
Chapter 5
Membrane Fusions During Mammalian Fertilization

Bart M. Gadella and Janice P. Evans

Abstract Successful completion of fertilization in mammals requires three different types of mem-
brane fusion events. Firstly, the sperm cell will need to secrete its acrosome contents (acrosome
exocytosis; also known as the acrosome reaction); this allows the sperm to penetrate the extracel-
lular matrix of the oocyte (zona pellucida) and to reach the oocyte plasma membrane, the site of
fertilization. Next the sperm cell will bind and fuse with the oocyte plasma membrane (also known as
the oolemma), which is a different type of fusion in which two different cells fuse together. Finally,
the fertilized oocyte needs to prevent polyspermic fertilization, or fertilization by more than one
sperm. To this end, the oocyte secretes the contents of cortical granules by exocytotic fusions of
these vesicles with the oocyte plasma membrane over the entire oocyte cell surface (also known as
the cortical reaction or cortical granule exocytosis). The secreted cortical contents modify the zona
pellucida, converting it to a state that is unreceptive to sperm, constituting a block to polyspermy.
In addition, there is a block at the level of the oolemma (also known as the membrane block to
polyspermy).

5.1 Introduction

Fertilization of the oocyte involves three membrane fusion events [1] namely, (1) a preparative series
of secretion membrane fusions at the apical sperm surface known as acrosome exocytosis [2]. The
membrane fusions are induced when the sperm cell binds to specific zona binding proteins at the
sperm surface [3–7]. The acrosome exocytosis is a multipoint membrane fusion event between the
sperm plasma membrane and the outer acrosomal membrane (see Fig. 5.1 [8, 9]) and the exposed
acrosomal content is required for sperm to penetrate the zona pellucida [10–12]. This so-called zona
drilling effectively takes place because the sperm at this stage also has acquired hyperactivated motil-
ity [13]. (2) After zona penetration the sperm enters the perivitelline space where it can bind and fuse
with the oocyte plasma membrane [14, 15]. This is the actual fertilization fusion in which the con-
tents of the sperm are delivered into the oocyte cytoplasm. The plasma membrane of the equatorial
segment (see Fig. 5.1) is the site where proteins are located that orchestrate sperm-oocyte binding and
fusion [16]. (3) In order to prevent polyspermy the oocyte has to activate defense systems to block
redundant sperm-oocyte fusion [17]. To this end the first fertilizing sperm delivers activation factors
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Fig. 5.1 The proposed sequence of events around the three fusions involved in monospermic fertilization. Sperm
that have entered the oviduct will shed off decapacitation factors that were adhered peripherally to the sperm surface.
During this process the acrosome is docked to the sperm plasma membrane and at the docked area the formation of
high affinity zona binding complexes are formed [9, 35]. The control (control) versus capacitated (capacitated) sperm
show the very close apposition of the sperm plasma membrane with the outer acrosomal membrane a feature emerging
at the apical tip of the sperm head (astrix). It is not clear whether the resulting sperm which can associate with the
extracellular matrix of the expanded cumulus mass surrounding the unfertilized oocyte induces some early steps of
acrosomal fusion (proposed by 27) or that acrosome intact sperm are penetrating through the cumulus by the use
of hyperactivated motility in combination with surface proteins [116]. Oviductal secreted proteins are also reported
to be important for cumulus and zona pellucida properties [29]. 1. The recognition of the zona pellucida (primary
zona binding to ZP1/ZP3/ZP4) and subsequent inititation of the acrosome reaction (or of the acute secretory phase
of it) which is induced by the zona pellucida. The unique multipointfusion of one organelle with the sperm surface
generates mixed vesicles at the apical side of the sperm head. 2. The acrosome reaction causes local modifications of
zona proteins and the hyperactivated sperm can penetrate this structure due to secondary zona binding (to ZP2 and ZP3).
The surface of the penetrating sperm will be further remodeled and this probably serves to enable the fertilization fusion
[30]. Note that the equatorial segment of the sperm head (indicated with arrows) has remained resistant to exocytotic
fusion. The plasma membrane and the outer acrosomal membrane have become continuous at this point. This needs to
be protected from the acrosome reaction as it specifically contains the machinery to fertilize the oocyte. 3. After the
fertilization fusion the cortical reaction (induced by soluble sperm factors now diffusing into the oocyte cortex) causes
an overall coating of the oolemma as well as the hardening of the zona pellucida by chemically altering zona proteins.
The cleavage of ZP2 and ZP3 appears to be particularly instrumental for the release of sperm from the zona pullicida
and to elicit an efficient block to polyspermy [23]. At the time of ovulation the MII phase oocytes have their cortical
granules stored just under the oocytes plasma membrane. The fertilization fusion is followed up by a massive series
of single point exocytotic fusions of the cortical granules (indicated with asterix). The distance bar indicates 50 nm.
Panels with transmission electron microscopy micrographs are modified from [9, 113], the line drawing is modified
from [7]

