
0

Sample Sizes for Multilevel Modeling

Cora J.M. Maas, Joop J. Hox

Corresponding author: C.J.M. Maas, E-mail: c.maas@fss.uu.nl

Address (both authors):

Department of Methodology and Statistics

Faculty of Social Sciences, Utrecht University

P.O.B. 80140

NL-3508 TC Utrecht, the Netherlands

Tel:/Fax: +31 30 2534594 / +31 30 253 5797

mailto:c.maas@fss.uu.nl


Sample Sizes for Multilevel Modeling

1

Abstract

The main problem of studying hierarchical systems, which often occur in social statistics, is

the dependence of the observations at the lower levels. Multilevel analyzing programs account

for this dependence and in recent years these programs have been widely accepted.

A problem in multilevel modeling is the question what constitutes a sufficient sample

size for accurate estimation. In multilevel analysis, the restriction is often the higher-level

sample size. In this paper, a simulation study is used to determine the influence of different

sample sizes at the highest level on the accuracy of the estimates (regression coefficients and

variances). In addition, the influence of other factors such as the lowest level sample size and

different variance distributions between the levels (different intraclass correlations). The

results show, that only a small sample size at level two (meaning a sample of 50 or less) leads

to biased estimates of the second-level standard errors at the second level. In all of the other

simulated conditions the estimates of both the regression coefficients, the variance

components and the standard errors are unbiased and accurate.
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1. Introduction

Social research often involves problems that investigate the relationship between individual and

society. The general concept is that individuals interact with the social contexts to which they

belong, meaning that individual persons are influenced by the social groups or contexts to which

they belong, and that the properties of those groups are in turn influenced by the individuals who

make up that group. Generally, the individuals and the social groups are conceptualized as a

hierarchical system of individuals and groups, with individuals and groups defined at separate

levels of this hierarchical system.

Even if the analysis includes only variables at the lowest (individual) level, standard

multivariate models are not appropriate. The hierarchical structure of the data creates problems,

because the standard assumption of independent and identically distributed observations (i.i.d.) is

generally not valid. Multilevel analysis techniques have been developed for the linear regression

model (Bryk & Raudenbush, 1992; Goldstein, 1995), and specialized software is now widely

available (Bryk, Raudenbush & Congdon, 1996; Rasbash & Woodhouse, 1995).

For example, assume that we have data from J groups, with a different number of

respondents nj in each group. On the respondent level, we have the outcome variable Yij. We

have one explanatory variable Xij on the respondent level, and one group level explanatory

variable Zj. To model these data, we have a separate regression model in each group as follows:

0 1ij j j ij ijY X eβ β= + + . (1)



Sample Sizes for Multilevel Modeling

3

The variation of the regression coefficients βj is modeled by a group level regression model, as

follows:

0 00 01 0j j jZ uβ γ γ= + + , (2)

and

1 10 11 1j j jZ uβ γ γ= + + . (3)

The individual-level residuals eij are assumed to have a normal distribution with mean zero and

variance σe
2. The group-level residuals u0j and u1j are assumed to have a multivariate normal

distribution with expectation zero, and to be independent from the residual errors eij. The

variance of the residual errors u0j is specified as σ00, and the variance of the residual errors u1j is

specified as σ11.

This model can be written as one single regression model by substituting equations (2) and

(3) into equation (1). Substitution and earranging terms gives:

00 10 01 11 1 0ij ij j ij j j ij j ijY X Z X Z u X u eγ γ γ γ= + + + + + + (4)

The segment [γ00 + γ10 Xij + γ01 Zj + γ11 ZjXij] in equation (4) contains all the fixed coefficients; it

is the fixed (or deterministic) part of the model. The segment [u0j + u1j Xij + eij] in equation (4)

contains all the random error terms; it is the random (or stochastic) part of the model. The term
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ZjXij is an interaction term that appears in the model because of modeling the varying regression

slope β1j of respondent level variable Xij with the group level variable Zj.

Multilevel models are needed because grouped data violate the assumption of

independence of all observations. The amount of dependence can be expressed as the intraclass

correlation ρ. In the multilevel model, the intraclass correlation is estimated by specifying an

empty model, as follows:

Yij = γ00 + u0j + eij. (5)

Using this model we can estimate the intraclass correlation ρ by the equation

ρ = σ00 / (σ00 + σe²). (6)

The maximum likelihood estimation methods commonly used in multilevel analysis are

asymptotic, which translates to the assumption that the sample size is large. This arouses

questions about the accuracy of the various estimation methods with relatively small sample

sizes. The question is of interest for survey researchers, because multilevel models may be useful

in their own right, e.g., as in their use to model interview or region effects (cf. O’Muircheartaigh

& Campanelli, 1999; Pickery & Loosvelt, 1998), but also because multilevel techniques offer

one way of dealing with clustered or stratified data (Goldstein & Silver, 1989; Snijders, 2001).

