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Abstract: The paper deals with the validation and evaluation of mathematical models in 

natural  hazard analysis,  with  a  special  focus  on establishing their  predictive  power. 

Although most of the tools and statistics available are common to general classification 

models, some peculiarites arise in the case of hazard assessment. This is due to the fact 

that the target for validation, the propensity to develop a dangerous characteristic, is not 

really known and must be estimated from a (usually) very small sample. This implies 

that  the  two  types  of  errors  (false  positives  and  false  negatives)  should  be  given 

different  meanings.  Related  to  this,  a  very  frequent  situation  is  the  presence  of 

prevalence (different  proportion of  positive and negative cases)  in  the sample.  It  is 

shown  that  sample  prevalence  can  have  a  dramatic  effect  in  some  very  common 

validation statistics, like the confusion matrix and model efficiency. Here some statistics 

based on the confusion matrix are presented and discussed, and the use of threshold-

independent  approaches  (especially  the  ROC plot)  is  shown.  The  ROC plot  is  also 

proposed as  a  convenient  tool  for  decision-taking in  a  risk management  context.  A 

general scheme for hazard predictive modeling is finally proposed.
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1. Introduction

Model validation is a fundamental step in any natural hazards study. Validation refers to 

comparing the model predictions with a real-world data set, for assessing its accuracy or 

predictive power. Validation permits to establish the degree of confidence of the model, 

which is of great importance for transferring the results to the final users. Also, without 

a proper validation it is not possible to compare the model with other ones, or even with 

alternative sets of parameters or predictor variables. The evaluation of the model, on the 

other hand, refers to the assessment of its adequacy to the needs of the final users. In 

hazard analysis, this very often involves the delineation of zones with different hazard 

levels, that would lead to different management practices. In addition, a good validation 

and evaluation scheme can also provide feedback for improving the model.

The tipical  case study in natural  hazard analysis comprises a data set  of study 

units (hillslopes, volcanos, grid pixels, etc) that can or can not develop a dangerous 

characteristic. This paper deals with predictive models that yield a continuous response 

variable  expressing  the  degree  of  hazard  or  propensity  to  express  a  dangerous 

characteristic, what refers to different mathematical approaches:

• Bivariate  analysis:  a  combined  susceptibility  index  or  a  probability  of 

occurrence  is  derived  from  the  analysis  of  the  influence  of  each 

explanatory variable. Several diferent methods have been published, from 

direct  estimation  (Clerici,  2002)  to  bayesian  estimation  or  fuzzy-logic 

approaches (Lee et al., 2002).

• Multiple  regression  analysis:  a  linear  relationship  is  used  to  predict  a 

continuous  characteristic  of  the  dangerous  phenomenon,  like  the 
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percentage  of  area  affected,  from  a  set  of  explanatory  variables  (eg. 

Carrara, 1983).

• Discriminant analysis: a function is determined that assigns discriminant 

scores to the study units. Usually, the units are classiffied according to the 

distances to the centroids of some a priori fixed response groups, but more 

refined rules can be used in a hazard analysis context. (eg. Lorente et al., 

2002).

• General linear models: an extension of regression models allowing for non 

linear  response  functions.  The  mostly  used  example  is  the  logistic 

regression,  which  yields  directly  a  probability  of  occurrence  of  the 

dangerous phenomenon (eg. Bledsoe and Watson, 2001).

• The discussion is not only reduced to statistical approaches, as there are 

examples  of  physically  based  models  with  probabilistic  components. 

Usually, probabilistic modules are included to account for uncertainty in 

parameter estimation (eg. Van Beek and Van Asch, 2004).

