measurement
occasion. A growth model may be constructed then to explain the variance
and covariance among the first-order latent factors. This approach has been
termed second-order growth modeling by Hancock, Kuo and Lawrence
(2001) in contrast to first-order growth modeling on the observed indicators.
Different names for the same model are ‘curve-of-factors model” (McArdle,
1988), and ‘multiple indicator latent growth model’ (Chan, 1998). We refer
to Hancock et al. (2001) for a recent illustration of this approach. Modeling
multiple indicators in a longitudinal setting requires a test on the structure of
the measurements, i.e. a test of measurement invariance. Complications
concerning the test of measurement invariance will be highlighted, more
specific, it will be demonstrated that the choice of a specific indicator as
reference for the scaling of the latent variable may influence the fit of the
latent growth curve model as well as the parameter estimates. Measurement
invariance has been the topic of discussion and investigation before, see for
instance (Bechger, 1997; Byme, Shavelson & Muthén, 1989; Dolan &

! Most applications of the common factor model concern latent psychometric variables; the
latent growth curve model, on the other hand, concerns latent chronometric variables (Mc
Ardle, 1989)
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Molenaar, 1994; Hormn & McArdle, 1992; McArdle & Cattell, 1994;
Meredith, 1964; 1993).

The topics to be discussed concern a relatively advanced use of latent
growth curve modeling. A detailed enunciation of latent growth curve
modeling is, therefore, beyond the scope of this chapter. Good introductions
are provided by Willett and Sayer (1994), Stoolmiller (1995), MacCallum et
al. (1997), McArdle & Epstein (1987), Muthén and Khoo (1998) and
Duncan, Duncan, Strycker, Li and Alpert (1999). In the next section the
latent growth curve model with an estimated basis function will be
discussed; Section 3 will be devoted to the issue of measurement invariance
in second-order latent growth curve models.

13.2 The Latent Growth Curve Model with an Estimated Basis
Function

Consider the simple latent growth curve model in Equation 1 for an outcome
y:i of individual i at time point ¢:

Yi= Noi+ N by + &
Thoi = Vo + oi N
mi=vi+ u

where 7jo; represents the (initial) level factor, and 7,; represents the growth
rate factor, while the basis function for the growth rate factor, b, represents
an elementary function of time (e.g. measurement occasion or age), and & is
a time-specific residual; v and & , and v; and {;; are the mean and
deviation of respectively the level factor and the growth rate factor. The
variances and covariance of the level and growth factor are respectively g,
vii, and yp;. Conceptually, growth of the individuals in the population is
characterized by growth curves in which the growth parameters (level and
growth rate) may vary. Equation 1 provides a general form of the latent
growth model that can be used to describe nonlinear growth.

Although the unobserved growth rate score is an individual
characteristic which remains the same across time, the observed impact of
this growth rate score changes as a function of time b, (McArdle &
Hamagami, 1992). To represent linear growth, the coefficients in the basis
function for the growth rate factor (Meredith & Tisak, 1990, p. 108), b, of
Equation 1, are fixed to specific values; for instance, to values corresponding
to the measurement occasion (e.g. b= [0, 1, 2, 3]) or some related scaling.
With a fixed basis function, the level and growth rate factors have a
straightforward interpretation: the level factor represents the status at the
time point defined as zero, and the growth rate factor represents the amount
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of change per time unit. Often, just the first measurement occasion is defined
as the zero time point, and is loosely phrased by many authors as the ‘initial
status’ (but see Stoel & Van den Wittenboer, 2003).

The nonlinear growth model of McArdle (1986) and Meredith and
Tisak (1990) is obtained by estimating the values of the basis coefficient in
Equation 1 (i.e. b,) from the data. For purposes of identification at least two
basis function coefficients need to be fixed, the remaining coefficients are
estimated. The basis function coefficients reflect a common factor of
individual differences in the pattern of change over time (McArdle &
Hamagami, 1996, p.109). Muthén and Khoo (1997) explain the estimation of
the basis function coefficients as the estimation of the time scores. The
essence is captured effectively with the following citation of Garst (2000,
p.259): “Statistically, a linear model is still estimated, but the nonlinear
interpretation emerges by relating the estimated time scores to the real time
frame... Therefore, a new time frame is estimated and the transformation to
the real time frame gives the nonlinear interpretation”. In other words, what
would be the value of the time scores (i.e. basis function coefficients) if true
growth were linear? Thus, although the model in Equation 1 keeps being
linear, it can be given a nonlinear interpretation.

