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Abstract

Development of vaccines in autoimmune diseases has received wide attention over the last decade. However, many
vaccines showed limited clinical efficacy. To enhance vaccine efficacy in infectious diseases, biocompatible and
biodegradable polymeric nanoparticles have gained interest as antigen delivery systems. We investigated in mice whether
antigen-encapsulated PLGA (poly-lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) or TMC-TPP (tri-polyphosphate)
nanoparticles can also be used to modulate the immunological outcome after nasal vaccination. These three nanoparticles
enhanced the antigen presentation by dendritic cells, as shown by increased in vitro and in vivo CD4+ T-cell proliferation.
However, only nasal PLGA nanoparticles were found to induce an immunoregulatory response as shown by enhanced
Foxp3 expression in the nasopharynx associated lymphoid tissue and cervical lymph nodes. Nasal administration of OVA-
containing PLGA particle resulted in functional suppression of an OVA-specific Th-1 mediated delayed-type hypersensitivity
reaction, while TMC-TPP nanoparticles induced humoral immunity, which coincided with the enhanced generation of OVA-
specific B-cells in the cervical lymph nodes. Intranasal treatment with Hsp70-mB29a peptide-loaded PLGA nanoparticles
suppressed proteoglycan-induced arthritis, leading to a significant reduction of disease. We have uncovered a role for PLGA
nanoparticles to enhance CD4+ T-cell mediated immunomodulation after nasal application. The exploitation of this
differential regulation of nanoparticles to modulate nasal immune responses can lead to innovative vaccine development
for prophylactic or therapeutic vaccination in infectious or autoimmune diseases.
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Introduction

Nasal vaccination is described for the prevention of infectious

diseases such as hepatitis B [1,2] or influenza [3,4]. However,

recently, nasal antigen application has also become of interest as a

route of vaccination in the field of autoimmunity [5–9] and allergy

[10,11]. Similar to other forms of mucosal immunization, nasal

antigen application can stimulate antigen-specific responses locally

and in the peripheral mucosal tissues [12–15]. Vaccination via the

nasal mucosa might be preferred over oral vaccination given the

low proteolytic activity in the nasal mucosa; this route of

immunization requires a lower dose of antigen than that of oral

immunization, which might also reduce the change of producing

negative side-effects [16]. The immune response induced following

mucosal antigen application depends on many factors, such as the

nature of the antigen (soluble versus particulate), antigen dose, size

and delivery to the mucosal tissues [16]. Although the immune

response that is induced following mucosal antigen application

depends on the antigen that is used, nanoparticle characteristics

might also play an important role. For tolerance induction to self

antigens used for vaccination in autoimmune diseases one would

prefer to combine a self antigen with a vaccine that favors

tolerance induction. On the other hand, in the case of prevention

of infectious diseases an immunogenic antigen with a vaccine that

enhances humoral immunity is preferred. Therefore, rational

future vaccine design might benefit from knowledge of immuno-

modulatory characteristics of nanoparticles. In recent years,

several in vivo studies have been conducted to investigate

nanoparticle-mediated delivery of antigen at mucosal sites.

Nanoparticles are available as non-toxic delivery systems with

promise for nasal vaccination [17–20]. Since mucosal antigen

application elicits different immune responses such as T-helper 2

(TH2)-mediated humoral immunity or T-helper 1 (TH1)-mediat-

ed Delayed-Type Hypersensitivity (DTH) [21–23], we explored if

nanoparticles can differentially modulate the outcome of nasal

vaccination. The readout to evaluate the efficacy of the applied

vaccine relies mostly on induction of humoral immune responses

as indicated by increased antigen-specific antibody titers [4,18,24].

