
A CONVERGENCE THEOREM IN PROCESS ALGEBRA

J.A. Bergstra
University of Amsterdam, Department of Computer Science

P.O. Box 19268, 1000 GG Amsterdam;
State University of Utrecht, Department of Philosophy,

P.O. Box 8810, 3508 TA Utrecht.

J.W. Klop
Centre for Mathematics and Computer Science,

P.O. Box 4079, 1009 AB Amsterdam;
Free University, Department of Mathematics and Computer Science,

De Boelelaan 1081, 1081 HV Amsterdam.

ABSTRACT
We study a convergence phenomenon in the projective limit model A's for PA, an axiom
system in the framework of process algebra for processes built from atomic actions by
means of alternative composition (+) and sequential composition , and subject to the
operations 11 (merge) and ft. (left-merge). The model le* is also a complete metric space.
Specifically, it is shown that for every element q E fie° the sequence q, s(q), s2(q), ,

sn(q), ... converges to a solution of the (possibly unguarded) recursion equation X = s(X)
where s(X) is an expression in the signature of PA involving the recursion variable X. As
the convergence holds for arbitrary starting points q, this result does not seem readily
obtainable by the usual convergence proof techniques. Furthermore, the connection is
studied between projective models and models based on process graphs. Also these models
are compared with the process model introduced by De Bakker and Zucker.

Key words and phrases: process algebra, projective limit model, merge, left-merge, recursion
equations, complete metric space, process graph, Approximation Induction Principle.
1985 Mathematics subject classification: 68Q05, 68Q10, 68Q55, 68Q45.
1987 CR Categories: F.1.2, F.3.1, F.3.2, F.3.3.
Note: Partial support received from the European Communities under ESPRIT contract 432,
An Integrated Formal Approach to Industrial Software Development (Meteor).

Introduction

The present paper is a revised and extended version of [BK82], which was written as a response to

a question of De Bakker and Zucker [BZ82a,b], namely how to assign a semantics in their process

domain to certain fixed point expressions tiX.s(X) where s(X) is an expression in the signature

specified below. In case RX.s(X) is a 'guarded' fixed point expression it is, as shown in
[BZ82a,b], straightforward to define the appropriate semantics, using Banachs fixed point theorem

for complete metric spaces, but there is a problem in the unguarded case at least, if one wishes the

semantics to be a solution of the recursion equation X = s(X). In order to tackle the problem, we

devised in [BK82] an axiom system called below PA (for Process Algebra), together with a
'projective limit model' A for these axioms, and showed that every iteration sequence

Report CS-R8733
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

-

2

q, s(q), s2(q), , sn(q),

where q is a finite process and s(X) is an expression in the signature of PA involving occurrences

of the recursion variable X, converges to a solution of the recursion equation X = s(X). Here we

can speak about convergence, since the projective limit model is also a complete metric space. In

the case of a guarded expression s(X) this solution is unique; in the unguarded case there exists a

solution but not necessarily a unique one as is readily seen by contemplating the recursion

equation X = X.

The axiom system PA has been a stepping stone towards more and more expressive axiom

systems for processes, covering also process features such as handshaking communication,
deadlock, abstraction, priorities between atomic actions etc. Some introductory surveys of this

work are given in [BK86a,b]. In the course of pursuing this line of 'process algebra', it was found

that there is at least one easier way to prove the existence of solutions of recursion equations X =

s(X), even if unguarded. For such a proof, based on a method of Milner [Mi85], we refer to a

paper by Van Glabbeek [G187]. (See p.344 last line. Some work remains to be done to transpose

the result there to the present setting, however.) Yet we find that the proof below is worthwhile,

since it gives more information than the mere existence of solutions of X = s(X): as already stated,

such solutions can be found by iteration from an arbitrary initial process. The interesting point is

that the usual convergence proof methods, such as appealing to Banachs fixed point theorem for

complete metric spaces or the Tarski-Knaster fixed point theorem for complete partial orders, do

not seem to yield this additional information. A challenging question, which for us is open, is to

analyze the convergence result below in terms of 'more general' theory. The proof below, which is

'combinatorial' in nature, rests upon the specific algebraic properties of the operators defined by

PA. On the other hand, there seems to be a more general convergence principle involved: we expect

that analogous convergence theorems can be proved for more extensive process axiomatisations

such as ACP, Algebra of Communicating Processes (see [BK86a,b]).

In the second part of the paper we define projective models for arbitrary large alphabets; also

here the convergence theorem holds. Furthermore, we compare these projective models with

models obtained via process graphs ('graph models'), and with the process model of 'hereditarily

closed sets' introduced by De Bakker and Zucker in [BZ82a,b].

Acknowledgements. We are indebted to J.W. de Bakker for introducing us to a challenging and

fruitful question, which was the initial motivation for our paper, as well as for valuable comments.

We also thank J.C.M. Baeten, E. Kranakis and R.J. van Glabbeek for useful discussions.

Contents
Introduction
1. The axiom system PA
2. The projective model for PA
3. Iteration sequences
4. The projective model as a complete metric space
5. Closed process graphs
References

-

3

1. The axiom system PA

In this paper we will discuss 'processes' built from atomic actions or events a,b,c,... , by means of

the basic operators + (alternative composition) and (sequential composition). We will adopt the

restriction that the action alphabet A = (a,b,c,...) is finite. (The case of infinite alphabets will be

studied in Section 4.) Intuitively, a process expression as e.g. (a + b).c will denote a process

capable first of choosing between the actions a,b and executing the chosen action, and second

performing the action c. Actually this process expression will be considered equivalent (that is,

denoting the same process) to ac+ bc. On the other hand we do not wish to identify processes

c(a + b) and c.a + cb as these processes differ in their timing of choices. Apart from the two basic

operators we introduce a merge or interleaving operator II together with an auxiliary operator ij_

called left-merge. These four operators will be subject to the axioms in Table 1, where a E A and

x,y,z are variables denoting general processes.

PA

x+y = y+x Al

(x+y)+z = x+(y+z) A2

x+x = x A3

(xy)z = x(yz) A4

(x+y)z = xz+yz AS

xlly = xlLy ylLx M1

ax = a(x 11 3') M2

alLy = ay M3

(x+y)Lz = xLz + yLz M4

Table 1

Here we have suppressed the product sign as we will do henceforth, and we use the convention

that binds stronger than the other operators; so axLy stands for (ax)[Ly.

A model of this axiom system PA will be called a process algebra (for PA). The elements in a

process algebra are processes. The simplest process algebra is the closed term model Am with as

elements the closed terms (or closed expressions) in the signature of PA modulo the equality

generated by the axioms of PA. The word 'closed' refers to the absence of variables. One easily

establishes the following facts:

1.1. PROPOSITION. For all process algebras:

bjyi =

ai(xi II Ej=1,..,m biyj) + vyj II aix).i 0

+

aixi II Ej=1,..m.,

4

1.2. PROPOSITION. (Representation of elements of A) Modulo the equivalence generated by the

axioms of PA, the term algebra Awis inductively generated as follows:

E Aoy ai E A (i = 1,...,n), b E A (j = 1,...,m)

+ j1n aixi) E A. 0

As to Proposition 1.1, we remark that it does not seem possible to avoid the cumbersome

explicit sum formula without using an auxiliary operator such as L. We conjecture that process

algebras without L and using II, are not finitely axiomatizable.

The elements of A, can also be pictured as (equivalence classes of) finite trees, or directed

acyclic graphs.

1.3. EXAMPLE.

bab II ab =

bab L ab + ab L bab = b(ab 1 ab) + a (b II bab) =

b(ab IL ab + ab ab) + a (b IL bab + bab b)IL =

b(ab L ab) + a(bbab + b(ab II b)) =

b(a(b II ab)) + a(bbab + b(abb + bab)) =

b(a(bab + abb)) + a(bbab + b(abb + bab)).