There  are  many examples  of  natural  hazards  analysed  in  a  probabilistic  way: 

volcanic eruptions (Perry et al., 2001), ice-jam induced flooding (Massie et al., 2002), 

channel instability (Bledsoe and Watson, 2001; Martínez-Casasnovas et al., 2003), gully 

erosion  (Morgan  and  Mngomezulu,  2003),  snow avalanches  (Floyer  and  McClung, 

2003). Among all natural hazards, the studies on slope instability have probably been 

the most commonly addressed by the methods mentioned above (i.e., Neuland, 1976; 

Rice and Pillsbury, 1982; Carrara, 1983; Furbish and Rice, 1983; Carrara et al., 1991; 

Chung et al., 1995; van Westen et al., 1997; Rowbotham and Dudycha, 1998; Chung 

and Fabbri, 1999; Dai and Lee, 2002; Santacana et al., 2003; etc).
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Although a crucial step in predictive modelling, in many cases model validation is 

not given the necessary attention, and only very basic accuracy statistics are given. In 

most of the cases a classification threshold is set to allow the construction of confusion 

matrices  and  computation  of  classification  statistics  like  the  model  efficiency 

(proportion  of  correctly  classified  observations).  As  it  will  be  shown later  on,  this 

scheme is more adequate to pure classification studies than to predictive hazard models, 

where the meaning of false positives and false negatives  (also known as error types I 

and II  in  many texts)  can  be  significantly  different.  Also,  as  the  subject  of  hazard 

analysis are by definition rare (unfrequent) processes, a very common situation is to 

deal  with  a  great  prevalence  of  negative  cases  (non  observations  of  the  dangerous 

phenomenon) in the sample. It will be shown that prevalence in the sample constitutes a 

great  drawback for  the use of some statistics  widely used for  model  validation and 

model  comparison.  For  this  reason,  an  alternative  set  of  statistics  and  the  use  of 

threshold-independent approaches like the ROC plot will be shown, and their use will 

be encouraged for the validation of hazard predictive models.

As it has been said, after building the model a decision threshold (cutoff value) is 

frequently set to divide the continuous response variable in two or more hazard classes. 

Although  this  is  not  strictly  necessary  (a  continuous  variable  is  certainly  more 

informative than a sorted categorical scale), most of the final users will better handle a 

map with a legend with labels like ‘safe’, ‘probably safe’ and ‘unsafe’ than a cryptic 

numeric  value.  Although  a  continuous  variable  can  be  more  meaningful  to  the 

researcher,  in  many  occasions  he  will  be  requested  to  provide  a  threshold  to 

discriminate between safe and potentially unsafe locations, for the model to be usefull 

in  a  decision-taking  context  (this  is  why  I  suggest  the  use  of  the  term  ‘decision 

threshold’,  opposing  to  the  word  ‘classification  threshold’  used  above).  To  avoid 
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subjective thinking, setting a decission threshold should include an analysis of the costs 

of commiting positive and negative errors. The topic is also dealt with in this paper, and 

a  modification of threshold-independent plots  for error cost  and decision analysis  is 

proposed.

Finally, an alternative methodological scheme is proposed, that clearly separates 

validation and evaluation steps.

2. The confusion matrix and derived statistics

A common methodological scheme in hazard modelling is depicted in figure 1. As it 

can be seen, once a continuous reponse variable expressing the degree of hazard has 

been obtained, a classification threshold is set to divide the continuous variable into two 

or more classes. This categorical solution is normally considered the final product of the 

model, and validation is performed by comparing this prediction with the observations 

in a validation data set, different from the one used to build the model (for a complete 

discussion of sample partition for model validation, see Chung and Fabbri, 2003).

Note that in the this scheme the setting of a classification threshold is considered 

an integral part in the construction of the model. As the response variable yielded by the 

mathematical model has a continuous nature, this cutoff value is necessary to obtain a 

dichotomous  variable  (for  the  ongoing  discussion  more  than  two  classes  can  be 

considered a set of dichotomous variables) that can be compared with the validation 

sample, that by definition has a binary nature. This is described in figure 2, where are 

plotted  the  frequency  distributions  corresponding  to  the  two  cohorts  in  the  sample 

(cases with and without the dangerous characteristic,  X1 and  X0). For each one of the 

two cohorts in the validation sample one obtains a frequency distribution, according to 
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the scores given by the model. The classification threshold (dotted vertical line), that 

separates the cases predicted as safe (X’0) and unsafe (X’1), is usually set equal to the 

proportion of positive cases in the model sample.  In an ideal situation, with perfect 

discrimination between the two groups, the two frequency distributions would appear 

separated in the plot. In most of the cases, however, a different degree of overlapping 

will  occur,  leading  to  prediction  errors.  In  the  figure,  prediction  errors  have  been 

marked with letters b and c. The set b are the false positives, or error type I in common 

statistical literature; the set c, on the other hand, represents the false negatives, or error 

type II. Sets a and b, respectively, group the true positives and true negatives.