A recent simulation study on multilevel structural equation modeling (Hox & Maas, 2001)

suggests that the size of the intraclass correlation (ICC) also affects the accuracy of the

estimates. Therefore, in our simulation, we have varied not only the sample size at the individual
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and the group level, but also the intraclass correlation. In general, what is at issue in multilevel

modeling is not so much the intraclass correlation, but the design effect, which indicates how

much the standard errors are underestimated (Kish, 1965). In cluster samples, the design

effect is approximately equal to 1+(average cluster size-1)*ICC. If the design effect is smaller

than two, using single level analysis on multilevel data does not seem to lead to overly

misleading results (Muthén & Satorra, 1995). In our simulation setup, we have chosen values

for the ICC and group sizes that make the design effect larger than two in all simulated

conditions.

2. Review of existing research

There are some simulation studies on this topic, which mostly investigate the accuracy of the

fixed and random parameters with small sample sizes at either the individual or the group level.

Comparatively less research investigates the accuracy of the standard errors used to test specific

model parameters.

2.1 Accuracy of fixed parameters and their standard errors

The estimates for the regression coefficients appear generally unbiased, for Ordinary Least

Squares (OLS), Generalized Least Squares (GLS), as well as Maximum Likelihood estimation

(Van der Leeden & Busing, 1994; Van der Leeden et al., 1997). OLS estimates are less efficient;

they have a larger sampling error. Kreft (1996), reanalyzing results from Kim (1990), estimates

that OLS estimates are about 90% efficient.
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The OLS based standard errors are severely biased downwards (Snijders & Bosker, 1999).

The asymptotic Wald tests, used in most multilevel software, assume large samples. Simulations

by Van der Leeden & Busing (1994) and Van der Leeden et al. (1997) suggest that when

assumptions of normality and large samples are not met, the standard errors have a small

downward bias. GLS estimates of fixed parameters and their standard errors are somewhat less

accurate than ML estimates, but workable. In general, a large number of groups appears more

important than a large number of individuals per group.

2.2 Accuracy of random parameters and their standard errors

Estimates of the residual error at the lowest level are generally very accurate. The group level

variance components are sometimes underestimated. Simulation studies by Busing (1993) and

Van der Leeden and Busing (1994) show that GLS variance estimates are less accurate than ML

estimates. The same simulations also indicate that for accurate group level variance estimates

many groups (more than 100) are needed (cf. Afshartous, 1995). In contrast, Browne and Draper

(2000) show that with as few as six to twelve groups, Restricted ML (RML) estimation provides

good variance estimates, and with as few as 48 groups, Full ML (FML) estimation also produces

good variance estimates. We will come back to these apparently contradictory results in our

discussion.

The simulations by Van der Leeden et al. (1997) show that the standard errors used for the

Wald test of the variance components are generally estimated too small, with RML again more

accurate than FML. Symmetric confidence intervals around the estimated value also do not

perform well. Browne and Draper (2000) report similar results. Typically, with 24-30 groups,
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Browne and Draper report an operating alpha level of about 9%, and with 48-50 groups about

8%. Again, In general, a large number of groups appears more important than a large number of

individuals per group.

3. Method

3.1 The simulation model and procedure

We use a simple two-level model, with one explanatory variable at the individual level and one

explanatory variable at the group level, conforming to equation (4), which is repeated here:

00 10 01 11 1 0ij ij j ij j j ij j ijY X Z X Z u X u eγ γ γ γ= + + + + + + . (4, repeated)

Three conditions are varied in the simulation: (1) Number of Groups (NG: three conditions,

NG=30,50,100), (2) Group Size (GS: three conditions, GS=5, 30, 50), and (3) Intraclass

Correlation (ICC: three conditions, ICC=0.1, 0.2, 0.3).1

The number of groups is chosen so that the highest number should be sufficient given the

simulations by Van der Leeden et al. (1997). In practice, 50 groups is a frequently occurring

number in organizational and school research, and 30 is the smallest number according to Kreft

and De Leeuw (Kreft & De Leeuw, 1998). Similarly, the group sizes are chosen so that the

highest number should be sufficient. A group size of 30 is normal in educational research, and a

group size of five is normal in family research and in longitudinal research, where the

measurement occasions form the lowest level. The Intra Class Correlations (ICC’s) span the
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customary level of intraclass correlation coefficients found in studies where the groups are

formed by households (Gulliford, Ukoumunne & Chinn, 1999).