The first expression, bab ab, corresponds to the 'cartesian product' graph as in Figure la, the last

expression in which the merge and left-merge operators have been eliminated, corresponds to the

. tree in Figure lb which is the 'unshared' version of the graph in Figure la. Actually one can
construct process algebras for PA starting from a domain of process graphs or process trees as in

(a)

Figure 1

(b)

IL

1

b;

II

5

Figure 1, and next dividing out a suitable equivalence relation ('bisimulation equivalence', see
Definition 4.4). We will explain this construction in Section 4. If the domain of process graphs or

trees consists of acyclic and finite trees, the resulting quotient algebra is isomorphic to A.

On the elements x E A we define the following norm v(x), which intuitively is the
minimum of the length of the 'branches' of the tree of x (as in Figure lb).

1.4. DEFINITION. For x E Aor we define v(x) by:

(i) v(a) = 1 for a E A,

v(x+y) = min fv(x), v(y)),

(iii) v(ax) = 1 + v(x).

The following proposition says that merging will certainly not lead to shorter branches. (In

fact, the proposition holds with '>' instead of but we will not need that). The routine proof is

left to the reader.

1.5. PROPOSITION. For all x,y E v(x), v(y). 0

In the next proposition we establish some useful identities valid in A, (needed in Section 2),

again without the routine proofs. First some more notation:

1.6. NOTATION. (i) x1 x; xn+1 xxn (n 1)

(ii) x; x13±1- x II xn (n 1)

1.7. PROPOSITON. In Aw the following identities are valid:

(i) (xliy) liz = xli (yllz)

(ii) (xlLy) Lz= (yllz)

(iii) xjyiiz = xIL (yllz)+ yft (xliz)+ (xlly)
(iv) xlIlx211...IIxn=

x1Ij Jx211 11xn) + x2L(x11Ix II Ilxn) + + xn[L(x 11 11xn_1)

(v) xnra = xLx (n 1).

(n 2)

PROOF. (v) follows directly from (iv), which generalizes (iii); (iv) follows via simple algebraic

manipulations from (i) and (ii). Statements (i) and (ii) can be proved simultaneously using
induction on the structure of x,y, z E An) according to Proposition 1.2. 0

'2,

A,: v(x II

?.

x1

z[L

41

a=

2

6

2. The projective model for PA

We will now introduce a process algebra for PA that also contains infinite processes. First we need

projection operators:

2.1. DEFINITION. (i) On A, we define for each n 1 the projection On: Ao) as follows.

(Intuitively, On cuts of the 'tree' of x at level n.) For each a E A and x,y E Aw:

(a)n = a,

(ax)1 = a,

(ax)ni = a(x)n,
(x+y)n = (x)n +(y)n.

(ii) An = ((x)n I X E .

(iii) Instead of (x)n = (y)n we will also say: x = y modulo n.

2.2. EXAMPLE. Modulo 3 we have:

[(a3 11b3)+ a] 11 b3 = a3 II b3 = (a+b)3.

The following proposition is easily established, and we omit the proof. Note especially the

occurrences of n - 1 in (iii) and (iv):

2.3. PROPOSITION. For all x,y E A.03:

(i) ((x)n)m = (x)min (nn) (n,m1)

(x+y)n = ((x)n (y)n)n (11_.1)

(iii) (xy), = ((x)n(y)n_dn

(iv) (alLy) = ((x)n b_.(31)n-1)n (n2)

(v) (ally)= ((x)n 11 (y)n)n (1.1.1)

(vi) (xy)1 = (x)1

(vii) (x11_30 1 = (x)

2.4. REMARK. Note that the An are also process algebras with operators +n, -n, IIn for PA;

the operators am defined by:

x On y = (x y)n,

Aw>

(n2)

0

LL

0

+

2

7

where 0 is In fact, +n coincides with +.

2.5. DEFINITION. Let qi E A, (i 1). Then the sequence ch, q2,... is called projective if for all i:

qi = (qi+1)i.

2.6. DEFINITION. A.** is the projective limit of the A, (n 1); the elements of A are the
projective sequences.

It is not hard to establish that A is a process algebra for PA where the operations are
defined component-wise. It will be called the projective limit model or projective model.

2.7. EXAMPLE. (i) (a, a+a2, a+a2 + a3,...) E

(a, a2, a3,...) (b, b2, b3,...) = ((ab)i, (a2b2)2, (a3b3)3, ...) = (a, a2, a3,...).

(iii) (a, a+a2, a+a2+a3,...)-(b, b+b2 , b+b2 +b3,...) = (a, ab+a2, a(b+b2) + a2 b+a3,...).

(iv) (a, a2, a3,...) (b, b2, b3,...) = ((a Ilb)1, (a211b2)2, (a311b3)3, ...) = (a+b, (a+b)2, (a+b)3,...).

3. Iteration sequences

In this section we will show that every iteration sequence q, s(q), s(s(q)), ... must eventually be
constant modulo n, for every n 1. We will also say that the sequence 'stabilizes' modulo n.

3.1. DEFINITION. The set EXP of (possibly open) process expressions is defined (in BNF
notation) by:

s = a, b, c, I X,Y,Z, I s1 + s2 I s1s2 I s1[Ls2 I s 11s .

Here a,b,c, E A and X,Y,Z, ... are recursion variables.

3.2. DEFINITION. (i) Let s(X) E EXP be an expression containing no other variables than X. Let

q e A). Then the sequence

q, s(q), s(s(q)), sk(q),

is called the iteration sequence generated by s(X)from q.

(ii) The sequence ql, q2, qk, (qi E Aor 1) is said to stabilize modulo n if the sequence

+,.,EL,11.

?.

A.
(ii)

II

i

...

8

stabilizes in An, i.e. if

(q1),, (C12)n,

is eventually constant.

In order to prove the main theorem of this section, we need some propositions.

3.3. PROPOSITION. For every q E A and n 1, the iteration sequence

q, qIIq,

stabilizes modulo n.

PROOF. Induction on n. Basis: n = 1. One easily computes:

(cl)1 = Eai = = (clk)i =

for some sum Eai. Induction step. Suppose the proposition is proved for n - 1. By Proposition
1.7(v):

qk-1-1 (IL qk.

By Proposition 2.3(iv):

(clir-±bn = (cd-clis)ri = ((q)n 1-1-(q1s)n-1)n.

By the induction hypothesis, (c1k)n-1 = p for some fixed p for all but finitely many k. Hence the

sequence stabilizes indeed modulo n, viz. in ((q)n [Lp)n.

The next two propositions generalize the preceding one considerably.

3.4. PROPOSITON. Let the action alphabet A be finite. Let ql, q2, ... be a sequence in A, such

that for all 1: qi+1= qIIr for some ri.

Then the sequence ql, q2, ... stabilizes modulo n.

PROOF. By assumption, qk = q1 II r1 II r2 r3 r (k 2), hence by Proposition 2.3(v):

(c1k), = ((c11) II (r) n II II (rk-)dn.

qk,

(1411(01 =

n

i

II ... II

...

(qk)n,

qiIqiIq,

II ?_

=

9

Here all (ri)n are elements of the finite A. (Obviously, since A is finite, every An is finite). Say

An = {p1,...,pra}. Then by associativity and commutativity of II, we can write

f1(k) f2(k) fN(k)

(clOn ((q1). 1)1 11 p2 II ... 11 PN

for some monotonic functions fi (i=1,...,N), with the understanding that if fi(k) = 0, the
corresponding 'mergend' vanishes. By Proposition 3.3, every

fi(k)
Pi

(i = 1,...,N) stabilizes modulo n, with growing k; whence the result follows. 0

3.5. PROPOSITION. Let A be finite. Let ch, q2, ... be a sequence in A, such that for all 1,

either

(i) qi+1= qIir , or

qi+1= qi'ri

for some ri. Then the sequence q1, q2, ... stabilizes modulo n.

PROOF. We may suppose that for infinitely many i we are in case (ii); otherwise we are done at
once using Proposition 3.4.