into the oocyte cytoplasm. The signaling cascade activated by these factors induce fusions of secretory
granules that tightly located under the oocyte plasma membrane (known as cortical granules) [18, 19].
After the secretion of the cortical content into the perivitelline space, this will lead to modifications of
the zona pellucida structure [20–23]. In some species, this has been characterized as “zona hardening”
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defined as resistence to proteolytic digestion resulting in a zona pellucida that cannot be penetrated
by acrosome-reacted sperm, and also cannot be recognized by acrosome-intact sperm [24–26].

Therefore, successful fertilization of an oocyte depends on three independent and quite differently
organized membrane fusion events. The current understanding of membrane fusion and fertilization
will be overviewed in this chapter.

5.2 Surface Remodeling of Gametes Prior to Zona Binding

5.2.1 The Cumulus-Oocyte Complex in the Oviduct

In mammals fertilization takes place in the oviduct near the ampulla region. The oocyte enters this site
after ovulation and is surrounded by a thick (7 µm) extracellular matrix called the zona pellucida [27]
and by a multi-cellular layer of cumulus mass (cells and extracellular matrix material, see Fig. 5.1).
The oviduct probably modifies these extracellular structures to some extent [25, 28, 29].

5.2.2 Sperm Cell Surface Remodeling

Before the sperm cells enter the oviduct they have already passed a lengthy trajectory of transport and
coinciding post-testicular modifications [30]. Sperm cells that are released in the testis from the Sertoli
cells into the lumen of seminiferous tubules have shut down transcription and translation processes
as well as membrane recycling (no endocytosis or exocytosis [31]). With respect to sperm-zona bind-
ing it is of special interest the identified transmembrane proteins with affinity for the zona pellucida
originate from sperm forming precursor cells in the testis [32–35]. However, more recent approaches
revealed that additional proteins are attached to the sperm surface (especially the epididymis, where
sperm cells further mature and acquire motility) that serve to bind the zona pellucida [35–40]. After
the ejaculation of sperm a specific coat of proteins containing decapacitation factors serve to stabi-
lize sperm [41–45]. This is required to allow maximum sperm survival during their lengthy transport
through the female genital tract (cervix, uterus) and to reach the oviduct intact. At this site sperm
release their protective coat and become capacitated (i.e. capable to fertilize because they can rec-
ognize the zona pellucida). Therefore, the sperm regain fertilization capacity they originally had in
the cauda epididymis (prior to ejaculation) and can induce the acrosome reaction after eventual zona
pellucida binding. This capacitation process is guided in the oviduct by sperm-oviduct epithelial inter-
actions (for review see [13]). After a certain period the sperm is released from the oviduct epithelial
cell and has hyperactivated motility characteristics and demonstrates efficient zona binding behaviour.

During in vitro fertilization the capacitation of ejaculated sperm is mimicked by washing sperm
through discontinuous density gradients (to remove decapacitation factors) and to incubate sperm for
a couple of hours in an in vitro capacitation medium which mimics the ionic and metabolic com-
position of oviductal fluid (also known as synthetic oviductal fluid (SOF)) [7, 20, 46]. Mammalian
sperm becomes activated by three principle capacitation factors namely (1) bicarbonate which acti-
vates adenylate cyclase/protein kinase A and tyrosine kinase signaling pathways, (2) albumin which
specifically extracts sterols from the sperm plasma membrane and (3) extracellular calcium allow-
ing Ca2+ mediated signaling cascades [46, 47]. For some species additional glycosaminoglycans are
required to remove persistent decapacitation factors from the sperm surface [48]. Taken together
sperm capacitation results in the induction of glycolysis in the sperm tail required for the hyperac-
tivated motility (more instant and local production of ATP in the lengthy sperm tail which does not
contain mitochondria [49–51]). In the sperm head it causes the redistribution of surface molecules.
Most notably this results in the aggregation of lipid rafts and therein the formation of a functional
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zona pellucida binding protein complex [30, 46, 52–54]. This zona binding complex not only func-
tionally allows sperm zona binding but also mediates the acrosome exocytosis after this binding
(see Section 5.3).