To elucidate this in more detail, suppose the following basis function
in Equation 1, with the first two values fixed: b= [0, 1, b3, bs]. Assume this
basis function is used to analyze data from a time-structured design (Bock,
1979) with equal spacing of the four occasions of measurement of, say, one
year. The level factor still represents the status at the first measurement
occasion since it is invariant to this type of transformations of the basis
function. The growth rate factor, however, now represents the (linear)
growth between the first and the second measurement occasion. For
example, if the time scores are estimated as b= [0, 1, b3= 1.5, bs=1. 751, this
1mphes that the growth between the third and second occasion equals 1.5 - 1

= .5 times the growth rate factor; and the growth between the fourth and
thlrd occasion equals 1.75 — 1.5 = .25 times the growth rate factor. In other
words, the increments of the elements of the basis function decrease. Thus,
growth is the strongest between the second and the first occasion, and gets
less strong during the subsequent occasions. If true growth were linear, then
the mean score reach at the third measurement occasion (t=2), would have
been reached at t=1.5. '

The basis function described above, with the first two values fixed,
represents the usual scaling. This scaling is, however, somewhat arbitrary.
McArdle & Bell (2000) demonstrate that any scaling, with two basis
function values fixed, could be used instead. With a different scaling of the
basis function the overall model fit is identical, as well as the estimated
mean growth curve.

Now, let a different scaling of the basis function be b’= [0, b,, b, 3]}
(cf. McArdle & Bell, 2000). Growth is now interpreted in terms of the full
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period. Since the ratio of b/b,,; remains the same for a different scaling of
the model with the same data (McArdle & Bell), the values of an alternative
basis function can be computed easily. Thus, for example, by/b, of basis
function b, equals b'y/b',of basis function b,’. This implies that the basis
function from the previous example, b= [0, 1, bs= 1.5, by=1.75], corresponds
to b= [0, by’=3*(1/1.75) =1.71, by’= 3*(1.5/1.75) =2.57, 3]. In other words,
the elements of the basis function are multiplied by a factor 3/1.75=1.71.
Figure 13.1 illustrates this graphically. From the figure it can be seen that
both basis functions lead to the same mean growth curve.

Figure 13.1. Two basis functions procedure the same mean growth curve
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As an illustration, the analysis of an empirical data set will now be
presented. The data were taken from the Dutch longitudinal PRIMA cohort
study (Driessen, Van Langen & Vierke, 2000). The measurements in the
present example are from a subsample, presenting the complete data of 679
children on four consecutive measures of children’s academic motivation
measured with two indicators (x, and y,). The covariance matrix and mean
vector are given in Table 13.1. In this section only the measures of x, are
used; simultaneous analysis of both x, and y, will be the topic of the next
section. The goal of these example analyses is to clarify by demonstration
the problem of arbitrariness of the basis function’s scaling, and to illustrate
the consequences for the parameter estimates and model fit.
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Table 13.1. Sample means and covariance matrix of academic motivation

Language

X1 n X2 Y2 X3 3 X4 Y4

Mean vector 3604 3.640 3.518 3.248 3443 3209 3446 3.241
Covariance

matrix
X; .881
531 763
i

X2 213 228 .850
¥ .260 .282 551 1.069

X3 .166 239 268 337 1.059
¥3 259 315 .359 453 .631 1.106

X4 204 231 262 336 403 427 1.121
Ve 216 275 .287 399 367 514 720 1.101

Note: x, and y, refer to the measurement of x respectively y at time point f.