So by Proposition 1.5, v(qi) n, and hence v((qi)n) = n, for all but finitely many i. (Here

we use also the obvious fact: v(qi) v(qi).) Now if v((qi)n) = n, and q1+1 = qi ri, then
evidently (q1+1)n = (qi)n. That is, modulo n, right multiplication has no effect from some i
onwards. But then we are again in the case of the previous proposition. 0

3.5.1. REMARK. If in Proposition 3.5, (ii) is replaced by: (ii) q11 = q + ri, then the resulting
proposition is no longer true. Cfr. Example 2.2.

3.5.2. REMARK. A corollary of Proposition 3.5 is that in every An as well as in A, if A is finite:

3 x Vy xIly = x,

i.e. there exists an element which is "saturated" w.r.t. merges.

3.6. PROPOSITION. Let A be finite. Let (11, q2, ... be a sequence in A such that for all i
either

Wer.

= II)n

(ii)

-

....L

10

ri, or

= cif ri

for some ri. Then the sequence q1, q2, ... stabilizes modulo n.

PROOF. By Proposition 1.2, we have q1 = I,ai + bi xi for some a, b E A and xi E A,. Now
if q2 = q1 r1 , then

q2 = a1r + I bi x r1,

and if q2 = q Lr1, then

q2 = I a1r1 + I bj (xj II r1).

In both cases q2 has the form, say, ckpk for some Ck E A, pk E A. Now suppose, e.g.:

= cI2 r2

C14 = cI3 r3

q5 = C14 Lr4

q6 = C15 IL r5

cI7 = CI6 r6

(so for instance q7 = ((((q2 Lr2) r3) IL r4)11_ r5) r6). Then

(13 -= CkPk) IL r2 = ck (Pk II r2),

(14 = Ck(Pk II r2)) r3 = I CI, (PkIl r2) r3

(so q7 = ck [((((pk 11r2)r3) II r4)45)r6]). Hence an appeal to the previous proposition yields the

result.

3.6.1. REMARK. The generality in Propositions 3.5 and 3.6 w.r.t. the elements ri, suggests
looking at possible stabilization (modulo n) of general sequences of the forms:

(i) q, s1(q), s1(s2(q)), s1(s2(s3(q))),
q, s1(q), s2(s1(q)), s3(s2(s1(q))),

where q E A, and si(X) (i 1) are arbitrary expressions E EXP having only X free.

Both types of sequences do not necessarily stabilize, however. For (i) one may take

qi+1 = qi IL

E

E

C13 IL

(E X

(E

E

0
;

t.

(i)
(li)

(i)

2

11

s2n+1(X) = Xa, s2n+2(X) = Xb (n 0) and q = a. This sequence does not stabilize modulo 2. For

(ii): take s2n+1(X) = X+a3, s2n+2(X) = X II b3 (n 0) and q = a3 II b3. This sequence does not

stabilize modulo 3 as already remarked in 3.5.1.

We will now state and prove the main theorem of this paper, saying that every sequence q,

s(q), s2(q), ... must eventually be constant modulo n. For guarded expressions like e.g. s(X)

aX + b(cX 11 X3) + d this is clear since iterating s(X) yields a tree which develops itself in such a

way that an increasing part of it is fixed. 'Guarded' means that an occurrence of a recursion
variable cannot be accessed without passing an atom. But even for simple terms as s(X) =

(X 11 X) + ab the situation is at first sight not at all clear: in each step of the iteration the whole tree

including the top is again in 'motion'.

3.7. THEOREM. Let q E A, and let s(X) E EXP have only X as free variable. Then the iteration

sequence q, s(q), s(s(q)), sk(q), ... stabilizes modulo n, for every n 1.

PROOF. The proof is by induction on n. Basis: n = 1. By Proposition 2.3, (s(X))1 = Eai or (s(X))1

= (X)1 + Zai. E.g. if s(X) =X LX+aLX+ bcX, then

(s(X))1 = L)01 + (a L x)1 + = 001 + a + b.

In the first case the iteration sequence stabilizes modulo 1 at zai, in the second case at (q)1 + Eat.

Induction step. Induction hypothesis: suppose the statement in the theorem is proved for n 1.

Consider s(X). It has the following form, possibly after some rewritings by means of axioms A5,
M4:

Xot1ot2...ot_ +

X Ot_nt_0...0t_ +

Xot_o ot_ +

ot_ +

alot_o Dt +

a Ot ot +

akot_o ot_

Vito ot_.

Here 0 is either IL or, al,...,ak E A and t1,t2,t_,t_,...E EXP. (The reader is invited to write the

appropriate subscripts for the in In each summand brackets associate to the left.

In order to avoid excessive notation, we will give the remainder of the proof using as a

,

=

-

a Ot
1 -

-

-

+

t).
,

(X

12

typical example

s(X) = ((X [1_ t1)t2) L t3 + (X L t4) II t5 + a IL t6.

Note that t1,...,t6 may contain occurrences of X. To denote this, we will write t1(X),...,t6(X).

Now from Proposition 2.3 we have (using also the following fact which is easily derived

from that Proposition: (t(X))n = (t((X)n))n, t E EXP):

(spo)n = (pcn (tIocn_1))n_1) (t2(xn_1)),.1 IL 0.30(n_A_I +

pcn (1.4(c1)),l) IL (t5(X 4)),1 +
a L (t6(Xn_1))n_1.

(Here we saved some brackets by writing Xn instead of (X)n.) By the induction hypothesis, the

iteration sequence stabilizes modulo n 1, say at Q E A. Hence for k sufficiently large we have,

substituting s(q) for X and Q for Xn_1:

= (((sk(q)) IL (t1(Q))n_1) (t2(Q))n_1) (t3(Q))n-1

((sk(On IL (t4(Q))n_1) IL (t5(Q)),,,-1

a IL (t6(Q))n_1.

Let us write ti' instead of ti(Q), i=1,...,6. So in order to prove stabilization modulo n of the
iteration sequence generated by s(X) with starting value q, it suffices to prove stabilization modulo

n of the iteration sequence generated by

s'oo = (0c IL t1')t2') 11 t3' + L t4') 11 t5' + a IL t6',

with starting value sk(q) P for some k. The advantage obtained now is that the ti' are closed

terms, i.e. not containing X anymore. Write

T1(x) ((x 11_ t1') t2') IL t3'

T2(X) (X IL t4') IL t5',

T3 a [I_ t6'

Then s'(P) = T1(P) + T2(P) + T3, and

s'(s'(P)) = T1(T1 (P) + T2(P) + T3) + T2(T1(P) + T2(P) + T3) + T3

= T1(T1 (P)) + T1(T2 (P)) + T1(T3) +

T2(T1 (P)) + T2(T2(P)) + T2(T3) + T3.

Here the 'linearity' of T1 and T2 is due to the distributive laws for L and (A5, M4). Continuing in

IL

EL

IL

E

a

-

(x

.

this way we find

where

13

s'k(P) = ak + f3k + + + [32 + T3

ak = il,..,ik e (1,2) T11(Ti 2 ((Tik(P))...))

j1,..,j(k-1) E (1,2)

Now the summands ak and 13k stabilize modulo n for growing k. For, consider ak:

a 1 =

a2

a
3

Figure 2

Each 'branch' in the tree thus obtained (see Figure 2), e.g. the indicated branch

T1(P), T1(T1(P)), T2(T1(T1(P))), T1(T2(T1(T1(P)))),

stabilizes modulo n, according to Proposition 3.6, since the operations T1, T2 consist of some
left-merges on the right and some multiplications on the right. Hence, by Konig's Lemma, there is

some k such that all branches are stabilized (modulo n) at that level k, i.e. for all summands
Ti1(Ti2(...(Tik(P))...)) in ak further prefixing of T1 or T2 makes no difference modulo n. So from

that k onwards, ak is stable, modulo n. The same argument shows that 13k stabilizes modulo n for

growing k. Therefore s'k(P) stabilizes modulo n for growing k, and this ends the proof.