5.3 Zona Binding and Initiation of the Acrosome Reaction

5.3.1 Zona Pellucida Contains Acrosome Exocytosis Inducing Binding Sites

Traditionally it was thought that sperm-zona binding is a simple ligand receptor like interaction in
which one zona receptor (namely ZP3) binds to one sperm ligand [55]. This concept appears to
be oversimplified. The sperm surface has recently been shown to bind to at least three of the four
human zona proteins (namely ZP1, ZP3 and ZP4) and most likely the species-specific zona protein
matrix quartenary native state is important for sperm recognition [7]. The sperm cell also binds to
this zona protein matrix with multiple proteins, most likely organized into zona binding protein com-
plexes. Some of the identified proteins may be required for the induction of the acrosome reaction. For
instance the presence of a potassium channel [35] may indicate that zona binding could induce a K+

dependent sperm membrane hyperpolarization which in turn allows the opening or a voltage depen-
dent Ca2+ channel and by doing so cause elevated cytosolic Ca2+ levels required for initiation of
acrosome exocytosis [56]. Beyond this, the presence of a phosphatase [35] may indicate that binding
may activate specific signaling events that are required for the induction of the acrosome reaction.

5.3.2 Acrosome Exocytosis

Acrosome exocytosis itself is the result of SNARE interactions between the outer acrosomal mem-
brane and the plasma membrane of the so-called pre-equatorial region of the sperm head [57, 58].
Remarkably the two membranes fuse with each other at this entire surface domain which encompasses
more than half of the sperm head surface [8, 9]. The multipoint fusion secretion event results in the
generation of mixed vesicles that contain acrosomal outer membrane and plasma membrane material.
The remaining unfused acrosomal membranes (at the equatorial area of the acrosome and the acroso-
mal inner membrane covering the apical part of the sperm nucleus) now take over the surface function
of the plasma membrane [15, 16]. The vesiculated part of the apical acrosome membrane and plasma
membrane are removed from the sperm. The group of Gadella has studied how SNARE proteins are
orchestrating this multiple membrane fusion event. In freshly ejaculated sperm SNARE interactions
between the apical sperm plasma membrane and the outer acrosomal membrane are not yet estab-
lished [9]. However, during sperm capacitation these two membranes become stably docked by the
formation of a trans ternary SNARE complex of proteins from the sperm plasma membrane as well
as from the outer acrosmal membrane. The complex consisted of syntaxin1, VAMP1 and SNAP23
in a 1:1 stoichiometry [9]. The docked membranes could even be isolated as bilamellar structures.
Related to this stability the capacitated acrosome becomes docked but does not fuse with the plasma
membrane. For the execution of the acrosome fusions additional Ca2+ entry (in vitro by use of Ca2+

ionophores, in vivo after zona binding) is required [9]. Diverse groups have shown that SNARE com-
plex interacting proteins such as complexins [9, 59, 60], dynamins [61], Rab 3A [62], synaptotagmins
[63], multi-PDZ domain protein MUPP1, Calmodulin and CaMKIIalpha [64, 65], Rab-2a, syntaxin
binding proteins and Munc-18 (Tsai et al., unpublished results) have been discovered in sperm (see
Fig. 5.2). When and how they interact with SNARE proteins and whether they are involved in stabiliz-
ing the trans SNARE complex or are involved in the Ca2+ conversion to cis complexes (thus eliciting
the acrosome plasma membrane fusions) is matter of future research (see also Fig. 5.2).