Growth curve models with a different scaling of the basis functions are
fit to the covariance matrix and mean vector of Table 13.1 using Mplus 1.04
(Muthén & Muthén, 1998). The basic model to be fit was the model
expressed in Equation 1. Table 13.2 shows the relevant parameter estimates
and fit measures of the model with different basis functions.

Models are fit to the data with varying basis functions: Model 1.1 with
b, = [0, 1, bs, bs), and Model 1.2 with b= [0, by, bs, 3]. The zero time point
did not change, however, and is placed at the first measurement occasion for
both models. As may be expected, the overall fit of Model 1.1 and 1.2 is the
same. Thus, Models 1.1 and 1.2 can be regarded as statistically equivalent,
and graphs with a similar curve will emerge. Both basis functions, in
combination with the means of the level factor and the growth factor, lead to
a curve characterized by a decreasing growth rate as time passes by.
However, Table 13.2 shows that the mean and variance of the growth rate
factor (respectively -07 vs. -.05; and .05 vs. .03), as well as their test
statistics (respectively -2.34 vs. -3.12 and 1.32 vs. 2.42) differ across the two
models. The mean and variance of the level factor are the same, as well as
their test statistics. This is as expected since the zero time point did not
change. The correlation between the level and growth factor (-.25) is the
same across these two models?, but not its test statistic (-.84 vs. -.96).

2 If, however, the origin of the time scale would also have been changed between the two
models, then the correlation between the level and growth factor could have changed as
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Table 13. 2. Maximum Likelihood estimates of the parameters of the fitted growth models
with different basis functions

Model 1.1: Model 1.2:

b/'=[0, 1, b3, bu] b’=[0, by, bs, 3]
Parameter

estimate s.e. est./s.e estimate s.e. est/s.e

Mean (level) 3.60 034 106.65 3.60 034 106.65
Mean (growth) -07 028 -2.34 -.05 015 -3.12
Var (level) 24 058 4.18 24 058 4.18
Var (growth) 05 040 1.32 .03 012 2.42
Correlation -25 .034 -.84 -.25 022 -.96
(level, growth)
b, [0, 1, 2.49, 2.19] [0, 1.37, 3.40, 3]

CHISQ x*(3)=1.08, p=.78 x’(3)=1.08, p=.78
RMSEA .000 .000

Note: The test statistic (Wald test) = Estimate/ standard error. The test statistic of the
correlation is computed using the covariance as the parameter estimate.

Since the basis function coefficients are different and therefore the unit of
the time scale, it is obvious that there must be differences in the estimates
and standard errors. In the next section it is demonstrated that the differences
in the parameter estimates can, indeed, be explained by a (linear)
transformation of the basis function (cf. McArdle & Bell, 2000). However,
some standard errors do not change according to this transformation, which
led to different values of the test statistics (i.e. parameter estimate/ standard
error) for the same parameter estimate. To put it in other words, the observed
change in the test statistics implies an additional change in the standard
errors above the linear transformation. In the next section it is also illustrated
that the differences in the test statistics are a consequence of the fact that a
different factor loading (i.e. basis function coefficient) is fixed to a nonzero
value (cf. de Pijper & Saris, 1982).

13.2.1 Clarification of the problem

The consequences of a linear transformation of the basis function for the
parameter estimates of the LGC model are well known (Mehta & West,

well. Several authors have shown that, depending on the origin of the time scale, this
correlation may take any value between -1 to +1 (e.g. Mehta and West, 2000).
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2000; Rogosa, Brandt and Zimowski, 1982; Rogosa and Willett, 1985; Stoel
& Van den Wittenboer, 2003), and have even been studied for the LGC
model with an estimated basis function (Rovine & Molenaar, 1998).
However, the focus of these articles was primarily on the effect of changing
the time point of initial level. In other words they focused on transformations
of the basis function by adding or subtracting a constant. Nevertheless, the
equations provided by Stoel and Van den Wittenboer, can be used to explain
the effect of transformations by multiplying the basis function with a scaling
factor.