(Note that the fmiteness condition on A, necessary for the application of Proposition 3.6, is

satisfied since the only a E A playing a role here, occur in q and s(X).)

13k = T)10)2(...(Tjoc_i)(T3))...)).

0

13k_1

I

14

3.7.1. REMARK. Note that the theorem remains valid for an arbitrary q E A as starting point for

the iteration sequence: stabilization modulo n occurs as if the starting point was (q)n.

3.8. COROLLARY. Let s(X) E EXP contain no other variables than X. Then the equation X = s(X)

has a solution in the projection algebras An, for every n 1; and likewise in the projective model

A .

PROOF. That X = s(X) has a solution in An, is an immediate consequence of Theorem 3.7: take an

arbitrary atom a and iterate: a, s(a), s2(a), s3(a), ... until the sequence stabilizes modulo n:

(sk(n)(aDn = (sk(n)+1(on

for some k(n). Then Qn = (sk(n)(a))n is a solution in A.

A solution in is found by taking Qn as above such that k(n) is a monotonic sequence;

now (Q1, Q2, ...) is a solution in A.`'. It is easy to verify (using the monotonicity of k(n)) that this

is indeed a projective sequence. 0

3.8.1. REMARK. In [Kr87] Corollary 3.8 has been generalized: in the equation X = s(X) the RHS

may contain parameters p1,...,prn E A. See [Kr87] also for several other generalizations.

3.9. Systems of recursion equations.

A natural question is whether the result in Theorem 3.7 can be generalized to systems of recursion

equations (Xi = si(X) I i = 1,...,n) (here si(X) is s1(X1,...,Xn)). The answer is no, if we take

parallel iterations as in the following example:

X1,Y1

X2,Y2

X3,Y3

X4,Y4

X = Ya Y = Xb

a

aa bb

bba aab

aaba bbab

Here (Xn+1,Y,+1) is computed by parallel substitution of the previous values (Xn,Yn) in the RHSs

of the recursion equations. Obviously, stabilization does not occur in the example. However, it

seems that one can prove that if the iteration is not parallel, but sequential in the sense that in each

step only one of the recursion variables is rewritten on the basis of the previous values, then

stabilization occurs, modulo every n 1; moreover, if the choice of the single recursion variable

which is rewritten in the successive iteration steps is fair, then we find a solution of the system of

A

b

2

15

recursion equations. See the following example of a fair, sequential iteration; alternatingly, the X

and the Y is rewritten.

X = Ya Y = Xb

X1,Y1 b a

X2,Y2 aa a

X3,Y3 aa. aab

X4,Y4 aaba aab

We expect that a proof can be given of these statements along the same lines as above, for the case

of a single recursion equation, but we will not attempt to do so here.

We further conjecture that parallel iterations of a system of n recursion equations, even

though not 'converging' (in a sense to be made precise in the next section) to a fixed point or rather

fixed vector of points, there still is a convergence: namely to a 'fixed cycle' consisting of n vectors.

For the parallel iteration example above we have indeed:

(X2n, Y2n) (a(ab)°, b(ba)°)

(X2n+1, Y2n+1) -> (b(ba), a(ab)').

(Here a(ab)° stands for aababababab... , which in turn stands for the projective sequence (a, aa,
aab, aaba, aabab, ...).)

4. The projective model as a complete metric space

The results above, stated in terms of 'stabilization modulo n', can be phrased in terms of
'convergence', as follows.

4.1. DEFINITION. Let x,y E A. Then the distance between x = (x1,x2,...) and y = (y1,y2,...),
notation d(x,y), is defined by:

d(x,y) = I 2-m if 3n yn; m = min [El I yn)

1 0 otherwise, i.e. Vn xn = yn.

E.g. d(a,b) = 2-1; d(aabc, aa(a+b)c) = 2-3. (Here 'a' is short for the projective sequence (a,a,a,...)

and aabc stands for (a,aa,aab,aabc,aabc,...).)

The following fact is easily established:

.

>

rcTi xn

L

16

4.2. THEOREM. The projective model A with the distance function d is a complete metric space.

Now we can reformulate Theorem 3.7 (incorporating also Remark 3.7.1):

4.3. THEOREM. Let q E A and let s(X) be an expression in the signature of PA containing no

other variables than X. Then the iteration sequence q, s(q), s2(q), , sn(q), ... converges in the

metric space (A, d) to a solution of the recursion equation X = s(X).

Up to this point we have supposed that the alphabet A is finite. We will now show that this is

not essential, and define projective models for arbitrary alphabets; furthermore we will connect

these models with models obtained via process graphs and the notion of bisimulation equivalence

or bisimilarity. It will be convenient to define first the latter class of models for PA.

4.4. DEFINITION. (i) A process graph is a rooted, directed, connected, edge-labeled graph. The

edges (or arrows) are labeled with elements from the action alphabet A. The root is a designated

node (the 'entrance' node, indicated by a small arrow as in Figure 1). Process graphs may have

infinitely many nodes, or infinitely many edges (even between two nodes), and may contain cyclic

'paths'. Process graphs without cycles and without 'shared subgraphs' are process trees. (In
[Mi80] these are called 'synchronisation trees'.) More precisely: a process graph is a process tree if

every node has exactly one incoming arrow where the small root arrow also counts as an arrow. A

process graph is finite if it contains finitely many edges and nodes.

(ii) If g is a process graph, and s E NODES(g) is a node of g, then the branching degree of s is

the number of arrows leaving s. The branching degree of g is the maximum of the branching

degrees of the nodes in g.

(iii) Two process graphs g,h with labels from the same alphabet are bisimilar if there is a
bisimulation from g to h, that is a relation R c NODES(g) x NODES(h) such that (1) the roots of

g,h are related, (2) if (s,t) E R and s *a s' is an edge in g, then there is an edge t *a t' in h with

(s',t') E R, (3) likewise with the role of g,h interchanged. If g,h are bisimilar we write: g 1-2 h. (An

example of two bisimilar graphs: the process graphs in Figure la and b.)

(iv) is the set of process graphs 'over' an alphabet of cardinality a and with branching

degree <13. Here a 1 and 13 Mo. (The bound (3 on the branching degree must be infmite since

otherwise the process graph domains below would not be closed under '+', defined below.) On

aa,i3 we define operations +, , , L ,()n (n 1). For the precise definitions we refer to

[BK86a,b]; for the sake of completeness we will give a short description. The sum graph g + h

originates by identifying the roots of graphs g',h' obtained by unwinding g,h so far as necessary to

make the roots acyclic. The product graph gIt is obtained by glueing copies of h at each end node

of g. The merge g II h is the cartesian product of g and h (for an example see Figure la). The

atco
?_

...

II

17

left-merge g EL h is like the merge but after removing all initial steps from g II h originating from h.

The projection (g)n (n 1) is defined for trees g: it is the tree obtained by cutting away all nodes

reachable from the root by a path of length > n. The corresponding edges are also left away. If g is

not a tree, then (g)n is defined as (g')n where g' is the tree obtained by unwinding g.

It turns out that bisimilarity tt is a congruence w.r.t. the operations just defined. (The proof

is routine.) Hence we can take the quotient

Ga,13 = a«,p/L4

The quotient structures are models of PA, i.e. process algebras for PA. Using the distance function

analogous to the one in Definition 4.1 (with xn replaced by the projection (x)n), Geo is a
pseudo-metric space but not yet a metric space. (For instance, in Gi,t,t1 the elements determined by

the process graphs En>1 an and 1,11,1 an + aware different but have distance 0.) It becomes a metric

space after dividing out the congruence induced by the Approximation Induction Principle (AIP):

Vn (x)n = (y)n

x = y

Note that the projective model does satisfy AIP. The result of dividing out AIP is

G ° = Ga,p/AIP.