However, this does not give insight into the underlying

immunological mechanisms that drive the response towards
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Figure 1. Nanoparticle mediated enhanced antigen presentation capacity of BMDCs in vitro. BMDC were incubated in the presence of
sOVA-FITC or OVA-FITC encapsulated into PLGA, PLGA-TMC or TMC-TPP nanoparticles at different concentrations. External FITC signaling was
silenced by trypan blue. A. The DMFI of OVA-FITC was assessed by subtraction of FITC signaling at 4uC from 37uC. B. OVA-FITC uptake by BMDC
shown as the net percentage of OVA-FITC positive cells. C. CFSE-labeled CD4+ T-cells were incubated with BMDC stimulated with sOVA or OVA
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humoral immunity or DTH. Marazuela et al. previously showed

that intranasal administration of PLGA particles that contained a

peptide with the major T-cell epitope of Ole e 1 induced a

modified Th2 response and prevented mice from allergic

sensitization of the whole protein [25,26]. However, little is still

known about the role of CD4+ T-cells in nasal vaccination and

how different nanoparticle treatment might influence the activa-

tion of these cells, locally and in the peripheral tissues.

To study the mechanisms behind humoral immunity or DTH

after nasal vaccination, three polymeric nanoparticles were

analyzed that are efficient antigen delivery systems; PLGA (poly-

lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) and

TMC-TPP (tri-polyphosphate) nanoparticles that all contained the

model antigen ovalbumin (OVA). These particles have a similar

average diameter of 250–500 nm, but differ in their surface charge

and antigen release kinetics [17,18].

For example, nasal application of TMC-TPP particles has been

described in the field of influenza vaccination and elicits humoral

immune responses as shown by a significant increase in antigen-

specific IgG1/IgG2a serum titers and increased sIgA titers in nasal

washes [4]. In contrast to induction of humoral immunity, mice

fed a single dose of 40 mg of type II collagen (CII)-containing

PLGA particles had reduced severity of arthritis and reduced anti-

CII-specific IgG antibody titers and CII-specific T-cell responses

[24].

We investigated in an OVA-specific DTH model whether

nanoparticles itself cause a shift in the immunological outcome

after nasal antigen application as shown by the activation and

differentiation of CD4+ T-cell responses both at the site of

vaccination and systemically. In addition, we investigated the

relevance of nanoparticle mediated mucosal tolerance after nasal

application in a proteoglycan induced arthritis (PGIA) model [27]

with heat shock protein 70 (Hsp70) peptide mB29a encapsulated

nanoparticles. Hsp70 is known to be one of the most conserved

Hsps and has been shown to have disease suppressive properties

[28–30]. Mouse Hsp70-peptide mB29a has been shown to be

immunosuppressive after nasal application in the PGIA model

[31]. Therefore, we explored the additional immunosuppressive

effect of nanoparticle treatment by encapsulating the mB29a

peptide.

This study was performed to obtain more insight into the

mechanism by which nanoparticles drive the immune response

towards immunomodulatory responses. The data may assist future

rational vaccine design for prophylactic or therapeutic vaccination

in infectious and autoimmune diseases, respectively.

Results

Differential uptake of FITC labeled OVA by BMDCs after
nanoparticle treatment

We previously showed nanoparticle differences in association

with and uptake by DCs as visualized by tracing uptake of OVA in

vitro [17,18]. These differences in association might modulate the

subsequent antigen presenting capacity of DCs.

To investigate this, we treated DCs in vitro with OVA

encapsulated in PLGA, PLGA-TMC or TMC-TPP nanoparticles

or soluble OVA (sOVA) as a control and studied phenotypic and

functional differences between treated DCs. No differences in DC

maturation or viability were observed as analyzed by CD11c,

MHC-class-II, CD40, CD86 and 7-AAD staining after nanopar-

ticle treatment at OVA concentrations varying from 1 ng/ml to

1 mg/ml. We did not detect significant differences in cytokine

profiles in culture supernatants (data not shown).

Next, we studied the uptake of OVA-FITC encapsulated in

PLGA, PLGA-TMC and TMC-TPP nanoparticles by DCs

silencing extracellular attached FITC signaling with trypan blue.

OVA-FITC association with DCs is shown as the FITC expression

(DMFI) (Figure 1A) or percentage of OVA-FITC positive cells

(Figure 1B).