A comparison of the estimated basis function coefficients in the
previous section reveals that they are just linear transformations of each
other. The basis function of Model 2 can be computed by hand by
multiplying the elements with the scaling factor f=3/2.19 = 1.37. Equations
2 to 4 give the effect of the scaling factor on the variance/ covariance
estimates (see Equation 13 to 15 of Stoel & van den Wittenboer, 2003, p.28).
The derivation of these equations is also given by Stoel & van den
Wittenboer.

N 2a a’

Yo =Yoo ""E"/’lo +'ﬁ_2"//u 2
« 1 a

Vo :E‘/’m "‘F'//n 3
+_Yu

Vi '32 “

where ¥y represents the transformed variance of the level factor, v
the transformed variance of the growth rate factor, and !//*o, is the
transformed covariance between these parameters. & is the shift on the basis
function, and S is the scaling factor. To keep things simple, it is assumed in
the following that & equals zero. Consequently, the basis functions of Model
1.1 and 1.2 both had the first coefficient constrained to zero. This section,
thus, only focuses on transformation of the basis function by multiplying its
coefficients with the scaling factor, and not on a shift of the basis function.
Shifting the origin of the time scale does, however, have additional
consequences for the estimates of the growth parameters, as well as for the
effect of time-invariant covariates. These issues have recently been
discussed by Mehta and West (2000), and Stoel and van den Wittenboer
(2003).

Equation 2 to 4 clearly show that the variance of the level factor is not
affected by the scaling factor, that the variance of the growth rate becomes a
factor / smaller, and that the covariance between the level and growth rate
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becomes a factor £ smaller. With these equations it can be shown that the
correlation between the level and growth rate does not change as a function
of B Equation 5 shows that the scaling factor # plays no role in the
computation of the correlation between the level and the growth factor.

1
B“Vlo v
Correlation (level, growth)’ = = 10 (%)
v Yiu VYVYevVu
00

BZ

It can be concluded that the correlation between the level and growth
rate is scale invariant, and that the variance of the level, the variance of the
growth rate and their covariance are scale free. That is, though these
parameters are affected by a change in the basis function, they can be
translated into each other by a linear transformation. If we know the
parameter estimates with one type of scaling, we implicitly know the
parameter estimates at another scaling of the basis function. It can be easily
shown that the mean of the growth rate factor is also scale free, and that it
becomes a factor # smaller. However, if the models were completely scale
free, then the standard errors would also have to change proportionally
resulting in equivalent test statistics. As noted before, the observed change in
the test statistics implies an additional change in the standard errors above
the linear transformation. _

This change of the values of the test statistic does not only occur in
growth curve models with an estimated basis function. It occurs in any
confirmatory factor analysis with some, but not all, factor loadings fixed to a
value unequal to zero (de Pijper & Saris, 1982; see also Bollen, 1989, and
Browne, 1982). Since, in the past years, the focus was mainly on growth
curve models with an entirely fixed basis function (e.g. linear or quadratic),
the issue has not arisen previously. The solution is provided by Jéreskog and
Soérbom (1988) for a confirmatory factor analysis, but seldom used. They
implicitly state that invariant estimates of the standard errors can be obtained
with a two-stage approach, by reanalyzing the model while fixing the factor
loadings to the estimated values of the first analysis. For the growth curve
model with an estimated basis function this would mean that in the second
step the coefficients of the basis function are fixed to their estimated values
of the first step. With this two-stage approach, the standard errors follow the
same linear transformation as the parameter estimates, and consequently the
values of the test statistic will be invariant across models.

Table 13.3. Maximum Likelihood estimates of the parameters of the fitted growth models
with basis functions fixed to the estimated values of step 1.
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Model 2.1: Model 2.2:

b=[0, 1, 2.489, 2.194] b=[0, 1.367, 3.403, 3]
Parameter

estimate s.e. est/se. estimate s.e. est./s.e.