The G° have been defined as a 'double quotient' by first dividing out ± and next AIP. Thea,R
same result can be obtained by defining a suitable equivalence relation at once; this is done in

[GR83] where 'weak equivalence' is divided out. In [Mi80], p.42 this notion is called 'observation

equivalence'. It is defined as follows:

4.5. DEFINITION. (i) If s e NODES(g), then (g), is the subgraph of g with root s, and nodes: all

nodes in g reachable from s, and edges as induced by g.

(Warning: the notation (g)s should not be confused with (g)n for the n-th projection of g.)

(ii) On a process graph domain aa,p we define transition relations >a for each atom a: if s

is a step (edge) in g E aa,p, then (g)s (g)t.

(Note the difference in notation: open arrows stand for transitions between process graphs, normal

arrows denote steps between nodes in one process graph.)

4.6. DEFINITION. On aa,p we define equivalences an for each n 0:

(i) g h for all g,h;

j _

>a t
-Da

>

El)

2

18

g h if
(1) whenever g 4a g' there is a transition h -->a h' with g'

(2) as (1) with the roles of g,h interchanged.

Furthermore, g h if g h for all n 0.

An alternative, equivalent definition is:

4.7. DEFINITION. Let g,h E a,p be process graphs. Then g h if (g)n (h)n (n 1).

Furthermore, g h if g m1 h for all n 1.

The proof that these definitions are indeed equivalent is left to the reader. We also omit the

routine proof of the next proposition, where denotes isometry.

4.8. PROPOSITION. Cr°,43 aa,p/-=.

4.8.1. REMARK. For finitely branching graphs (i.e. 11= 0)ti and arbitrary alphabet, we have in fact

aa,RO/L=- a'a,K0/11

That is, weak equivalence (or observational equivalence) coincides with bisimulation equivalence. The proof (also in

[BK86a]) is as follows: suppose g,h are finitely branching process graphs and suppose g h, or equivalently:

Vn (g)n t (h)n. Now consider

Bn = (R I R is a bisimulation from (g)n to (h)n),

B = U1 Bn.

This collection of 'partial' bisimulations between g,h is ordered by set-theoretic inclusion (c). In fact, B' = B u

((s0,t0)) where s0,t0 are the roots of g,h respectively, is a tree w.r.t. c. Because g,h are finitely branching, this tree

is also finitely branching: there are only finitely many extensions of a bisimulation between (g)n, (h)n to a

bisimulation between (g)n+1. (h)n+1. Moreover, because Vn (g)n (h) manythe tree B' has infinitely nodes.

Therefore, by Konig's Lemma, B' has an infinite branch. This infinite branch is a chain of partial bisimulations Ri

R1c R2 c Rnc...

such that Ri is a bisimulation from (g)1 to (h)i. Now R = UniRi is a bisimulation from g to h.

The structures G`Da,r3 are also process algebras for PA. While all of the Cr°,0 are metric

spaces, they are not all complete. An example is given in [GR83]: O'l, No is incomplete. (Consider

the approximations of En,i an.) Another example is as follows.

En+1

En h';

=

a

t

P1):

c

JA-.1-

(li)

a

wn

wn a

19

4.9. EXAMPLE. G° tz is an incomplete metric space.

PROOF (sketch). The alphabet is (ai I i < co). Define a sequence of process graphs gn (n 1) by

gn Eit<tt 1 Ei2< lin< n ail ai2ain

Let brd(g) be the branching degree of process graph g, defined as follows: if s is a node of g, then

brd(s) is the (cardinal) number of arrows leaving s; furthermore, brd(g) is the cardinal sum of the

brd(s), s E NODES(g). We claim:

(i) brd(gn) = for gn as defined above,

brd((g)n) brd(g) for all g E aco,
h gn = brd(h) brd(gn) for gn as defined above.

Claim (ii) is trivial; the inductive proofs of the other two claims are left to the reader. Using these

claims, one shows immediately that there is no limit gfr--- for the sequence of elements gn/E.-- in

00 as this would require a process graph g with branching degree at least E =

We will now define projective models A.°°0 of PA for arbitrary a 1 and p ?. ti 0. These

will all be complete metric spaces. Furthermore, modulo isometry A-0 is an extension of G°0,

so the projective model can be considered as the metric completion of G°0. (In case G°0 is
also complete, it is of course isometric to the projective model.) The projective models defined

below differ from the ones in [Kr87]; there an element of a projective sequence is a sequence of

terms (modulo derivable equality), below it is a sequence of fmitely deep process graphs (modulo

bisimilarity).

4.10. DEFINITION. (i) ario = (g E I g = (g)n).

Onco arla,f3/=' Note that Gno is a process algebra for PA, with definitions of the
operators analogous to the one in Remark 2.4. It is a routine exercise to prove that the process
algebras An as in Remark 2.4, are isomorphic to Gna,x 0 where a is finite.

(iii) Let gi E G3 1). Then the sequence (g1,g2,...) is projective if for all i: g = (gi+1)i.

(iv) A-0 is the projective limit of the Gno (n 1); the elements of A-0 are the projective
sequences. So the projective model A** of sections 1-3 is the same as Aa, No (a finite).

4.11. THEOREM. (i) A-0 is a complete metric space.
(ii) The convergence theorem 4.3 also holds for A** c43.

K co

lin

±

tin 0

ace,r3

oi)

(i

,

K

=

5

(iii)

=

20

PROOF (sketch). (i) Consider a converging sequence yi = (gip g12, ...), i 1. For growing i and

fixed k, the sequence gik will eventually be constant, say after N(k) steps. We may suppose that N

is a monotonic function. Now y = (gN(1),1, gN(2)2, ...) is the required limit.

(ii) Directly from the proof in Section 3 (Theorem 3.7). 0

Van Glabbeek (personal communication) remarked that for finite a, there is no need to

consider uncountably branching process graphs, see statement (i) in Corollary 4.15. His
observation can be generalized to infinite a. First some notation.

4.12. NOTATION. Let a be a cardinal number (finite or infinite). Then a* = In<o) an, where a0 =

a, an+i = 2. For finite a, we have a* = N 0 For a = N 0, the numbers an are known as the
beth-numbers and a* = The cardinality of a set X is card(X). If ic is a cardinal, then e

denotes the least cardinal larger than K.

4.13. PROPOSITION. (i) For infinite a: card(Gna,a*) = am

(ii) card(Un,i Gna,a*) = a*.
(iii) For any aoc: Gna,a. a,a*+K.

PROOF. (i) Induction on n. For n = 1 the statement is clear, since the process graphs g1 = Eae I a
for arbitrary non-empty I c A are mutually non-bisimilar, and since every process graph in al a,a*

is bisimilar with some g1. Suppose the statement has been proved for n. Let Xn c ana,a* be a set

of representatives of the an bisimulation equivalence classes of an+1,,,,., so card(Xn) = an.

Now every element of Un+1,,a* is bisimilar to one of the process graphs

gh,I,f h aE /XE f(I) ax

where h E Xn, I C A (possibly empty) and f: I --> (Xn). Moreover, for different triples h,I,f

the corresponding gh jf are not bisimilar. Hence card(Gna,a*) = an.a1an+1 = an+1 Here the
factor an stems from the variation in h, al from the variation in I while for each I the choice of f

contributes a factor (2cardo<nyard(1) = 2an =

Part (ii) is by definition; (iii) is left to the reader. 0

4.14. THEOREM. Aa,a* A'"°a,a*+ for any cardinal K.

PROOF. The isometry follows at once from Proposition 4.13(iii). 0

4.15. COROLLARY.

(i) For finite a: Aa, 0 + for any cardinal K.ti 0

(ii) For countably infinite alphabet: A tt0,= a A tz0,= for any cardinal K. 0

Z0).

=

_

an+1

Mn

-= ,

We will now

projective models.

4.16. PROPOSITION.

21

turn our attention to the models G° in order to compare them with the
a,13

If [3 is sufficiently large, G°,340 is complete.

PROOF. We will try to prove that (0%43 is isometric to Aa,0 and deduce from that attempt a

requirement on f3.

We will drop the subscripts a,I3. So let us try to establish an isometry cp from G° to A.