OVA-FITC uptake by DCs treated with TMC-TPP was lower

compared to sOVA-FITC treatment as shown by a low FITC

DMFI expression and decreased percentage of OVA-FITC

positive cells (Figures 1A and 1B). Furthermore, compared to

sOVA, PLGA-TMC treatment enhanced the antigen uptake by

DCs even at low (25 ng/ml) OVA concentrations. Both PLGA

and PLGA-TMC treatment enhanced antigen uptake with OVA

at 0.25 mg/ml. Apart from a reduced uptake of TMC-TPP

particles we could not detect differences in antigen uptake at 1 mg/

ml between sOVA, PLGA or PLGA-TMC treatment. The latter is

being suggestive of saturated antigen uptake after 1.5 h of antigen

incubation (Figure 1B).

In sum, nanoparticle characteristics differentially affected the

antigen uptake by DCs in vitro as shown by a lower number of

OVA-FITC positive cells and DMFI when DCs encounter TMC-

TPP particles compared to PLGA and PLGA-TMC.

Nanoparticles enhance OVA-specific CD4+ T-cell
proliferation in vitro

To investigate whether the small differences in antigen uptake

by DCs could affect the antigen presenting capacity of DCs,

nanoparticle treated DCs were studied in vitro by co-culture with

OVA-specific T-cells. DCs treated with OVA encapsulated

PLGA, PLGA-TMC or TMC-TPP particles were cultured for

72 h in the presence of OVA-specific CFSE-labeled CD4+ T-cells.

The antigen presenting capacity of DCs was enhanced after

nanoparticle treatment since T-cells stimulated by particle treated

DCs showed enhanced T-cell proliferation compared to T-cells

cultured in the presence of sOVA treated DCs. Especially, PLGA

and PLGA-TMC particles strongly enhanced CD4+ T-cell

proliferation even at a low OVA concentration of 25 ng/ml

(Figure 1C). Additionally, in the culture supernatants of T-cells

stimulated in the presence of 1 mg/ml of OVA containing PLGA

or PLGA-TMC particles more IL-2 (Figure 1D), IFN-c (Figure 1E)

and IL-10 (Figure 1F) was detected compared to cultures with

TMC-TPP particles or sOVA.

No T-cell proliferation or cytokine secretion was induced by

empty nanoparticles (data not shown).

In conclusion, all three OVA loaded nanoparticles enhanced

the antigen presentation by DCs, as shown by increased CD4+ T-

cell proliferation profiles as compared to sOVA.

Nasal vaccination enhances in vivo CD4+ T-cell activation
and differentially induces Foxp3 expression

Next, we questioned whether nanoparticle treatment also affected

CD4+ T-cell responses in vivo. Previously, we showed that especially

TMC-TPP nanoparticles enhanced generation of antigen-specific

IgG1 and IgG2a antibody titers after both i.n. and i.m. vaccination,

encapsulated in nanoparticles. Gray filled histograms; unstimulated CD4+ T-cells, Black overlays; CD4+ T-cell division patterns at different OVA
concentrations after 72 hours. D–F. Cytokine concentrations of IL-2, IFN-c and IL-10 (ng/ml) were determined in culture supernatants, after 72 h of
culture. Data are representative for 3 independent experiments; mean 6 SEM. Statistically significant: *, P,0.05; **, P,0.01.
doi:10.1371/journal.pone.0026684.g001
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whereas PLGA and PLGA-TMC only resulted in higher IgG titers

after i.m vaccination and had little effect on the humoral immune

response after i.n. treatment [18].

First we studied the short-term CD4+ T-cell response in mice that

were treated i.n. or i.m. with 30 mg of sOVA or OVA encapsulated

particles. Proliferation of OVA-specific CFSE-labeled CD4+ T-cells

was addressed locally in the draining lymph nodes as well as

systemically in the spleen 72 h after treatment (Figures 2A and 2D).

Nasal vaccination induced strong local CD4+ T-cell proliferation

in the nasopharynx-associated lymphoid tissue (NALT) and cervical

lymph nodes (CLN), irrespective of the type of nanoparticle, whereas

low-dose sOVA did not. None of the formulations induced

measurable CD4+ T-cell activation in the spleen at 72 hours after

vaccination upon i.n. immunization (Figure 2A). In contrast, non-

mucosal vaccination resulted in proliferation both in the draining

inguinal lymph nodes (ILN) and spleen at this time point (Figure 2D).