As in many classification studies the cohorts tend to be more or less balanced, the 

threshold frequently has a value around 0.5 (figure 2 A). This is not the case, however, 

in most hazard studies, where the size of the two cohorts in the sample can differ in 

several orders of magnitude. This is the case described in figure 2 B. Note also the 

different  meaning  of  both  types  of  errors  in  hazard  analysis.  In  most  common 

classification studies (i.e. land use type from satellite imagery) false negatives (c) and 

false  positives (b) are  more or less equivalent  (just  something was classified in the 

wrong group). In hazard studies, however, one deals with a rare phenomenon, that can 

or can not have happened within the study period, but can happen in the future. False 

positives, in this context, can be either genuine assignment errors, or else real hazard-

prone areas that have not yet developed the dangerous phenomenon. This is a very 

important  fact  that  has  to  be  kept  in  mind  in  predictive  hazard  analysis,  and  the 

discussion will  reappear later  on in this paper.Once a prediction threshold has been 

adopted, the binary predictions can be compared with the validation sample, allowing 

the  construction  of  a  confusion  matrix  (table  1).  The  confusion  matrix  shows  the 

number  of  correctly  and  incorrectly  predicted  observations,  for  both  positive  and 
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negative cases. The letters in the cells correspond to that of figure 2 (see explanation 

above).

In  table  2  are  defined  some  statistics  commonly  used  in  classification  and 

prediction models. Between them, the model efficiency (also referred as success rate) is 

the most  frequent  in  the  literature;  it  can be  defined as  the  proportion  of  correctly 

classified observations, and for this reason it is sometimes considered equivalent to the 

R2 statistic.  Its  opposite  (rate  of  incorrect  classified  observations)  is  the 

missclassification rate. The positive predictive power is the proportion of true positives 

in the total of positive predictions, the negative predictive power being the contrary. The 

odds ratio (ratio between correctly and incorrectly classified observations) is the only 

statistic that makes use of all the values in the confusion matrix.

A very important drawback of the statistics presented in table 2 is that they are 

highly dependent on the proportion of positive and negative cohorts in the validation 

sample. If the sample presents high prevalence of one of the cohorts, as is normally the 

case in hazard studies, then columns X1 and X0 of the confusion matrix are not directly 

comparable,  as  their  sums are  not  equal.  For  example,  consider  the case where the 

sample contains a very low proportion of positive cases (X1). This will make values a 

and c of the confusion matrix much lower than their counterparts, b and d, thus affecting 

all the statistics presented in table 2 in the sense of making them more optimistic or 

‘liberal’. Paradoxically, in such a case the most efficient model would be to predict all 

places  as  safe  (X’0),  as  the  true  positives  will  be  irrelevant  compared  to  the  true 

negatives! Despite this, the model efficiency is the only accuracy statistic reported in 

many studies,  what  constitutes  an important  drawback to  evaluate  and compare  the 

different approaches.
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For  this  reason,  an  alternative  set  of  statistics,  not  relying  in  prevalence,  is 

recommended (table 3). It can be seen that in their calculation the two groups in the 

validation sample are kept separated (columns X0 and X1 of the confusion matrix). The 

model’s sensitivity expresses the proportion of positive cases correctly predicted, and 

can be considered the main statistic for expressing the predictive power of the model. It 

is analogous to the ‘success rate’ and ‘prediciton rate’ statistics defined by Chung and 

Fabbri (1999), and its use should be recommended instead of the more spreaded model 

efficiency. Specificity, on the other hand, is the proportion of negative cases correctly 

predicted. The false positive rate is defined as the proportion of false positives in the 

total  of negative observations,  and the false negative rate  as the proportion of false 

negatives in the total of positive observations. The likelihood ratio makes use of all the 

values present at the confusion matrix.