Let g E G. Then (p(g) = ((g)1,(g)2,...). It is easy to prove that this is a projective sequence. The

hard part is to prove that cp is a surjection. Consider an element (gi, g2, ...) E A. Let gi be a

representing process graph of gi (i 1). We would like to fmd a graph g such that (g)i gi for all

i 1. (Cf. the construction in Theorem 3.5 of [GR83] by 'blowing up' trees; we will use another

construction.) For the rest of this proof, we will suppose that all process graphs are trees. Let

be (gi+i)i. So gi ±i gi'; say Ri is a bisimulation from gi to Let Si: NODES(gi')
NODES(g1+1) be the obvious embedding function, obtained by the projection mapping. Now if s is

a node of depth k in gk (so s is 'appearing' for the first time in gk), we define some sequences

starting with s, calledfibres, as follows. Any sequence

S = Sk,Sk',Sk+1,Sk+1',Sk+2,Sk+2',...

where si E NODES(gi), E NODES(gi'), E Ri and Si(si') = si1 (i k) is a fibre. We
will say that this fibre starts in gk. If CY,'T are fibres, starting in gk and gk+1 respectively, we define

transitions a -->a t if there are a-steps between the elements of these sequences:

a: sk,sk%sk+1,sk+1%sk+2,sk+2',

tk+1,tk+1', tk+2, tk+2',...

Now we construct the process graph y with as nodes the fibres and transitions as just defined.

More precisely: the root of y is the fibre through the roots of g1 , and the other nodes of y

are those fibres reachable from the root of y via transitions between fibres.

(Comment: Not all fibres need to be reachable from the root fibre. However, if the bisimulations Ri are taken

minimal in the set-theoretic sense, then all fibres are reachable from the root fibre. This can be proved with induction

on the depth of the fibres, using the following proposition:

Let g,g be process trees, and let R be a minimal bisimulation from g to g'. Let s s' be a step in g and

suppose (s',C) e R. Then there is a node t and a step t -4 t' in g' such that (s,t) e R.)

We claim that the projection (y)n is bisimilar to gn. A bisimulation pn is given as follows: if s

NODES(gn) and a E NODES((y)n) then (s,a) E pn iff s is an element of a. The verification of the

claim is easy. An illustration is given in Figure 2 where y is 'reconstructed' from the sequence of

t

gi'

gi' 4

si'

.14

E

t

2:

2

(si 2

22

process graphs a, a+a2, a+a2+a3, . Interestingly, the result is not 111,1 an but In,1 an +

(See the 'black fibers' in Figure 3.)

Figure 3

However, the problem is now to prove that the branching degree of y is strictly bounded by

13. We claim that this is so if (3 > (a*)14°. Proof of the claim: let us take the gi (i 1) above as small

as possible w.r.t. the cardinalities of their node sets. From the proof of Proposition 4.13(i) it is

clear that we can take the gi such that card(NODES(gi)) ai (in fact we can even take
card(NODES(gi)) a14). Hence we may suppose that the union of the node sets of the

is bounded by a*. Now every fibre (a node of the tree y) is an w-sequence of nodes of the

Hence there are at most i = (a*)14° such fibres; so y has at most c nodes, so the branching degree

of y is bounded by x.

4.17. REMARK. (i) In the example above, in Figure 3, the process graph y is closed (see Definition

5.1 for the definition of 'closed process graph'). In general, this needs not to be the case: e.g. if in

the proof of Proposition 4.16, gi = (En,i an)i for i 1 (so g1 consists of infinitely many a-steps

attached at the root) then y = an and this graph is not closed.

(ii) Another way of constructing a process graph g with projections (g)n bisimilar to gn as in the

proof above, is by taking g as the canonical process graph of the projective sequence (g1, g2, ...)

E A. See Defmition 5.2. One can prove that this graph is closed indeed, for 0 > (a*)14°.

4.18. DEFINITION. Let X,X' c aa,f3. (i) Then (X)n = [(g)n I g E X).

(ii) X an X' if VgE X 3g'e X' g g' and Vg'E X' 3gE X g En g'.

a(1).

gi,g1'.

o

gi,gi' (i1)

En

2

5

2

E,

23

(iii) X X' if X X' for all n.

4.19. DEFINITION. Let g E aco. The a-derivation of g is the set of all subgraphs of g reachable by

an a-step from the root. Notation: g/a.

4.20. PROPOSITION. Let g,h E aco. Then g,h determine the same element in G°00 iff for all a,

g/a Wa.

PROOF. Routine. 0

4.21. PROPOSITION. Let X c aco. Then there is an X' c ao such that X a X' and card(X')

a*.

PROOF. Consider the collection Un,1(X)n of finitely deep process graphs. We will construct a

graph (not a process graph) with node set Un,1(X)n, and arrows g h for g e (X)n, h E (X)n±1

whenever g = (h)n. See Figure 4.

(X)1

(X)2

Figure 4

The boxes in Figure 4 are the L.-equivalence classes. We note (Proposition 4.13(i)) that there are

at most an boxes at level n, hence at most a* boxes in total. Now every g E X corresponds with a

path in this huge graph (not necessarily vice versa). We now construct X' as follows. If g E X is

finitely deep (i.e. determines a terminating path in the graph of Figure 2), then g E X'.
Furthermore, in each box we select one node (i.e. a process graph g E (X)n for some n) and
choose an arbitrary path through this node. This path (which in fact is a projective sequence of

process graphs) determines a process graph, call it C. Now we put C E X'. Obviously, card(X')

a* and it is not hard to prove that X E

4.22. PROPOSITION. For all aoc: (0°a,(e)+ Gc.a(a*)+

PROOF. Consider a process graph g E act,(a*)+ We must show that g can be pruned to a g' E

such that g and g' determine the same element after dividing out L. and AIP (or dividing

out a at once). This follows directly from the preceding two propositions.

-sn

>

X'. 0

L=.
+K

,ces-f-
ct,t

0

,

a

24

4.23. COROLLARY. For all aoc,X: K G°a,(«*)+ + X

PROOF. This follows from Theorem 4.14 and Propositions 4.16 and 4.22.

The cardinality of the models constructed above is for infinite alphabets quite large (this was

already noticed by Golson and Rounds in [GR83] for the process model of [BZ82a,b]; see our

remarks below). In fact:

4.24. PROPOSITION. (i) For finite a: card(Aa,140) = 2N0

(ii) For countably infinite alphabet: card(ATh 0,=) =

(iii) For general a: card(A = 2(a*). (a*)N°.

PROOF. (We will assume the Axiom of Choice in our calculations with cardinals.) Statements (i)

and (ii) follow from (iii). Proof of (iii): Let X be card(Aa,e) . Using Proposition 4.13 and noting

that every element of .Aa,a* is a map from co into the union of the Cine, we have X (a*)N°.

In view of the isomorphism with the graph models (Corollary 4.23), we find X 2(e). The
argument is as follows: there are a* finitely deep process graphs which are mutually not bisimilar.

(This is in fact Proposition 4.13(ii).) Let i be the set of these process graphs. For every subset X

of r we define a process graph gx as Ige X a.g for a fixed atom a. Now gx gy iff X =
Moreover, for different X,lj the corresponding graphs are not identified after dividing out ALP. So

we have now:

2(a*)< A. < (a*) 0

We also have: 2(e) = (a*)a*?.. (a*)N° (here AC is used, in the equality step). Hence the result

follows. 0

4.25. QUESTIONS. At present we do not know the answers to the following questions. For what

a,13 is G"a,p a complete metric space? What is the cardinality of 0°,0 and Aatp? If Woo is a

complete metric space, is Wag for 13' > 13 also complete?

It is interesting to compare the projective model A''a,a* with the process model Pa as

constructed by De Bakker and Zucker [BZ82a,b] as a solution of the domain equation

P a [1)0) U pc(A x P).