Figure 2. Enhanced OVA-specific CD4+ T-cell proliferation, after nanoparticle administration. A and D. OVA-specific CFSE labeled CD4+

T-cells were transferred to BALB/c recipient mice one day prior to vaccination. Mice received a single i.n. application of 30 mg of sOVA or OVA
encapsulated into PLGA, PLGA-TMC or TMC-TPP nanoparticles. For induction of a non-mucosal response, mice received a single i.m. immunization in
the hind limbs. At 72 h post OVA administration, in vivo T-cell division was addressed in spleen, nose-draining NALT and CLN as well as the thigh-
draining ILN. Data are representative for at least 3 i.n. and 2 i.m. independent transfer studies. B, C and E. Total mRNA was purified from single cell
suspensions from NALT, CLN, and ILN. Relative mRNA expression to HPRT of Foxp3 was determined 72 h post OVA application. Cells isolated from
NALT were pooled per group. LN data are representative for at least 3 to 5 mice per group; mean 6 SEM. Statistically significant: *, P,0.05.
doi:10.1371/journal.pone.0026684.g002
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We did not detect significant differences in cytokine profiles in

culture supernatants of the isolated draining CLN and ILN organs

after particle vaccination (data not shown). However, we observed

an increased expression in the relative Foxp3 mRNA expression in

the CLN (Figure 2C) and a slightly increased expression in the

NALT (Figure 2B) of mice that had received a single i.n. PLGA

vaccination. Mice that were vaccinated i.m. with TMC-TPP

particles showed less expression of Foxp3 mRNA compared to

PLGA and PLGA-TMC treated mice in the ILN (Figure 2E).

These data show that i.n. vaccination with low-dose OVA

encapsulated nanoparticles enhanced CD4+ T-cell proliferation in

contrast to low-dose sOVA treatment (Figure 2A) and coincided

with enhanced Foxp3 mRNA expression in the NALT and CLN

only when PLGA encapsulated OVA was applied (Figures 2B and

2C). This effect was lacking in the i.m. treated mice of all

treatment groups (Figure 2E) showing that, both particle and route

of application determine the outcome of the CD4+ T-cell response.

PLGA nanoparticle vaccination suppressed DTH response
To see if the differences in T-cell response induced after nasal

treatment are of functional importance, the nanoparticles were

tested for immunomodulation in a DTH-model. Mice received

20 mg of OVA i.n. three times at 24 h intervals either dissolved in

PBS or encapsulated in PLGA, PLGA-TMC or TMC-TPP

nanoparticles. Subsequently, mice were sensitized by OVA/IFA

and challenged with OVA in the auricle of the ear. Ear-thickness

was determined 24 h after challenge and compared with measures

before challenge. PLGA nanoparticle treatment suppressed the

OVA-specific DTH response, whereas PLGA-TMC and TMC-

TPP nanoparticles did not (Figure 3A). Non-tolerized mice showed

a strong ear-thickness response comparable to low dose sOVA

(17.4561.44), whereas mice tolerized by high dose sOVA

significantly reduced a DTH response (9.161.21).

In contrast to PLGA and PLGA-TMC, nasal application of

TMC-TPP led to a systemic OVA-specific B-cell response

(Figure 3C) and significantly increased humoral immunity locally

in the draining CLN (Figure 3B). In agreement with earlier studies,

this suggested a role for TMC-TPP in the activation of the

humoral immune response after nasal treatment [18]. In addition,

PLGA-TMC and TMC-TPP nanoparticles seemed to have an

inhibitory effect on IL-10 mRNA expression locally in the draining

CLN, whereas PLGA induced IL-10 mRNA expression did not

differ from sOVA (Figure 3D). Although we detected increased

expression of relative Foxp3 mRNA in the T-cell transfer study

(Figures 2B and 2C) we were not able to detect such differences in

the DTH model, probably due to experimental differences in

timing and the presence of OVA-specific T-cells in the transfer

model.

To summarize, only nasal treatment with PLGA nanoparticles

induced nasal tolerance to a low dose antigen but did not enhance

humoral immunity as shown by the absence of antigen-specific B-

cell responses (Figures 3A and 3B). In contrast to PLGA and

PLGA-TMC immunization, only TMC-TPP treatment led to

activation of humoral immunity as shown by local increased

generation of antigen-specific B-cells (Figure 3B) and increased

antigen-specific antibody titers systemically (see [18]).