Mean (level) 3.596 .033  110.08 3596  .033 110.08
Mean (growth) -.065 018 -3.66 -.048 .013 -3.66
Var (level) 244 .054 4.55 244 .054 4.55
Var (growth) .052 .015 3.45 .028 .008 3.45
Corr. (level, growth) -252 .025 -.1.14 -.252 018 -.1.14
CHISQ $*(5)=1.076, p=.96 1*(5)=1.076, p=.96
RMSEA .00 .00

Note. The test statistic (Wald test) = Estimate/ standard error. The test statistic of the
correlation is computed using the covariance as the parameter estimate.

Table 13.3 provides the correct estimates of the standard error and test
statistics for Model 2.1 and Model 2.2. All parameter estimates and their
standard errors are now scale invariant or scale free. The parameter estimates
of Model 2.2 can be computed by hand from the parameter estimates of
Model 2.1 using Equations 2, 3 and 4 with &= 0, and £ =2.194/3 = .731. As
expected the value of the x-test statistic is the same, however, the overall
model fit seems to be better because the model has two degrees of freedom
more caused by the fact that the basis function is now entirely fixed.

13.3 Multiple Indicators: The Issue of Longitudinal Measurement
Invariance®

Longitudinal measurement invariance, or measurement invariance across
time, means that the numerical values across measurement occasions are
obtained from the same measurement scale (Drasgow, 1987; cf. Meredith,
1993). The general question of measurement invariance is one of whether or
not, under different conditions of observing and studying phenomena,
measurement operations yield measures of the same attribute (Hom &
McArdle, 1992). In other words, invariance of measurements ensures an
equal definition of a latent construct over time (Hancock et al. 2001). In
other words, do indicators with the same face validity (i.e. identical scaling

3 Meredith (1993) uses the concept of weak measurement invariance to stress that only the
first two moments of the probability distribution function are invariant (see also Lubke,
Dolan, Kelderman and Mellenbergh (2001). Our concept of measurement invariance
corresponds to weak measurement invariance as defined by Meredith.
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and wording) relate to the underlying construct in the same fashion over time
(Sayer & Cumsille, 2001)?

Within the context of the common factor model, measurement
invariance is often investigated using the concept of factorial invariance
(Meredith, 1964; 1993). Meredith describes factorial invariance as being
composed of 3 hierarchical levels, respectively: weak, strong, and strict
factorial invariance, with strict factorial invariance being the strongest form
of factorial invariance. It will not be surprising that factorial invariance, in
general, assumes configural invariance, being that the same indicators of the
latent construct are measured at each occasion. Furthermore, weak factorial
invariance requires the measurement parameters of each indicator (i.e. the
factor loadings) to be invariant over time. Second, strong factorial invariance
requires equal indicator intercepts. Third, strict factorial invariance requires
also the residuals to be equal over time. Meredith (1993) has shown that
strict factorial invariance almost certainly ensures measurement invariance®.

In practice, strict factorial invariance is likely to be violated, and
researchers have been investigating whether the requirements of strict
factorial variance can be relaxed (e.g. Byrne, Shavelson & Muthén, 1989;
Horn & McArdle, 1992; McArdle & Cattell, 1994; Pentz & Chou, 1994;
Lubke & Dolan, 2002). Some researchers state that invariance of the
residuals is not required for testing hypotheses about common factors.
Unequal residual variances are indicative only of differences in reliability of
the observed variable (Little, 1997), and do not concern the common factors
(Oort, 2001). In other words they suggest strong factorial invariance to be a
sufficient test for measurement invariance. A recent simulation study by
Lubke and Dolan (2002), however, casts some doubt on this latter
suggestion. They show that under some conditions differences in residual
variances can mask differences in indicator intercepts. More liberal scholars
have even been suggesting relaxations of strong factorial invariance, termed
‘partial measurement equivalence’ (Byme et al.). A measurement model
possesses partial measurement invariance if some measurement parameters
are free and others are constrained to be equal over time. Byme et al., as well
as Pentz and Chou, argue that partial measurement invariance is a sufficient
requirement, and a more realistic goal compared to strong or even strict
factorial invariance. Methodological research about partial measurement
invariance is scarce, but, as already noted by Meredith (2001), it deserves
more attention than it has received. In this section it will be demonstrated
that partial measurement invariance may present some problems if the latent
variable structure is scaled using a reference indicator. The term ‘full

* Lubke, et al. (2002) discuss instances in which strict factorial invariance between groups in
the cross-sectional common factor model is not a sufficient condition for measurement
invariance, hence the phrase “almost certainly”. They conclude, however, that these
exceptions do not represent a serious threat in practice.
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measurement invariance’ is used to indicate a model with strong factorial
invariance, and ‘partial measurement invariance’ is used to indicate a model
in which some of the requirements of strong factorial invariance have been
relaxed.