The use of these accuracy measures is well established in other disciplines like 

Medicine (see, i.e., Forbes, 1995) or Ecology (i.e. Fielding and Bell, 1997), also dealing 

with predictive models of rare events. The particular meaning of false positives in this 

kind of  models  has  to  be  emphasized again.  As it  has  been explained  above,  false 

positives  have  to  be  thought  as  cases  highly  propense  to  develop  the  dangerous 

characteristic in the future, and not merely as classification errors. Reporting the model 

specificity  is  therefore  very  important,  as  it  permits  to  describe  a  model  as  being 

pesimistic or ‘conservative’, if it is low specific (a big part of the study units are given 

high hazard susceptibility rates), or else optimistic or ‘liberal’, when it is high specific 

(only a small part of the units are predicted unsafe). Sensitivity and specificity are thus 

complementary  statistics,  as  can  be  seen  in  the  following  example:  Consider  two 

different samples containing 100 study units each one, 50 of what present a dangerous 

characteristic (volcanic activity, slope instability, etc) in sample A, and only 5 in sample 
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B. Suppose that we build a predictive model for each one of the samples, yielding the 

same prediction rate of 0.8 (80% of positive cases correctly predicted, or sensitivity) 

when  50%  of  the  cases  are  predicted  as  unsafe.  This  can  be  represented  by  the 

confusion matrices shown in table 4. In case A, also 80% of the negative cases would be 

correctly predicted, whereas in case B 98% of the negative cases would be predicted as 

potentially dangerous. It is clear that these two models could not be considered equal, 

but this difference is very difficult to express if a measure of specificity is not provided.

3. Threshold-independent methods: the ROC plot

The above defined statistics  have in common that  they need the establishment of a 

threshold value for their calculation. It should be stressed at this point that the selection 

of  a  threshold  and  the  categorization  of  the  response  variable  should  not  be  a 

characteristic  of  the model  itself,  but  a  result  of  the use of  the model in  a  specific 

context. For this reason, the validation of the model should not be based on one pre-

determined threshold.

One  way  of  achieving  this  would  be  plotting  the  different  accuracy  values 

obtained against the whole range of possible threshold values. That is exactly what a 

ROC (receiver-operating characteristic) plot does. The ROC plot was first introduced by 

Deleo (1993) in the field of signal processing to designate the performance of a system 

for classifying a variable into dichotomous classes.

An example of ROC plot is given in figure 3. The dots represent all the possible 

cutoff  thresholds,  corresponding  to  the  cases  in  the  sample.  Although the threshold 

values are not represented directly in the ROC plot, it is easy to obtain them from the 
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data  base.  In  figure  3  some  threshold  values  (probabilities)  have  been  marked  for 

guidance.

For every point a different sensitivity / specificity pair of values is obtained (in 

some texts the value plotted in abscissas is 1 - specificity). These values indicate the 

ability  of  the  model  to  correctly  discriminate  between  positive  and  negative 

observations in the validation sample. See that they are directly related to the two errors, 

type II error being opposite of model’s sensitivity and type I error opposite of model’s 

specificity. In this sense, it is equivalent to speak in terms of error II / error I pairs, and 

for this reason secondary labels have been added to the plot.

It can be seen in the figure that for a low threshold the model will yield a high 

number of true positives (will be highly sensitive), but at the expense of having a high 

type I error. In the example presented in figure 3 we will obtain around 90% of true 

positives at a 0.05 threshold, but the type I error (false positives) will be also very high, 

around 65%. The opposite will occur if we take a high threshold. As stated above, the 

first case represents a conservative model, with the emphasis put on covering all the 

potentially dangerous study units, at the expense of including also some units that could 

not be really dangerous.