Enhanced protection against arthritis after nasal
application of mB29a PLGA nanoparticles

We demonstrated that upon nasal application of OVA-PLGA

nanoparticles, mice were able to suppress a local induced Th-1

mediated inflammatory response in an OVA-specific DTH-model.

Additionally, we investigated whether enhanced nasal tolerance

induction mediated by PLGA treatment was sufficient to suppress

a chronic inflammatory response. Hsp70-peptide mB29a was

encapsulated into each of the nanoparticles and we tested the

capacity of the nanoparticles to modulate the response towards

mucosal tolerance in the PGIA mouse model. Mice were tolerized

by three times i.n. hsp70-peptide treatment either dissolved in PBS

or encapsulated in nanoparticles prior to arthritis induction by two

i.p. PG/DDA immunizations with a three week interval. These

initial data showed proof of principle that treatment with PLGA

nanoparticles reduced mean arthritis scores that lasted up to 30

days after disease development (Figures 4A and 4B), which

correlated with earlier antigen release kinetics studies [18]. As

expected, we did not observe an immunosuppressive function for

TMC-TPP, as the mean arthritis scores (1.260.2) in these mice

were not significantly lower than that of control mice (data not

shown). Furthermore, the lower mean arthritis scores observed

after PLGA or PLGA-TMC treatment coincided with a later onset

of disease and lower maximum arthritis scores (Table 1).

Discussion

In the area of vaccine development, nasal delivery is an

attractive route also given the non-invasive needle-free adminis-

tration [16,32]. Earlier studies already showed that nasal

nanoparticle treatment enhanced humoral immunity [4,18] or

suppressed this by mucosal tolerance induction [24], depending on

the antigen-particle combination. Since there was not much

known about the role of CD4+ T-cells upon nasal nanoparticle

treatment, we explored how nanoparticle treatment affected CD4+

T-cell activation both in vitro and in vivo.

Particle characteristics modulated DC-induced OVA-specific

CD4+ T-cell proliferation in vitro (Figure 1C) since low-dose sOVA

was not able to activate T-cells whereas particle incorporated

OVA had a differential capacity to do so. The proliferative

response was not a result of antigen-independent particle induced

activation since empty nanoparticles were not able to activate T-

cells (data not shown). Although the uptake of sOVA-FITC in

Figure 1A and 1B was more efficient in contrast to TMC-TPP

nanoparticle treatment at various OVA concentrations, the

amount of sOVA was insufficient to activate T-cells in vitro as

shown in Figure 1C. In addition, sOVA-FITC uptake was similar

to that of PLGA and PLGA-TMC at 1 mg/ml concentrations

(Figure 1A and 1B) however it was not sufficient for sOVA to

induce T-cell activation (Figure 1C). Although sOVA treated cells

will also present their antigen via MHC class II we suggested that

the expression of MHC molecules will be maintained for a shorter

period of time in contrast to nanoparticle induced expression as

previously described [33,34]. Here, the authors showed that

PLGA-microspheres in vitro induced prolongation of antigen

presentation by the MHC class I molecule [33,34] and MHC

class II molecule [34] by antigen presenting cells.

Therefore, we suggest that nanoparticle mediated T-cell

activation at similar low OVA concentrations was enhanced due

to differences in MHC class II expression and antigen presentation

in contrast to sOVA and that antigen uptake does not necessarily

need to correlate with T-cell activation (Figure 1).

We showed that low-dose OVA-encapsulated nanoparticles

enhanced OVA-specific CD4+ T-cell proliferation locally in the

NALT and CLN after a single nasal application, which was not

seen with low-dose sOVA. This showed the superiority of

nanoparticle mediated OVA delivery versus sOVA delivery

(Figure 2A). In addition, systemic CD4+ T-cell activation following

nasal treatment requires a longer time frame as compared to non-

mucosal antigen immunization (Figure 2). These data confirm that

Nanoparticles Modulate Nasal Vaccination
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also the route of antigen delivery activates the immune system, as

previously described [23].