In Pa, processes can terminate with Po or with 0 ('successfully' or 'unsuccesfully). Leaving this

double termination possibility aside (one can extend PA to PA8 and have the same double

0

0)+i

5_

?.

t

=

25

termination possibility, see [BK86a,b]) or using a variant of the domain equation:

P pc(A u (A x P)),

we can state that our projective model is isometric to the process domain Pa For finite a,

this follows from the proof in [GR83] that Pa is isometric to the graph domain G°a, xi; hence it is

also isometric to Ac'a,tz 0, by Corollary 4.23. For infinite a the proof is similar. (The proof
proceeds by noting that our spaces of finitely deep processes Gna,a,, are isometric to the Pn in

[BZ82a,b] or [GR83]; hence the completions of U1 Gna,a., and 14,1 Pn, respectively, must
also be isometric.) So the cardinality statements in Proposition 4.24 apply also to the models in

[BZ82a,b], and our convergence theorem is also valid in these models.

For a systematic (category-theoretic) treatment of De Bakker-Zucker domain equations like

the two above, showing that they have unique solutions modulo isometry, we refer to [AR87].

5. Closed process graphs

We conclude with some remarks about a trade-off between closure properties of processes and the

Approximation Induction Principle used in the construction of G'a,a*. These remarks are
suggested by the fact that the model of De Bakker and Zucker is a solution of their domain
equation; loosely speaking this means that the elements of that model can be perceived as
'hereditarily closed sets'. (Note, however, that these 'sets' are not well-founded; it would be
interesting to give a representation of the solution of the domain equation above in terms of a set

theory without the Axiom of Foundation.) One may ask whether the closure property can replace,

when constructing a model from process graphs such as G'cc,a*, taking the quotient w.r.t. AIP.

We will make this question more precise using the definition of 'closed process tree' which was

suggested to us by R. van Glabbeek (personal communication).

5.1. DEFINITION. (i) For process trees g,h E a we define the distance 8(g,h) as follows:

8(g,h) = I 2-111 if 3n g On h; m = minfn I g On h)

0 otherwise, i.e. g h.

(ii) Let n c ao be a set of process trees. Then n is closed if every Cauchy sequence (gi)i,1

w.r.t. 8 in 3{ converges to a limit g in (i.e. Vk 3N Vn>N g E---k gn).

(iii) Let g E act,f3 be a process tree. Then g is closed if all its nodes s are closed; and a node s in

g is closed when (g)s/a is a closed set of trees for every a E A. Here (g)s is the subtree of g at s.

Futhermore, a process graph is closed if its tree unwinding is closed. The set of all closed process

graphs is aCco.

E

Aa.a*

I

3-E

a

26

5.1.1. REMARK. Note that the closure property of process graphs is invariant under bisimulation

equivalence: if g h and g is closed, then h is closed.

5.2. DEFINITION. Let M be a a process algebra for PA.

(i) From the elements x,y,z,... of M we construct a transition diagram (i.e. a 'process graph'

without root and not necessarily connected) as follows. Whenever x = ay + z there is a transition

y. In the case that x = ay we have the same transition. If x = a, then there is a transition

x>no where o is the termination node. More concisely, we have x>a y iff x = ay + x and x>no

iff x = a + x. (To see this, use the axiom x + x = x.)

(ii) The canonical process graph of x in M is the process graph with root x, and as nodes all the

elements of M reachable from x in zero or more transition steps as just defined, including possibly

the termination node. Notation: canm(x) or just can(x) when it is clear what M is meant. (See

Figure 5 for the canonical process graph of (E an)/E in

Figure 5

5.3. PROPOSITION. Let g/E be an element of G° . Then:

(i) can(g/E-.-) g.

can(g/E) can(h/E) <=> g En h.

can(g/E) is a closed proces graph.

PROOF. (i) With induction on n we prove that g En can(g/E) for n 0 (see Definition 4.6). The

basis of the induction, n = 0, is trivial. Suppose (induction hypothesis) that we have proved

Vg g can(g/E). In order to prove g can(g/E), we have to show (1) and (2):

(1) for every transition g g' there is an initial step in can(g/E): g/r-- -->a WE such that

g' En (can(g/E))0v.) = can(h/E).

(Remember that g/E, 11/E are nodes in can(g/E).) Now g/E --->a WE is (by definition of canonical

±±

x>a

4a

.7--

(ii) an

(iii)

En En+i

27

process graph) the same as: = a(h/a) + r/a for some graph r. Or, equivalently: g ah + r. So,

given the transition g 4, g' we have to find h,r with g ah + r and g' En can(h/a). This is
simple: take h = g' and r as given by g 4, g' (i.e. g = a-g' + r for some r). Now apply the
induction hypothesis.

(2) For every initial step in can(g/..---): -->a lila there is a transition g 4, g' such that

g' 7=-T1 can(h/a).

So, let g/-=-- WE be given. This means g ah + r for some r. In particular, g ah I., i.e.

(4+1 ± (ah r)n+1 = a(h)n (r)n+1.

From the induction hypothesis we know that h can(h/--.), i.e.

(h)n ±± (can(h/E))n.

Combining (*),(**) we have

(g)r1+1 a(can(h/a))n + (r)n.

(*)

Now we have to find a step g --> g' such that g' can(h/E), i.e. (g')n ± (can(h/E))n. This is

easily obtained from (***): consider the a-occurrence displayed in the RHS of (***). By definition

of this a-step is matched in (g) -0.-11+1 (g')n with (g')n L. (can(h/E))n.s."-n+1 by an a-step (g)

(ii) Write g* = can(g/a). To prove suppose g E, h. Then g* g h h*, using (i). So

g* -=-11 h*. The proof of () is similar.

(iii) Consider can(g/a). (See Figure 5.) Let s be a node of this graph (so s E Cr0). Consider

the a-derivation of s, i.e. the set of subgraphs of can(g/a) determined by the a-successors of s.

Clearly, this a-derivation is the set of canonical graphs of some elements ti (i E I) of
Suppose this set [can(ti) I i E I) contains a Cauchy sequence (w.r.t. 8 as in Definition 5.1):

can(tio), can(t11), , can(tin), .

We claim that the elements form a Cauchy sequence in G°0. This follows at once

from (ii) of this proposition. So there is a limit t E G°0 of the last Cauchy sequence. Now can(t)

is easily seen (using again (ii)) to be a limit (in the 8-sense) for the Cauchy sequence can(tio),

can(t11),

We still have to prove that s t, or equivalently (see Definition 5.2(i)) s = at + s in G°a,i3

Let a denote a representing process graph from the a-equivalence class s, and likewise for t etc.

7----

>a En+1

+ +

L.,

En

00,,f3

t10,t11,...,tin,...

.

gla

g/a.

+

t

En

*a

a

a

a,,

(,), a

28

Then we must prove that a a + a. To this end, take hi, such that /ik ant Since a a nik + a we

have a an + a. HenceaI+a. o

Figure 5

The preceding proposition enables us to define the closure of a process graph g E

notation gc, as can(g/a) w.r.t. G°a,13, such that g e Next, we define operations .C, IIC, Lc

on Ucco as follows: g IIC h = (g h)c and likewise for the other operators. Here II is the merge

operation on aco.

5.4. REMARK. If acco would have been closed under the operations +, II_ the preceding

clos'ure operation in (g U h)c (etc.) would not have been necessary. However, for an infinite

alphabet acco is not necessarily closed under II, as the following example shows. (We conjecture

that for finite alphabets acco is closed under the operations II etc.)

Let the alphabet be (ai iI 1 u (b,c). We define process graphs H,G,g, (n 1):

H = ai

gn = an II bn

G = cgn.