The  area-under-ROC  can  serve  as  a  global  accuracy  statistic  for  the  model, 

independent  of  a  single  prediction  threshold.  This  statistic  varies  between  0.5  (no 

improvement over random assignment, represented by the diagonal straight line) and 1 

(perfect  discrimination).  It  is  clearly  seen  that  the  most  separated  the  ROC  curve 

appears  in  relation  to  the  diagonal  straight  line,  the  better  the  model  discriminates 

between  safe  and  unsafe  locations.  This  value  can  be  approximated  by  finite 

differences:
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being xi the specificity and yi the sensitivity at threshold i, and xn+1 = 0,  yn+1 =1. If the 

number of points in the sample is not enough to use this procedure, the area under ROC-

curve can also be estimated by adjusting a polynomial curve and integrating.

Developing the idea of the success rate, Chung and Fabbri (1999) have proposed 

the so-called prediction rate curve (PRC), that has been used also by other authors (Lee 

et al.,  2002, Remondo et  al.,  2003). Similarly to the ROC plot,  the PRC shows the 

success rate (equivalent to the sensitivity) in ordinates, against the proportion of the 

total cases (map area, in the original work) predicted as positive in abscissa, for the 

whole range of possible thresholds. Like the ROC plot, the area under the curve can be 

used as a threshold-independent statistic, ranging in this case from 0 to 1. The PRC 

approach lacks an explicit representation of the model specificity, although it is implicit 

in the proportion of total cases cases predicted as positive, if one knows the proportion 

of positive and negative cases in the validation sample. 

4. Error cost analysis and the use of the ROC plot for optimum decision threshold 

selecting

When  evaluating  the  hazard  of  a  dangerous  natural  phenomenon,  the  continuous 

response provided by the model should fulfill the requirements of the researcher. In this 

sense, the ROC plot and the area-under-ROC statistic permit to evaluate the model’s 

performance independently of a determined cutoff value. In a risk management context, 

however, researchers are often asked for a decision threshold to determine if a given 

place  is  safe  or  unsafe,  what  will  determine  the  prevention  measures  undertaken. 
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Contrary to what has been explained before, here the selection of a cutoff value belongs 

to the practical use of the hazard model.

In  a  purely  theoretical  hazard  study  the  two  types  of  errors  are  perfectly 

equivalent in importance, although they mean different things. For the researcher on 

natural hazards, a false positive may mean that a given place is potentially dangerous, 

even that no dangerous activity has been observed there. A false negative, on the other 

hand, means that the model has not been capable of predicting the potential hazard. The 

analysis of the two types of errors should provide useful information for improving the 

model. For the risk manager, however, the two types of errors have a very different 

meaning. A very pesimistic model, containing a great number of false positives, can 

imply the loss of a potentially safe space, or even the uselessness of the investments 

made for prevention.  But  a  false positive error  may signify the loss of  lives or the 

destruction of infrastructure.

The ROC plot can be used to support decision taking for a given place. Suppose, 

for example, that a certain slope is given a probability of failure of 0.1 within a given 

time period (see figure 3). From the ROC plot we see that we have two choices: we can 

state that it is unsafe with 80% probability of being right (true positive), or we can say 

that the slope is safe, with 63% probability (true negative). Suppose now that we decide 

that the slope is unsafe, so we are to recommend some prevention measures, with a total 

cost of 2000€. The probability of making a type I error (false positive) is 37%, so the 

net cost at risk would be: 2000 * 0.37 = 740. Otherwise, we can declare the slope as 

safe, and do not recommend any correction measures. Despite this, a landslide can still 

occur, with probability 20% (error type II). Suppose that this landslide would bury some 

infrastructure, with a total cost of repairing it of 1000€. This makes: 1000 * 0.2 = 200. 

Comparing the net costs of making type I and type II errors, the less expensive option is 
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to consider the slope as safe and do not take any correction measures, even if the initial 

probabilities were favourable to the unsafe option.

When considering a greater area instead of a single point, the ROC plot can also 

be modified into an error-cost plot to select the most convenient decision threshold for 

the whole zone, as shown in figure 4. The secondary axes (errors) have been modified 

to express the net costs of both error types. The optimum threshold should be the value 

that minimises the total error costs, integrated over the whole area. In the ROC plot, this 

is the value where the two cost-weighted errors are approximately equal (a value of 

0.1475 in the example shown in figure 4).