5 Membrane Fusions During Mammalian Fertilization 69

Capacitation induces acrosome docking

Zona Binding induces acrosome exocytosis

Fig. 5.2 Two step model for SNARE mediated acrosome exocytosis of the sperm. Sperm capacitation induces the
stable docking of the sperm plasma membrane with the outer acrosomal membrane. The multiple docking of these two
membranes does not lead to premature exocytosis. The identified interaction partners are for porcine sperm [9] but may
differ between mammalian species. Two mechanisms have been described to stabilize the trans ternary SNARE protein
complexes. (i) During sperm capacitation an aggregation of lipid rafts at the apical ridge area of the sperm head. This is
the site where the sperm binds to the zona pellucida and where the acrosome exocytosis as a response of that binding is
inititated [46]. In that area within the aggregating lipid rafts MUPP1/CaMKIIα have been reported to interact with the
trans ternary SNARE protein complex and this association functions as a fusion clamp [64, 65]. (ii) The important factor
in mouse sperm is the phosphorylated form of synaptotagmin, which appears to be important for preventing the acro-
some exocytosis [63]. Beyond these factors also complexin and dynamin are interacting with the trans SNARE complex
[59–61] but are not able at this stage to induce the trans to cis conformational shift of the complex. Munc18b is also
associated to the trans ternary SNARE complex (unpublished observation). It is not clear whether or not Rab3A [62] is
already associated to the trans SNARE complex at this stage. The current concept is that complexin, Munc18b (which
can bind to syntaxin) are stabilizing the trans SNARE protein complex and prevent spontaneous acrosome exocytosis.
Zona binding evokes Ca2+ entry (see Section 5.3.1) and this causes both the dissociation of the MUPP1/CaMKII fusion
clamp [64] and a calcineurin-mediated dephosphorylation of synaptotagmin VI [63]. The dephosphorylation of synap-
totagmins also appear to be essential for the acrosome reaction [59, 62, 117, 63] (unpublished observation). The role of
Rab3A [62] and Rab2A (unpublished observation) in the formation of the cis ternary SNARE complex conformation
is not yet clear. It is possible that these GTPase forming proteins were already recruited during sperm capacitation to
the trans complex and by the zona-induced changes help to create the cis configuration either by dissociation (of Munc
18b) and the coinciding intrinsic Ca2+ sensing properties of the dephosphorylated synaptotagmin with the aid of Rab3A
[62] or Rab2A. Figure is modified from [9]

5.4 Zona Penetration After the Acrosome Reaction

A result of the above described acrosome exocytosis (Section 5.3) is exposure of the acrosomal content
at the front surface of the sperm head where primary zona binding initiated the acrosome reaction. The
now exposed intra-acrosomal layer of proteins consists of an array of proteins that interact with the
zona pellucida (for review see [7]). This so-called secondary zona binding was thought to be specific to
ZP2 [66–68] but recently it has been shown that the intra-acrosomal protein sp56 binds to ZP3 [4, 12].
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Beyond the more massive secondary zona binding (compared to the primary zona recognition binding
at the sperm surface), the exposed intra-acrosomal proteins also cause a local enzymatic cleavage
of this network of 3–4 heavily glycosylated zona proteins [66, 69–75]. For a review on secondary
zona binding proteins from the acrosome see [7]. Note that acrosome exocytosis and consequent zona
drilling coincides with the generation of hyperactivated motility of sperm [13]. Together they form the
pre-requisites for a recycling modus: secondary zona binding followed by local digestion of the ZP
network, zona penetration and subsequent rebinding to the ZP. Thus acrosome exocytosis enables the
sperm to reach the perivitelline space and exposes the inner acrosomal membrane and the equatorial
segment of the sperm head (i.e., that area where the acrosome outer membrane was inert to fuse with
the sperm plasma membrane), which is required for the sperm to be capable of fusing with the oocyte
membrane (see Section 5.5).

5.5 Gamete Membrane Fusion and the Oocyte-to-Embryo Transition

Sperm-oocyte fusion is one of the best-known extracellular membrane fusion events, and yet it is
one of the most poorly understood. Especially in comparison to other types of extracellular fusion
events and to SNARE-mediated vesicle fusion events, relatively little is known about the mechanisms
underlying sperm-oocyte fusion in any species, particularly mammalian. The identification of fusion-
mediating factors in fertilization also has been difficult, but there are multiple possible explanations
for this. From the standpoint of genetic/knockout studies, perhaps there are multiple factors with
substantial functional overlap, and this redundancy has made it difficult to identify gamete fusion-
defective phenotypes. Alternatively, the fusion-mediating factors may play critical roles in other cell
types, making it impossible to assess gamete fusion (e.g., embryonic or neonatal lethality) without
use of a conditional knockout. From the standpoint of biochemistry or developing function-blocking
antibodies as a means to identify these fusion-mediating factors, it is possible that these factors are few
in number, unstable, and/or only transiently exposed. These considerations are also valid for proteins
involved in sperm-zona interactions described in Section 4.3.1 and 4.4.

Only two proteins, the tetraspanin CD9 on the mouse oocyte and the immunoglobulin superfamily
member IZUMO1 (previously known as Izumo) on mouse sperm, have been shown by gene knock-
out studies as being essential specifically for sperm-egg interaction (Fig. 5.3). Note: It is unclear
if CD9 and/or different tetraspanins function in other species’ oocytes in gamete membrane fusion
[76]. Other mouse knockouts have less severe defects in gamete interactions or fertilization, or have
multiple gamete function defects (e.g., [77]). The discovery of CD9’s role in murine fertilization
occurred rather serendipitously, when the knockout mouse lacking this member of the protein family
was found to have greatly reduced female fertility. This is rather remarkable, since CD9 is expressed
in numerous cell types in the body, but there is only an obvious phenotype with oocytes showing
a significantly reduced ability to fuse with sperm [78–80]. The discovery of the role of IZUMO1
came as a result of persistence and hard work, with 17 years between the report of the function-
blocking activity of the monoclonal antibody OBF13 on sperm-oocyte fusion [81] and the report of

!