There are 3×3×3=27 conditions. For each condition, we generated 1000 simulated data

sets, assuming normally distributed residuals. The multilevel regression model, like its single-

level counterpart, assumes that the explanatory variables are fixed. Therefore, a set of X and Z

values are generated from a standard normal distribution to fulfill the requirements of the

simulation condition with the smallest total sample size. In the condition with the larger sample

sizes, these values are repeated. This ensures that in all simulated conditions the joint distribution

of X and Z are the same. The regression coefficients are specified as follows: 1.00 for the

intercept, and 0.3 (a medium effect size, cf. Cohen, 1988) for all regression slopes. The residual

variance σe
2 at the lowest level is 0.5. The residual variance σ00 follows from the specification of

the ICC and σe
2, given formula (6). Busing (1993) shows that the effects for the intercept

variance σ00 and the slope variance σ11 are similar; hence, we chose to use the value of σ00 also

for σ11. To simplify the simulation model, without loss of generality, the covariance between

the two u-terms is assumed equal to zero.

Two Maximum Likelihood functions are common in multilevel estimation: Full ML

(FML) and Restricted ML (RML). We use RML, since this is always at least as good as FML,

and sometimes better, especially in estimating variance components (Browne, 1998). The

software MLwiN (Rasbash et al., 2000) was used for both simulation and estimation.

3.2 Variables and analysis
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The percentage relative bias is used to indicate the accuracy of the parameter estimates (factor

loadings and residual variances). Let θ  be the estimate of the population parameter θ, then the

percentage relative bias is given by /θ θ θ− ×e je j 100% . The accuracy of the standard errors is

investigated by analyzing the observed coverage of the 95% confidence interval. Since the

total sample size for each analysis is 27000 simulated conditions, the power is huge. As a

result, at the standard significance level of alpha=0.05, extremely small effects become

significant. Therefore, our criterion for significance is an alpha = 0.01 for the main effects of

the simulated conditions. The interactions are tested blockwise (2-way, 3-way), with a

Bonferroni correction added for separate interaction effects. Even at this stricter level of

significance, some of the statistically significant biases correspond to differences in parameter

estimates that do not show up before the third decimal place. These small effects are discussed

in the text, but not included in the various tables.

4. Results

4.1 Convergence and inadmissible solutions

The estimation procedure converged in all 27000 simulated data sets. The estimation procedure

in MLwiN can and sometimes does lead to negative variance estimates. Such solutions are

inadmissible, and common procedure is to constrain such estimates to the boundary value of

zero. However, all 27000 simulated data sets produced only admissible solutions.
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4.2 Parameter estimates

The fixed parameter estimates, the intercept and regression slopes, have a negligible bias. The

average bias is smaller than 0.05%. The largest bias was found in the condition with the smallest

sample sizes in combination with the highest ICC: there the percentage relative bias was 0.3%.

This is of course extremely small. Moreover, there are no statistically significant differences in

bias across the simulated conditions.

The estimates of the random parameters, the variance components, also have a negligible

bias. The average bias is smaller than 0.05%. The largest bias was found in the condition with the

smallest sample sizes in combination with the highest ICC: there the percentage relative bias was

0.3%.

4.3 Standard errors

To assess the accuracy of the standard errors, for each parameter in each simulated data set the

95% confidence interval was established using the asymptotic standard normal distribution (cf.

Goldstein, 1995; Longford, 1993). For each parameter a non-coverage indicator variable was set

up which is equal to zero if its true value is in the confidence interval, and equal to one if its true

value is outside the confidence interval. The effect of the different simulated conditions on the

non-coverage was analyzed using logistic regression on these indicator variables.

The non-coverage of both fixed and random effects is significantly affected by the number

of groups and by the group size. Non-coverage is not sensitive to the Intraclass correlation. The
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effect of the number of groups on the non-coverage is presented in Table 1, and the effect of the

group size on non-coverage is presented in Table 2.