5. Alternative methodology

From the discussion above an alternative methodology based on the use of threshold-

independent  methods  can  be  proposed  (see  flowchart  in  figure  5).  As  it  has  been 

stressed along this paper, the construction and the use of the model should be separated. 

The validation of the model can be done without the need of a predefined threshold, by 

a threshold-independent method like the ROC plot. The evaluation of the model is done 

afterwards, including the selection of one or more decision thresholds, also with the aid 

of the ROC plot. The evaluation step should answer the question of how good is the 

model in stating the security or safety of a given place or study area. An idea of this can 

be obtained by the confusion matrix and derived accuracy statistics, once one or more 

decision thresholds have been set.

6. Conclusions
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In this paper the importance of the validation and evaluation steps in model design is 

encouraged. It  has  been shown that  validation can provide the researcher  with very 

useful information for improving the model, but it is also important to give the final 

users of the model an idea about the confidence of the model results. The evaluation of 

the model permits to adapt the model results to the needs of the final users.

After  fitting  the  mathematical  model,  the  usual  methodology  consists  in 

establishing a threshold or cutoff value to divide the response variable into dichotomous 

classes. Then, one or more statistics based in the confusion matrix are calculated for 

validating  the  model.  The  threshold  value  is  normally  fixed  equalling  the  prior 

probabilities for the dangerous phenomenon, estimated by its sampling rate. However, 

the setting of a threshold is more a question of use of the model than a characteristic of 

the  probabilistic  model  itself.  For  this  reason,  the  use  of  threshold-independent 

validation methods is proposed.

The construction and the use of ROC (receiver-operating characteristic) plots has 

been  shown.  The  ROC  plot,  and  the  area-under-ROC statistic,  provide  a  complete 

validation scheme without depending on a pre-defined threshold. The ROC plot can also 

be  used  afterwards  as  an  error  cost  analysis  tool  to  assist  in  selecting  a  decision 

threshold for risk management.

An alternative methodology for probabilistic hazard analysis has been proposed. 

The use of threshold independent methods is recommended in the validation step. They 

can also be used during the evaluation step to provide the final users with one or more 

alternative  decision  thresholds.  After  that,  several  accuracy  statistics  based  in  the 

confusion  matrix  can  be  calculated  to  express  the  confidence  of  the  model  at  this 

specific thresholds.
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The influence of sample prevalence (different proportion of positive and negative 

cases)  in  several  very  common accuracy  statistics  has  been  shown,  and  alternative 

measures have been proposed.

Acknowledgements

This  study  has  been  supported  by  the  research  projects  "Procesos  hidrológicos  en 

cuencas pirenaicas en relación con los cambios de uso del suelo y las fluctuaciones 

climáticas" (PIRIHEROS, REN2003-08678/HID), and "Procesos hidrológicos en áreas 

seminaturales mediterráneas" (PROHISEM, REN2001-2268-C02-01/HID),  funded by 

the Spanish Government (CICYT). I also wish to acknowledge personal support by a 

post-doctoral  grant  funded by the Spanish Government  Secretary for  Education and 

Universities and the European Social Fund.

References

Bledsoe, B.P. and Watson, C.C., 2001. Logistic analysis of channel pattern thresholds: 

meandering, braiding, and incising. Geomorphology, 38(3-4): 281-300.

Carrara, A., 1983. Multivariate models for landslide hazard evaluation. Mathematical 

Geology, 15(3): 403-426.

Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., 1991. 

GIS techniques and statistical models in evaluating landslide hazard. Earth surface 

processes and landforms, 16: 427-445.

Chung,  C.F.  and  Fabbri,  A.G.,  1999.  Probabilistic  Prediction  Models  for  Landslide 

Hazard Mapping. Photogrammetric Engineering & Remote Sensing, 65(12): 1389-

1399.

15

Preprint of the paper published in Natural Hazards, 37: 315-329 (2006)



Chung,  C.F.  and  Fabbri,  A.G.,  2003.  Validation  of  spatial  prediction  models  for 

landslide hazard mapping. Natural Hazards, 30: 451-472.