Consider the second-order growth model of Figure 13.2, in which we
restrict ourselves to a growth model with two indicators (x, and y,) at four
equally spaced measurement occasions ¢. Generalizations to more indicators
at each measurement occasion are straightforward, but beyond the scope of
this chapter. Figure 13.2 schematically represents full measurement
invariance: (1) one factor loading of one indicator within each measurement
occasion is fixed to the value of 1 for the purpose of scaling the covariance
structure of the latent variable. (2) The factor loadings for the other indicator
are estimated, but they are constrained to be equal across time. (3) One
indicator intercept of one indicator within each measurement occasion is
fixed to the value of zero for the purpose of scaling the mean structure of the
latent variable® (4). The intercepts of the remaining indicator is estimated,
but are constrained to be equal across time. In other words, each repeatedly
measured indicator (x, and y,) has the same factorloadings and intercepts
across time. In Figure 13.2, indicator x, is used to scale the latent variable;
we will refer to this indicator as the reference indicator. However, y, could
also have been used as the reference indicator. Full measurement invariance
has the attractive property of being invariant to the scaling of the latent
variable. That is, if the indicator y, were used to scale the latent variable
instead of indicator x,, the same parameter estimates and overall model fit
would have emerged.

Partial measurement invariance is not as strict as full measurement
invariance in that a few violations are tolerated. That is, the factorloadings
(a), and or the indicator’s intercepts (c) do not have to be of the same value,
need not necessarily to be equal for the full time period. Following the
arguments for full measurement invariance, it may be expected that using
either x; as the reference indicator and to estimate the factorloadings for y;
should result in the same model fit as using y, as the reference and to
estimate the factor loading for x, Differences may arise, however, if the
indicator’s intercepts are not constrained to be equal; i.e. if parameter c is
estimated uniquely at each occasion. Now, the model is no longer insensitive
to the scaling of the latent variable; if y, is used as the reference variable
instead of x,, different model parameters and a different overall model fit will
emerge. In other words, the latent growth curve model under partial
measurement invariance is not invariant under a different scaling of the

5 An alternative approach to scale the mean structure of the model might be fixing the mean of
the level factor to zero instead of the intercept of one indicator each time point (see chan,
1998; Dolan and Molenaar, 1994; Hom and Mc Ardle, 1992). In many applications,
however, the way of scaling the mean structure as presented here is implemented.
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mean structure of the latent variable by using a reference indicator. We will
illustrate this in the example of the next section.

Figure 13.2. Schematic presentation of full measurement invariance in a linear latent growth
curve model

Note: Intercepts of indicators are conceptualized as regression on a constant equal to one (See
Hancock et al, 2001). Only the relevant parameters are presented. Factorloadings for x, are
fixed to 1.00 prior to estimation; factorloadings of Y, are constrained to be equal (a); intercepts
of Y, are fixed to zero; intercepts of Y, are constrained to be equal (c). The curved double-
headed arrow represents a correlation between the latent factors.

13.3.1 Example

The data to be analyzed are presented in Table 13.1 of Section 2. In this
section both indicators of academic motivation are incorporated into a latent
growth curve model. The model to be analyzed is equivalent to the model
depicted in Figure 13.2. Thus, it is a linear growth curve model with the
basis function for the growth rate factor fixed to b=[0, 1, 2, 3]. Table 13.4
presents the relevant parameter estimates.