Here H is the infinite merge of all atoms ai (i 1). Alternatively, H can be defmed as having as

nodes all finite subsets of N+ (the set of positive natural numbers), as root 0, and as edges:

V 3ai V u (i)

for all V c N+ and i V. Now H is a closed process graph. This can be easily seen, noting that

H is a deterministic process graph, i.e. a graph where two different edges leaving the same node

must have different label, and noting that deterministic graphs are always closed. Also G is closed:

rgrIrrnorillr

-a--

act,13,

+c,

II

II i>1

4,1 ANA.

at

2 2

2

8

29

the c-derivation G/c, consisting of the graphs gn, does not contain a Cauchy sequence since the
graphs gn are already different in their first level, due to the 'spoiling effect' of the an in gn. Now
G 11 H is, we claim, not closed. For, consider the c-derivation

(G H)/c= (fl II gn In 1).

Since H II an H, we have

(G H)/c (H II bn I n 1),

modulo L. which does not affect the closure properties (as remarked in 5.1.1). The last set is a

Cauchy sequence: in general, if (qi I i 1) is a Cauchy sequence of process graphs, then (p li qi I
i 1) is again a Cauchy sequence for arbitrary p. However, there is no limit for this sequence in
the set (G 11 H)/c, and hence it is not closed. So G II H is not closed.

This counterexample may seem somewhat surprising in view of a related result in
[BBKM84], where it is stated (Theorem 2.9) that the collection of closed trace languages
(containing possibly infinite traces) is closed under the merge operation, for arbitrary alphabet.

Here a trace language is obtained as the set of all maximal traces of a process (or process graph).
Note however that closure of processes does not very well correspond to closure of the
corresponding trace sets; cf. also Example 4.4 in [BBKM84] of a closed process graph with a trace
set which is not closed.

Next, we define the quotient structure

trac c
a,I3

Here ac is supposed to be equipped with the operations as just defined. It is left to the reader toa,f3

show that ti is indeed a congruence w.r.t. these operations. Now there is the following fact,
showing that indeed taking the quotient w.r.t. the congruence induced by AIP can be exchanged for
the restriction to closed process graphs:

5.5. THEOREM. Gcco -a- Wast.

PROOF. Remember that Gcco = acco / L. and a3a,r3 = aasi / Define the map

acco / aco

by v(g/L.) = (g/m). Here g E aCco and gift is the equivalence class modulo L.; likewise g/m is the

equivalence class of g modulo

=

= / .

m.

9: -4 /±

E.

a

30

(1) To prove that 9 is injective, let g,h E acco and suppose g a h. We must prove g L. h.
Define R c NODES(g) x NODES(h) as follows: (s,t) E R iff (g)s E (g)t. We claim that R is a

bisimulation from g to h. Proof of the claim: The roots are related, by the assumption g h.

Further, suppose (s,t) E R and suppose there is a step s s' in g. (See Figure 6.)

Figure 6

Since (g), (h)t we have for all n 1: (g)s (h)t. This means that there are tn such that (g)s, En

(h)tn.for all n 1. The tn (or rather the (h)tn) form a Cauchy sequence w.r.t. 8, hence there is,

since h is closed, a node t' such that t -->a t' and (h)t. is a limit for the Cauchy sequence tn, n 1.

So (h)t, -an (h)tn, for some m n. Therefore (h)1, an (h)tin (g)s., and since m n, (h)t, (g)s..

This holds for all n 1, so (h)t, -a (g)s., i.e. (s',t') E R.

The same argument shows that if (s,t) E R and there is a step t >a t' in h, then there is a step

s --> a s' with (s',t') E R.

This shows that R is a bisimulation from g to h, and ends the proof of (1).

(2) To prove that 9 is surjective, we have to show that

Vg E acco 3g' E aca,i3 g g'.

This follows by taking g' = can(g/a) and applying Proposition 5.3(iii). 0

In the case that 13 is large enough, so that Geo is isometric to the process model Pa of De

Bakker and Zucker, this isometry leads to an 'explicit representation' of Pa, as follows. First a

definition:

5.6. DEFINITION. (i) A process graph g is minimal if

E

->a

-En

s-

am

a

2

2
2 2

31

Vs,te NODES(g) (g)s (g)t = s = t.

(ii) A process graph is normal if

\AAA' NODES(g) VaE A s -4a t & s >a f & (g)s t± (g)t s = t.

Clearly, normality is implied by minimality. Also note that a process tree can never be minimal,

unless it is linear (has only one branch); this is the reason for introducing the concept 'normal'.

It is not hard to prove that if g,h are minimal process graphs and g ± h, then g,h are in fact

identical. Moreover, the canonical process graphs (of elements of 00,43) are precisely the closed

and minimal process graphs in U. Thus every element in Pa can be represented by a closed,

minimal process graph with branching degree at most a*, and the operations in Pa can be
represented by the corresponding operations in acco followed by minimalisation (collapsing all

bisimilar subgraphs). Another explicit representation can be given, using trees instead of graphs

and observing that normal, bisimilar process trees are identical. Then the elements of Pa
correspond to closed, normal process trees with branching degree at most cc*. This representation

is closer to the idea of elements of Pa as 'hereditarily closed and possibly not well-founded sets'.

Summarizing our comparisons with Pa we have established isometrics (for all ic):

Pa = K°a,a*+x 0°a,(a*)+

Furthermore, writing Pria for the set of closed minimal graphs in aco and Tcn for the set of
closed normal trees in aco, there are the isometries

p Gc acm
a,

Tcna a,(a*) +lc (a*) +lc = a, (a*) +lc ,

where the last two complete metric spaces can be seen as 'explicit representations' of P.

References

[AR87] P. America & J.J.M.M. Rutten, Solving reflexive domain equations in a category of complete metric
spaces. Report CS-R8709, Centre for Mathematics and Computer Science, Amsterdam 1987.

[BBKM84] J.W. de Bakker, J.A. Bergstra, J.W. Klop & J.-J.Ch. Meyer, Linear time and branching time semantics
for recursion with merge. Theoretical Computer Science 34 (1984), p.135-156.

[BZ82a] J.W. de Bakker & J.I. Zucker, Denotational semantics of concurrency. Proc. 14th ACM Symp. on
Theory of Computing, 153-158, 1982.

[BZ82b] J.W. de Bakker & J.I. Zucker, Processes and the denotational semantics of concurrency. Information and
Control 54, 1982, 70-120.

[BK82] J.A. Bergstra & J.W. Klop, Fixed point semantics in process algebras. Report IW 206/82, Centre for

=

=

+K.a

=

32

Mathematics and Computer Science, Amsterdam 1982.

[BK86a] J.A. Bergstra & J.W. Klop, Algebra of communicating processes. In: CWI Monographs I, Proceedings
of the CWI Symposium Mathematics and Computer Science (eds. J.W. de Bakker, M. Hazewinkel &
J.K. Lenstra), North-Holland, Amsterdam, 1986, 89-138.

[BK86b] J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in bisimulation semantics. In:
CWI Monograph 4, Proceedings of the CWI Symposium Mathematics and Computer Science II (eds. M.
Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens), North-Holland, Amsterdam 1986, 61-94.

[G1871 R.J. van Glabbeek, Bounded nondeterminism and the approximation principle in process algebra. In:
Proc. of the 4th Annual Symposium on Theoretical Aspects of Computer Science (eds. F.J.
Brandenburg, G. Vidal-Naquet and M. Wirsing), Passau (W. Germany) 1987, Springer LNCS 247,
336-347.

[GR83] W.G. Golson & W.C. Rounds, Connections between two theories of concurrency: metric spaces and
synchronization trees. Information and Control 57 (1983), 102-124.

[Kr86] E. Kranakis, Fixed point equations with parameters in the projective model. Report CS-R8606,
Centre for Mathematics and Computer Science, Amsterdam 1986. To be published in Information and
Computation.

[Mi80] R. Milner, A Calculus of Communicating Systems, Springer LCNS 92, 1980.

[Mi851 R. Milner, Lectures on a calculus for communicating systems. Seminar on Concurrency, Springer
LNCS 197 (1985), 197-220.

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

J.A. Bergstra, J.W. Klop

A convergence theorem in process algebra

Computer Science/Department of Software Technology Report CS-R8733 July

A

-

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim-
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright C Stichting Mathematisch Centrum, Amsterdam