Chung, C.F., Fabbri, A. and Van Westen, C.J., 1995. Multivariate regression analysis 

for landslide hazard zonation. In: A. Carrara and F. Guzzetti (Editors), Geographical 

Information  Systems  in  assessing  natural  hazards.  Kluwer  Academic  Publishers, 

The Nederlands, pp. 107-133.

Clerici,  A., Parego, S.,  Tellini,  C. and Vescovi,  P.,  2002. A procedure for landslide 

susceptibility  zonation  by  the  conditional  analysis  method.  Geomorphology,  48, 

349-364.

Dai, F.C. and Lee, C.F., 2002. Landslide characteristics and slope instability modeling 

using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3-4): 213-228.

Deleo, J.M. (1993). Receiver operating characteristic laboratory (ROCLAB): software 

for developing decision strategies that account for uncertainty. In: Proceedings of 

the Second International Symposium on Uncertainty Modelling and Analysis, pp. 

318-325. College Park, Computer Society Press.

Fielding,  A.H.  and  Bell,  J.F.,  1997.  A  review  of  methods  for  the  assessment  of 

prediction  errors  in  conservation  presence  /  absence  models.  Environmental 

Conservation, 24(1): 38-49.

Floyer,  J.A.  and McClung, D.M.,  2003.  Numerical  avalanche prediction:  Bear Pass, 

British Columbia, Canada. Cold Regions Science and Technology, 37(3): 333-342.

Forbes,  A.D.,  1995.  Classification-algorithm evaluation:  five  performance  measures 

based on confusion matrices. Journal of Clinical Monitoring, 11(3): 189-206.

Furbish, D.J. and Rice, R.M., 1983. Predicting landslides related to clearcut logging, 

Northwestern California,  USA. Mountain Research and Development,  3(3):  253-

259.

16

Preprint of the paper published in Natural Hazards, 37: 315-329 (2006)



Lee, S., Choi, J. and Min, K., 2002. Landslide susceptibility analysis and verification 

using the Bayesian probability model. Environmental Geology, 43: 120-131.

Lorente, A., García-Ruiz, J.M., Beguería, S. and Arnáez, J., 2002. Factors explaining 

the spatial distribution of hillslope debris flows: a case study in the Flysch Sector of 

the Central Spanish Pyrenees. Mountain Research and Development, 22(1): 32-39. 

Martínez-Casasnovas, J.A., Ramos, M.C. and Poesen, J., 2003. Assessment of sidewall 

erosion in large gullies using multi-temporal DEMs and logistic regression analysis. 

Geomorphology, In press.

Massie,  D.D.,  White,  K.D. and Daly,  S.F.,  2002. Application of neural  networks to 

predict ice jam occurrence. Cold Regions Science and Technology, 35(2): 115-122.

Morgan,  R.P.C.  and  Mngomezulu,  D.,  2003.  Threshold  conditions  for  initiation  of 

valley-side gullies in the Middle Veld of Swaziland. Catena, 50(2-4): 401-414.

Neuland, H., 1976. A prediction model of landslips. Catena, 3: 215-230.

Perry,  F.V.,  Valentine,  G.A.,  Desmarais,  E.K.  and  WoldeGabriel,  G.,  2001. 

Probabilistic  assessment  of  volcanic  hazard  to  radioactive  waste  repositories  in 

Japan: Intersection by a dike from a nearby composite volcano. Geology, 29(3): 

255-258.

Remondo, J., González-Díez, A., Terán, J.R.D.D. and Cendrero, A., 2003. Landslide 

Susceptibility Models Utilising Spatial  Data Analysis Techniques.  A Case Study 

from the Lower Deba Valley, Guipuzcoa (Spain). Natural Hazards, 30(4): 233-249.

Rice,  R.M.  and  Pillsbury,  N.H.,  1982.  Predicting  landslides  in  clearcut  patches, 

Symposium on recent development in the explanation and prediction of erosion and 

sediment yield. Internation Association of Hydrological Sciences, pp. 303-311.

Rowbotham, D.N. and Dudycha, D., 1998. GIS modelling of slope stability in Phewa 

Tal watershed, Nepal. Geomorphology, 26(1-3): 151-170.