Table 13. 4. Parameter estimates of growth models without (Model 3.1), with

full (Model 3.2 and 3.3), and with partial measurement invariance (Model 3.4
and 3.5)

Model 3.2 Model 3.3 Model 3.4 Model 3.5
Parameter
Mean (level) 4.86 3.54 4.36 3.54

(15.75) (113.96) (14.31) (113.83)
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Mean (growth)  -.06 -.06 -.03 -.06

(-8.87) (-8.87) (-3.29) (-9.12)
Var (level) 34 34 32 30

(6.42) (6.42) (6.44) (6.13)
Var (growth) 01 01 .01 .01

(2.95) (2.95) (2.86) (2.53)
Cov -01 -01 -.00 -.00
(Level,Growth)  (-.48) (-.48) (-41) (--06)
CHISQ 1(15)=80.01  x*(15)=80.01  ¥*(12)=12.70  x*(12)=62.53

p=-00 p=.00 p=-39 p=.00
RMSEA .08 .08 01 .08

(.06 -.10) (.06 -.10) (.00 - .04) (.06 - .10)

Note: Estimate/ standard error in brackets for the growth parameters; for the RMSEA the 90%
confidence interval is given in brackets.

Model 3.2 and Model 3.3 are latent growth curve models under full
measurement invariance with, respectively x, and y, as reference indicator.
Model 3.4 and 3.5 have partial measurement invariance with, respectively, x,
and y, as reference indicator. Firstly, from Table 13.5 it can be seen that the
latent growth curve model, under full measurement invariance, is insensitive
to the choice of the reference indicator (Model 3.2 and 3.3). The overall fit
measures of Model 3.2 and Model 3.3 are equivalent (%*(15)=80.09 p=.00;
RMSEA = .08). The only difference between the models is in the estimates
of the mean of the level factor, 4.86 respectively 3.54. Apparently the two
indicators, x, and y,, have different means over time, and using one instead of
the other as a reference indicator changes the scale, and therefore the mean
of the latent factors. This does, however, not change any substantive
interpretation based on the model, it simply illustrates the arbitrariness of the
mean of the level factor.

Inspection of Model 3.2 and Model 3.3 shows that full measurement
invariance is not supported for these data. The significant chi-square
%*(15)=80.01, and the large RMSEA values clearly lead to a rejection of full
measurement invariance. Inspection of the results suggests that the misfit
might have been caused by the equality restrictions on the estimated
indicator intercepts (see constraint ‘c’ in Figure 13.2). In other words, the
requirement of full measurement invariance might be too strict for these
data. Consequently, this requirement will be relaxed in Model 3.4 and Model
3.5 by removing the equality constraint for the intercepts. In other words,
Model 3.4 estimates the intercepts of y, and Model 3.5 estimates the
intercepts of x,.

Table 13.4 shows clearly that Model 3.3 and Model 3.4 are quite
different. Model 3.4 can be regarded as fitting excellently, whereas the fit of
Model 3.5 is quite poor. In addition, the parameter estimates in both models
differ. Thus, an apparently arbitrary choice of the reference indicator can
have serious consequences for the model fit and the parameter estimates of
the corresponding models.
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The data of the example consist of two repeatedly measured indicators
(x; and y,). Since Model 3.4 (with x, as the reference indicator) provided a
good model fit, while Model 3.5 (with y, as the reference indicator) did not,
it can be concluded that the intercepts of y,, cannot be constrained to be equal
across time. In other words, the intercepts of x, may be regarded as being
invariant, but this does not hold for the intercepts of y,, and thus choosing
one of the two in an LGC model with partial measurement invariance affects
the parameter estimates. Although it was not illustrated in this example, it is
not difficult to see that this may also occur for the factor loadings. If a
different reference indicator is chosen with partial measurement invariance
of the factor loadings, parameter estimates and model fit may change.

13.4 Discussion

In the first section of this chapter, we clarified by demonstration that growth
interpretations based on the growth curve model with an estimated basis
function are indeed nonarbitrary, and a plot with a similar shape will be
drawn from the growth estimates obtained under any rescaling (McArdle &
Bell, 2000, p.107). More specifically, it is demonstrated that, given a two-
stage approach, the parameter estimates and standard errors of the LGC
model with an estimated basis function will be scale invariant or scale free.