Fig. 5.3 (continued) 14 (SAMP14; also known as sperm acrosome associated 4, SPACA4), SAMP32 (also known as
SPACA1), and Sperm Lysosomal-Like Protein 1 (SLLP1; also known as SPACA3) [70, 135–137], all of which are novel
proteins. Finally, zinc metalloprotease (MP) activity has been implicated by the finding that mouse sperm-egg fusion
is reduced in the presence of various metalloprotease inhibitors [138]. Reagents that disrupt the action of enzymes that
mediate thiol-disulfide exchanged in proteins (protein disulfide isomerases, PDIs) also reduce the incidence of sperm-
egg fusion [139, 140]. The results with N-ethyl-maleimide (NEM) and 5,5′-dithiobis (2-nitro-benzoic acid) (DTNB)
[139, 140] suggest that sulfhydryl groups may be a common element involved in fusion systems, as they are in vesicle
fusion [141], and certain viral fusion events [142, 143]
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Fig. 5.3 Schematic diagram illustrating molecules implicated in gamete membrane binding and fusion. This
diagram illustrates the molecules proposed to participate in sperm-oocyte membrane interactions (i.e., binding and/or
fusion). CD9 is the major player identified thus far on the oocyte. CD9–/– females are severely subfertile (only 60%
of CD9–/– females become pregnant, litters sizes are 75% smaller, and achieving these pregnancies takes nearly four
times longer than it does for control mice [84]). IVF assays show that sperm binding to CD9–/– oocytes appears to
be unaffected, but sperm rarely fuse [78, 79, 118]. Mouse egg CD9 is likely to function in conjunction with another
tetraspanin, CD81; CD9/CD81 double knockout female mice are completely infertile, suggesting that CD9 and CD81
play complementary roles in fertilization [84]. GPI-anchored proteins on the oocyte are also implicated. Mice with
oocytes deficient in GPI-anchored proteins are infertile, and these oocytes poorly support sperm-oocyte binding and
fusion [86], but it remains unknown which GPI-anchored protein(s) are crucial and what role(s) oocyte GPI-anchored
proteins could play. The last main candidates on oocytes are members of the integrin family. Integrins are heterodimeric
membrane proteins, made up of an α and a β subunit, with 18 α subunits and eight β subunits combining to make at
least 24 different combinations. α6, α3, and β1 in oocytes are not essential for fertility [119, 120], but in vitro studies of
certain subunits have revealed defects in sperm-oocyte binding [121–123]. Oocytes with reduced amounts of α9 support
sperm binding and fusion less well than do control eggs [123], in agreement with the finding that several ADAMs can
interact with α9β1 [124]. Oocytes deficient in β1-deficient show defects in sperm-oocyte binding [121]. On the sperm,
IZUMO1 has been shown to be essential for sperm-oocyte fusion [125]. IZUMO1 is member of the immunoglobu-
lin superfamily (IgSF) proteins, and contains an immunoglobulin-like domain (Ig). IZUMO1 also has a ∼150 amino
acid domain that has been called the Izumo domain (IZ in the diagram), and this domain has been found in three
other proteins [87]. Interestingly, IZUMO1 is associated with other Izumo domain proteins, although the functions
of these in gamete fusion are not known. ACE3 (Angiotensin Converting Enzyme 3) is another IZUMO1-associated
protein [82]; the Ace3 knockout did not show any defects in male fertility or sperm function in vitro, although there
is a slight abnormality in the localization of IZUMO1 [82]. Several sperm ADAMs have been implicated in sperm-
oocyte interaction; while no single ADAM is essential, there appears a correlation between the ability of sperm to
bind and fuse with the egg membrane and the levels of certain ADAM proteins (see [15] for more information). This
suggests that ADAMs could function in redundant roles, consistent with the fact that ADAMs have similar adhesion-
mediating motifs to interact with integrins via their disintegrin domain (D in the diagram) [124, 126–128]. Cysteine-rich
Secretory Protein 1 was implicated in sperm-oocyte fusion by antibody studies in the 1980s [129, 130], and the
Crisp1 knockout was recently reported. Sperm from Crisp1–/– males show a modest decrease in sperm-oocyte fusion in
in vitro fertilization assays, although male fertility appears normal [131]. Finally, as noted in the text, acrosome exo-
cytosis exposes the inner acrosomal membrane and the equatorial segment of the sperm head, rendering the sperm
capable of interacting with the oolemma. Thus, proteins in the equatorial segment of the sperm head have been of
interest. SPESP1 (sperm equatorial segment protein 1; [132]) is a candidate, based on the finding that Spesp1–/– males
produce slightly smaller litters than wild type controls (22%), and have sperm with reduced (although not completely
deficient) ability to undergo sperm-oocyte fusion [77]. Other proteins associated with sperm-oocyte fusion and expo-
sure or rearrangement after acrosome exocytosis include equatorin [133, 134], Sperm Acrosomal Membrane-Associated
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the phenotype of the knockout [82]. Numerous other molecules have also been suggested to partic-
ipate in mammalian gamete membrane interaction (sperm binding and/or sperm-oocyte membrane
fusion; Fig. 5.3). Mouse knockouts have been made of several of these, and many have less dramatic
phenotypes that the Cd9–/– and Izumo1–/– mice, namely often only partial loss of function in sperm-
oocyte interaction (and sometimes little or no impairment of fertility). These are addressed in the
figure legend for Fig. 5.3.