17

Preprint of the paper published in Natural Hazards, 37: 315-329 (2006)



Van Beek, R. and Van Asch, T., 2004. Regional assessment of the effects of land-use 

change  on  landslide  hazard  by  means  of  physically  based  modelling.  Natural 

Hazards, 31: 289–304.

Van Westen, C.J., Rengers, N., Terlien, M.T.J. and Soeters, R., 1997. Prediction of the 

occurrence  of  slope  instability  phenomenal  through  GIS-based  hazard  zonation. 

Geologische Rundschau (International Journal of Earth Sciences), 86(2): 404 - 414.

18

Preprint of the paper published in Natural Hazards, 37: 315-329 (2006)



X1 X0

X'1 a b

X'0 c d

Observed

Pr
ed

ic
te

d

Table 1. Confusion matrix. a, true positives; b, false positives (error type I); c, false 

negatives (error type II); d, true negatives.
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Efficiency (a + d ) / N Proportion of correctly classified observations
Misclassification rate (b + c ) / N Proportion of incorrectly classified observations

Odds ratio (a + d ) / (b + c ) Ratio between correctly and incorrectly classified cases

Positive predictive power a  / (a + b) p(X1|X'1), or the proportion of true positives in the total of 
positive predictions

Negative predictive power d  / (c + d) p(X0|X'0), or the proportion of true negatives in the total of 
negative predictions

Table 2. Accuracy statistics derived from the confusion matrix
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Sensitivity a  / (a + c) p(X'1|X1), or the proportion of positive cases correctly 
predicted

Specificity d  / (b + d) p(X'0|X0), or the proportion of negative cases correctly 
predicted

False positive rate b  / (b + d) p(X'1|X0), or the proportion of false positives in the total of 
negative observations

False negative rate c  / (a + c) p(X'0|X1), or the proportion of false negatives in the total of 
positive observations

Likelihood ratio sensitivity / (1- specificity) Ratio between true positive and false negative fractions

Table 3. Some accuracy statistics not depending on prevalence
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A) B)

X1 X0 X1 X0

X'1 40 10 50 X'1 4 46 50

X'0 10 40 50 X'0 1 49 50

50 50 5 95

Observed

Pr
ed

ic
te

d

Observed

Pr
ed

ic
te

d

Table 4. Confusion matrices of two models exhibiting same sensitivity but greatly 

differing in specificity

Preprint of the paper published in Natural Hazards, 37: 315-329 (2006)



Figure captions

Fig.  1.  Flowchart  of  a  common probabilistic  model  design.  a:  sampling;  b:  model 

construction; c: model validation

Fig. 2. Frequency distributions for the negative and positive groups, and the role of the 

prediction threshold. A) Equal groups. B) Unequal groups.  a,  true positives;  b,  false 

positives (error type I); c, false negatives (error type II); d, true negatives.

Fig. 3. Example of a ROC plot

Fig. 4. Cost / benefit ROC plot

Fig. 5. Flowchart of alternative methodology based in threshold-independent methods. 
a: sampling; b: model construction; c: model validation; d: model evaluation
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	Santiago Beguería1
	Abstract: The paper deals with the validation and evaluation of mathematical models in natural hazard analysis, with a special focus on establishing their predictive power. Although most of the tools and statistics available are common to general classification models, some peculiarites arise in the case of hazard assessment. This is due to the fact that the target for validation, the propensity to develop a dangerous characteristic, is not really known and must be estimated from a (usually) very small sample. This implies that the two types of errors (false positives and false negatives) should be given different meanings. Related to this, a very frequent situation is the presence of prevalence (different proportion of positive and negative cases) in the sample. It is shown that sample prevalence can have a dramatic effect in some very common validation statistics, like the confusion matrix and model efficiency. Here some statistics based on the confusion matrix are presented and discussed, and the use of threshold-independent approaches (especially the ROC plot) is shown. The ROC plot is also proposed as a convenient tool for decision-taking in a risk management context. A general scheme for hazard predictive modeling is finally proposed.