The latent growth curve model with an estimated basis function has
been applied relatively few times compared to its linear variant (but see for
instance McArdle, 1989; McArdle & Anderson, 1990; McArdle &
Hamagami, 1992; Muthén and Khoo, 1997; Raykov & Marcoulides, 2000;
Rovine & Molenaar, 1998). The reason for this might have been the difficult
interpretation and changes in the standard errors. However, in this chapter it
is demonstrated that the differences could be easily overcome by adopting
the two-stage approach advocated by Joreskog and Sorbom (1988), in
another context. Actually, if in any factor analysis model a different factor
loading is fixed to a value unequal to zero for purposes of scaling, the
estimates of the standard errors may be different. Although it is comforting
that the two-stage approach advocated here leads to the same linear
transformation in the standard errors as in the parameter estimates, an
objection against the approach might be that it eliminates the sampling
variability in the estimated coefficients. In what way the standard errors are
underestimated requires further research, which will be the topic of future
work.

The results of this chapter support the statement of McArdle & Bell
(2000, p.82) that the LGC model with an estimated basis function “is
certainly a viable optional basis in LGC models”. However, this LGC model
presents a somewhat exploratory approach to the modeling of nonlinear
growth, and more rigorous hypotheses about nonlinear growth can be tested
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as illustrated by McArdle & Hamagami (1996). A Gompertz-growth model,
for example, can be specified by adding a third latent variable together with
nonlinear restrictions on the basis functions coefficients (Browne & DuToit,
1991). In general, these are all alternative forms of latent growth curve
models (McArdle & Hamagami, p.109).

In the second part, apparently similar multiple indicator latent growth
curve models are compared under full and partial measurement invariance.
While changing the reference indicator has no serious consequences for the
model under full measurement invariance, model fit and parameter estimates
may change drastically under partial measurement invariance. Full
measurement invariance, i.e. strong factorial invariance may, therefore, be a
necessary condition for a valid interpretation of change in latent constructs
for models that scale the latent variable structure with using reference
indicators. Freely estimating the intercepts may lead to completely different
models depending on the choice of the reference indicator in this case. This
argues against an unsophisticated relaxation of full measurement invariance
to partial measurement invariance. In other words, though the choice of the
reference indicator does not influence the model under full measurement
invariance, it matters under partial measurement invariance.

The approach discussed here consists of identifying the covariance
and mean structure by constraints on, respectively, the factorloadings and
indicator intercepts, and constitutes the approach to second-order latent
growth curve modeling as recently presented by, for example, Hancock, Kuo
and Lawrence (2001), Oort (2001) and Sayer and Cumsille (2001; cf.
Vandenberg & Lance, 2000). Under full measurement invariance, and no
violation of other model assumptions, the approach leads, as was illustrated,
to the correct parameter estimates and model fit. Under partial measurement
invariance, however, the approach might lead to incorrect parameter
estimates and model fit. An alternative approach might solve the problems
discussed above for models that fail to satisfy full measurement invariance.
That is, the covariance and mean structure of the model can also by
identified by means of constraints on the latent variable structure (e.g. Chan,
1998; Dolan & Molenaar, 1994; Horn & McArdle, 1992) instead of
constraints on the measurement part of the model (i.e. on the factorloadings
and intercepts). Though this approach might prove an attractive alternative
for the general longitudinal factor model under partial measurement
invariance, it may lead to other complications if a latent growth structure is
imposed on the first order factors. The mean structure, for example, can be
identified by constraining the mean of the level factor to zero, while
estimating indicator intercepts. However, in some instances the mean of the
level factor can be interpreted as the initial status of the growth process, and
thus may be a substantively interesting parameter. Constraining its mean to
zero makes inferences regarding this parameter impossible. Nevertheless,
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under partial measurement invariance, not being able to interpret some
parameters should be preferred to getting an unwanted solution.
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