One theme that seems to be emerging in mammalian gamete membrane fusion that is conserved
with other examples of membrane fusion is that membrane order, multimeric protein complexes, and
the gamete surface proteome may prove to play critical roles. CD9 and other tetraspanins are known
to function as organizers of membrane domains, known as tetraspanin-enriched microdomains [83].
Mouse egg CD9 is likely to function in conjunction with another tetraspanin, CD81. CD9/CD81
double knockout female mice are completely infertile, suggesting that CD9 and CD81 play com-
plementary roles in fertilization [84]. Interestingly, glycosylphosphatidyl inositol (GPI)-anchored
proteins in oocytes have been implicated by an oocyte-specific knockout of Piga, a subunit of an
N-acetyl glucosaminyl transferase that participates in first steps of the synthesis of GPI-anchored
proteins [85]; female mice with this oocyte-specific Piga knockout are infertile [86]. It is possible
that the Piga deficiency and the resulting lack of GPI-anchored proteins in the oocyte membrane
alters membrane composition and/or organization so that sperm interactions are not favored. GPI-
anchored proteins are enriched in lipid microdomains, raising the possibility that the microdomain
structure of the egg plasma membrane could be perturbed in the absence of GPI-anchored proteins.
The importance of membrane order may also extend to sperm. IZUMO1 has recently been described
to associate with other membrane proteins [87, 88]. Likewise, members of the ADAM (A Disintegrin
and A Metalloprotease domain) family are other sperm proteins implicated in gamete membrane inter-
actions, and the genetic deletion of one Adam can affect the expression of multiple ADAM proteins on
the sperm surface [15, 89], and protein trafficking during spermatogenesis [90], suggestive of a role
of ADAMs in sperm membrane order. Finally, another knockout, Tssk6, is defective in sperm-oocyte
fusion and has an abnormality in IZUMO1 localization [91], also possibly indicative of aberrant
membrane order.

5.6 The Membrane (Oolemma) Block to Polyspermy

5.6.1 Redundant Sperm Around the Fertilized Oocyte

Mammalian oocytes regulate their ability to interact with sperm, namely the membrane block to
polyspermy, by altering the receptivity of the oolemma to sperm after fertilization. This was demon-
strated by classic studies in which fertilized oocytes recovered from natural matings were found to
have extra sperm in the perivitelline space, apparently unable to penetrate the oolemma [92–94]. The
numbers of supernumerary perivitelline sperm vary by species, suggestive that there are differences in
the reliance on the various polyspermy prevention mechanisms between different species. The oocytes
of some species such as rabbit, pika, pocket gopher, and mole have tens to hundreds of sperm in the
perivitelline space, suggestive of a highly effective membrane block and a relatively ineffective ZP
block. Species in which perivitelline sperm are rare (dog, sheep, field vole) likely have a highly effec-
tive ZP block. Numerous species (including mouse, human, rat, guinea pig, cat, pig, cattle) appear
to use both blocks to polyspermy; in these oocytes, one or two or up to ∼10 sperm are found in the
perivitelline space of early zygotes [92–97].