======================

Tables 1 and 2 about here

======================

Table 1 shows that the effect of the number of groups on the standard errors of the fixed

regression coefficients is small. With 30 groups, the non-coverage rate is 6.0% for the regression

coefficient and 6.4% for the intercept, while the nominal non-coverage rate is 5%. We regard this

difference as trivial. The effect of the number of groups on the standard errors of the random

variance components is definitely larger. With 30 groups, the non-coverage rate for the second-

level intercept variance is 8.9%, and the non-coverage rate for the second-level slope variance is

8.8%. Although the coverage is not grotesquely wrong, the 95% confidence interval is clearly too

short. The amount of non-coverage here implies that the standard errors for the second-level

variance components are estimated about 15% too small. With 50 groups, the effects are smaller,

but still not negligible. The non-coverage rates of 7.4% and 7.2% imply that the standard errors

are estimated 9% too small.

Table 2 shows that the non-coverage of the lowest level variance is improved when the

group size increases. The non-coverage of the second-level variances does not improve when the

group size increases.

5 Summary and discussion
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Concluding, the point estimates of both the fixed regression coefficients and the random variance

components are all estimated without bias, in all of the simulated conditions. The standard errors

of the fixed regression coefficients are also estimated accurately. Only the standard errors of the

second-level variances are estimated too small when the number of groups is substantially lower

than 100. With 30 groups, the standard errors are estimated about 15% too small, resulting in a

non-coverage rate of almost 9%, instead of 5%. With 50 groups, the non-coverage drops to about

7.3%. This is clearly different from the nominal 5%, but in practice acceptable.

Our simulation results indicate that Maximum Likelihood estimation for multilevel models

leads to unbiased point estimates. The asymptotic standard errors are also accurate, with the

exception of the standard errors for second-level variances in the case of a small sample of

groups (less than 50). These results differ to some extent from the simulation results reported by

Busing (1993) and Van der Leeden and Busing (1994). They conclude that for small sample

sizes the standard errors and corresponding statistical tests are badly biased, so that about100

groups are needed for accurate estimation of variance components. According to our simulations

about fifty groups appears sufficient. However, they use a different simulation design. Busing

(1993) uses much higher intraclass correlations, up to 0.80, which are unlikely to occur in actual

data. In addition, the simulated second-level sample sizes are much smaller, starting at a sample

of 10 groups with 5 observations each. For these simulated conditions, they report both

convergence problems and biased standard statistical tests, especially for the variance

components. However, their simulation results are comparable when only those conditions are

considered that are similar to the conditions in our simulations and those of Browne and Draper

(2000).
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To investigate the limits of our results, we carried out two additional small simulation

studies. First, we increased the population values of the residual variances, which decreases the

amount of explained variance in the population model. The results were very close to the results

reported above. Second, we carried out a simulation with only ten groups of group size five. This

simulation was inspired by the dissimilar results of Busing (1993), and by a statement in Snijders

and Bosker (1999, p44) that multilevel modeling becomes attractive when the number of groups

is larger than ten. This is a very small second-level sample size, but given our simulation results

not impossibly small. In this simulation the fixed regression coefficients and variance

components were still estimated without bias, except for the second-level variance components

when the ICC was low (0.10): there the bias is 25% upwards. The standard errors are now all

estimated too small. The non-coverage rates for the fixed effects in this case range between 5.7%

and 9.7%, and for the second-level variances they range between 16.3% and 30.4%. Although

the standard errors of the fixed effects are still reasonable, the standard errors of the second-level

variances are clearly unacceptable. It would seem that having as few as ten groups is too few. If

one is interested only in the fixed regression coefficients, it appears feasible, but we would advise

to use bootstrapping or other simulation-based methods to assess the sampling variability.
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Table 1. Influence of the Number of Groups on the non-coverage of the 95% confidence

interval

_____________________________________________________________________

Parameter Number of Groups

_____________________________________________________________________

30 50 100 p-value

_______________________________________________________

U0 0.089 0.074 0.060 .0000

U1 0.088 0.072 0.057 .0000

E0 0.058 0.056 0.049 .0102

INT 0.064 0.057 0.053 .0057

X 0.060 0.057 0.050 .0058

_____________________________________________________________________
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Table 2 Influence of the Group Size on the non-coverage of the 95% confidence interval

_____________________________________________________________________

Parameter      Group Size

5 30 50 p-value

__________________________________________________

U0 0.074 0.075 0.074 .9419

U1 0.078 0.066 0.072 .0080

E0 0.061 0.051 0.051 .0055

_____________________________________________________________________
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Footnote:

1 Corrections for clustering based on the design effect (Kish, 1965) assume equal group sizes;

multilevel analysis does not. We carried out some preliminary simulations to assess if having

balanced or unbalanced groups has any influence on multilevel ML estimates. There was no

effect of balance on the multilevel estimates or their standard errors.