5.6.2 Prevention of Polyspermy at the Oolemma

The basis of the membrane block to polyspermy – i.e., what is different about the zygote membrane
that prevents additional sperm fusions – is not known. In mouse oocytes, this membrane transition
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occurs gradually; the membrane block is not yet established by 0.75 h post-insemination, but is estab-
lished by 1.5 h post-insemination [17]. Experiments using fluorescent tags in mouse oocytes to track
membrane lipids or protein diffusion suggest that fertilization-induced changes do occur, although
such changes have not been well characterized [98, 99]. It has recently been shown that cortical ten-
sion is higher in zygotes than in unfertilized oocytes [100], although the exact role that this may play
in the membrane block to polyspermy remains to be determined. The mechanism by which the mem-
brane block is triggered also is an active area of investigation. One key finding is that this membrane
block appears to be largely independent of cortical granule exocytosis, although it is possible the con-
tents of the cortical granules may augment the membrane block, even if cortical granule exocytosis is
not an essential component. Oocytes that are activated in ways that induce increased cytosolic Ca2+

concentration and the cortical reaction (calcium ionophore, strontium chloride, injection of a soluble
sperm extract, or by fertilization by intracytoplasmic sperm injection) maintain membranes that are
receptive to sperm [17, 101–104]. The failure of ICSI-generated embryos to establish a membrane
block to polyspermy has been interpreted to indicate that sperm membrane incorporation into the
oolemma is linked with membrane block establishment [103], or that membrane block establishment
occurs as a result of changes in the oocyte occurring with the process of gamete fusion [104]. In the
mouse, the sperm head surface area is only ∼0.14% of the oocyte surface area, and thus a membrane
block mechanism involving dilution of the oolemma with sperm membrane seems unlikely. Instead,
establishment of the membrane block may involve signaling occurring with gamete fusion, although
the injection of a soluble sperm extract fails to trigger membrane block establishment, indicating that
membrane block establishment is not solely controlled by the sperm-induced increase in cytosolic
Ca2+ [104].

5.7 Cortical Reaction and the Zona Pellucida Block to Polyspermic
Fertilization

5.7.1 Cortical Granules Content Can Modify the Zona Pellucida Structure

The concern for a just fertilized oocyte is to prevent additional sperm to bind to and fuse with the
oolemma (polyspemy). The just-fused first sperm introduces soluble cytosolic factors like phospholi-
pase C zeta into the oocyte [105]. These factors induce intracellular Ca2+ events and the oocyte plasma
membrane depolarization and both are triggers for the cortical granule exocytosis [18]. The secretory
granules that reside in the cortex (the area just under the oocyte plasma membrane) fuse with the
oocyte plasma membrane and the content of the granules is released into the perivitelline space [106,
107]. Although the contents of the cortical granules are very poorly characterized [106, 108–111], it
is known that the release of these materials results in the cleavage of ZP2 and ZP3 into the truncated
ZP2f and ZP3f forms [20–22]. These alterations are associated with zona hardening (defined as resis-
tance to proteolysis in certain in vitro assays). As a result sperm stop penetrating the hardened zona
and do not show affinity for the zona pellucida.

5.7.2 Maturation Dependent Exocytotic Fusion Machinery of the Cortical
Reaction

Cortical granule exocytosis resembles to some extent the exocytosis of the acrosome (Section 5.3.2)
in that in both cases secretory granule exocytosis takes place at the surface of a gamete. The main
difference between the two exocytosis events is that cortical granule exocytosis is a series of single
point fusion events of many cortical granules with the oolemma, while the acrosome exocytosis is
a multiple point fusion event of one acrosome with the sperm plasma membrane. The majority of
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secretory granules migrate towards the oocyte plasma membrane during pre-ovulatory maturation of
oocytes somewhere between the germinal vesicle stage (GV, oocytes that are arrested at the prophase
of meiosis I) and the arrested stage at metaphase of meiosis II (MII) [107, 112]. Nevertheless, some of
the secretory granules already reside in the cortex of GV oocytes but fail to be competent to fuse with
the oocyte surface at that stage which appears to depent on too low activity of calcium/calmodulin
dependent kinase II activity which becomes activated in MII oocytes [113] and related to this MAPK
activity seems to be inviolved in activating the cortical granule exocytosis as well [114]. In addition
we have shown recently that cortical granules become docked at the oocytes plasma membrane during
these two meiotic maturation stages [107]. The SNARE proteins SNAP23, VAMP-1 and syntaxin 2
are involved and probably form a similar trimeric trans complex prior to fertilization (which therefore
is analogous to acrosome docking during sperm capacitation). The docked cortical granules are also
decorated with complexins (probably stabilizing the SNARE complex) and with clathrin (Fig. 5.4).
After fertilization the Ca2+ mobilization and related signaling and cytoskeletal rearrangements
[18, 115] cause the trans to cis ternary configuration of the trimeric SNARE complex is turned on and
explains the cortical reaction. Remarkably complexin and clathrin dissociate from the cortex and relo-
cate to intracellular structures and this is probably required to re-establish endocytosis and membrane
recycling [107]. In case of polyspermic fertilization of pig oocytes, we observed a normal cortical
reaction but this is not followed by a release of clathrin which may indicate that at the level of the
oolemma fusion the inhibition of endocytosis may have a relationship with the fusion properties of the
oolemma [107]. This observation confirms the finding that the polyspermy block is at least not imme-
diately dependent on cortical exocytosis (see Section 5.6.2). As noted above, little to nothing is known
about the content of the cortical granules although in general its content should resemble that of other
secretory vesicles. Like the acrosomal enzymes also the cortical granule enzymes are capable to alter
the zona pellucida structure. But the cortical granule enzymes differ from acrosomal enzymes in that
acrosomal enzymes digest the zona pellucida matrix locally (allowing sperm penetration) whereas the
cortical granule enzymes make the zona pellucida impermeable for acrosome-reacted sperm (the so
called slow polyspermy block).

5.8 Conclusion

This chapter provides an overview about the three fusion events involved in mammalian fertilization.
Acrosome exocytosis is first hurdle, allowing the sperm to fertilize the oocyte by resulting in local-
ized digestion of the zona pellucida and thus permitting the sperm to gain access to the oocyte plasma
membrane. The first sperm to interact with the oocyte plasma membrane and to execute actual fertil-
ization fusion delivers its male haploid genome to the oocyte. This sperm also activates the oocyte,
leading to the oocyte-to-embryo transition, including the establishment of blocks to polyspermy, with
the zona pellucida block being mediated by the third membrane fusion event of fertilization (i.e.,
cortical granule exocytosis). Both the secretion of the acrosome and the cortical granules can be con-
sidered as classical exocytotic events in which trimeric SNARE complex formation cause vesicle
docking to the gametes plasma membrane and Ca2+-dependent configuration to a cis trimeric SNARE
complex causes exocytosis. However, the acrosome exocytosis is unique in showing multiple fusions
of only one large secretory vesicle with the sperm plasma membrane, whereas the cortical granule
exocytosis likely initiaties with single point fusions of an array of cortical vesicles over the entire the
oocyte plasma membrane. The regulation machinery for vesicle docking and fusion with the plasma
membrane for both gametes needs to be studied into greater detail. In between the two exocytotic
membrane fusions lays the actual sperm-oocyte membrane fusion, which remains to be poorly under-
stood. The fusion between two gamete plasma membranes may share similarities to other extracellular
fusion events (e.g., myofibril formation, syncytia-forming transformed cancer cells in culture), or viral
fusion.
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Fig. 5.4 Model for SNARE mediated cortical exocytosis of the fertilized oocyte. At the germinal vesicle stage (GV)
the majority of the secretory granules (blue vesicles) are not residing in the cortex of the oocyte and are therefore do not
interact with the oocyte plasma membrane (yellow membrane). During later meiotic maturation at the metaphase II stage
(MII) about all granules have migrated towards the cortex region and strong co-localization of oocyte plasma membrane
and cortical granule content has been demonstrated. Therefore, it is possible that the cortical granules are docked to the
oocyte plasma membrane and that this interaction is stabilized in an analogous way to that of the acrosome. This would
explain why the premature cortical exocytosis is not observed. Complexin and clathrin are at this stage exclusively
present in the area where the cortical granules and the plasma membrane are interacting. It is noteworthy to mention
that membrane recycling is silenced in MII oocytes and no exocytosis as well as endocytosis can be observed. The
concentration of complexin and clathrin at the cortex may well have to do with this. Once the sperm has fertilized the
oocyte, it will introduce oocyte activation factors into the oocyte that allow Ca2+ mobilization (see Section 5.7.1) and
this results in at least the dissociation of clathrin and complexin. This dissociation has not been found in polyspermic
fertilized oocytes that still retain membrane recycling blocked at the oocyte surface. Perhaps this explains why redundant
sperm can cause polyspermic fertilization in those oocytes. In the monospermic oocytes the release of complexin and
clathrin coincides with the onset of membrane recycling by means of endocytosis and exocytosis and thus to further
embryo development. This figure summarizes the studies of Tsai et al. [107]

Taken together three membrane fusion events serve to achieve optimal monospermic fertilization of
mammalian oocytes. However, it is surprising that, despite of decades of research, the actual molecular
understanding of the fertilization of the mammalian oocyte is still relatively limited.
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