Since CD4+CD25+Foxp3+ regulatory T cells play an important

role in the induction of mucosal tolerance [35,36], we explored

Foxp3 expression after nasal nanoparticle treatment. Interestingly,

Foxp3 mRNA expression was increased locally in the CLN, only

after PLGA treatment (Figure 2C) although proliferation profiles

were comparable for all particles (Figure 2A). This suggests that

different nanoparticles induced a differential T-cell response and

only T-cells activated in presence of PLGA nanoparticles obtained

a tolerogenic phenotype as compared to nasal treatment with

PLGA-TMC or TMC-TPP (Figures 2B and 2C).

And indeed nasal treatment with low-dose OVA-encapsulated

PLGA nanoparticles induced a functional immunomodulatory T-cell

response as shown by a reduced DTH response (Figure 3A). We did

not observe a tolerogenic effect in the DTH model when mice were

treated with low-dose sOVA alone. We suggest that this is due to the

low-dose sOVA concentration (3620 mg) that was used for tolerization

of the mice since high-dose sOVA (36100 mg) was sufficient to induce

tolerance (Figure 3A) and ([23,37]). The absence of stimulatory effects

of the low-dose sOVA or OVA incorporated in the nanoparticles on

dendritic cells argues against LPS contamination. Moreover, if our

OVA contained high doses of LPS contamination, high-dose sOVA

would not be expected to suppress a DTH.

Figure 3. Nasal application of PLGA particles suppressed a Th-1-mediated hypersensitivity reaction, while TMC-TPP enhanced
humoral immunity. A. Mice received 20 mg of OVA i.n. either dissolved in PBS (black circles) or encapsulated in TMC-TPP (white circles), PLGA (black
triangles) or PLGA-TMC (white triangles) nanoparticles for three successive days. Mice were sensitized subcutaneously after nasal OVA administration
and subsequently challenged in the auricle of both ears. Changes in ear-thickness were determined and compared with values before challenge. B
and C. OVA-specific B-cell response induced after nasal nanoparticle treatment. OVA-specific B-cell response was assessed by ELISPOT. Data are
shown as the OVA-specific B-cell count per 1*106 cells from CLN and spleen above background (spots counted on medium coated plates). D. PLGA-
TMC and TMC-TPP nanoparticles inhibit IL-10 mRNA expression in the CLN whereas PLGA induced IL-10 mRNA expression did not differ from sOVA.
Relative mRNA expression to HPRT of IL-10 was determined in the CLN of mice. Data are shown as the mean 6 SEM. of n = 5 mice per group.
Statistically significant: *, P,0.05; **, P,0.01; ***, P,0.001.
doi:10.1371/journal.pone.0026684.g003
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Nevertheless, low-dose sOVA administration might still favor

tolerance induction as shown by the IL-10 mRNA expression in

the draining CLN (Figure 3D) however it might not be strong

enough to actually suppress the inflammatory response.

Interestingly enough, PLGA particles that were capable of

reducing DTH reactivity also had the capacity to induce IL-10

(Figure 3D), suggesting that the characteristics of the PLGA

nanoparticle enhanced tolerance induction in contrast to low-dose

sOVA.

No immunosuppressive reaction was seen in TMC-TPP treated

mice that showed significantly increased OVA-specific B-cells in

the CLN (Figure 3B) but not in spleen (Figure 3C). Although we

were able to detect low titers of total IgG OVA-specific antibodies

in the serum of treated mice, these differences were not significant

(data not shown). We therefore concluded that at this time point

no systemic but only a local OVA-specific B-cell response was

induced in the CLN. In a previous study we explored the effect of

nanoparticle treatment on B-cell activation during a 10-week

vaccination study [18]. Here, nasal treatment with TMC-TPP

nanoparticles resulted in significantly enhanced OVA-specific IgG

titers in serum, in contrast to PLGA and PLGA-TMC treatment.

Moreover, only after nasal vaccination with TMC-TPP nanopar-

ticles, the antibody titers were comparable to those obtained after

i.m. TMC-TPP treatment.

Taken together, these data suggest that upon nasal nanoparticle

application, specifically TMC-TPP nanoparticles activate the

humoral arm of the mucosal immune system (Figure 3B and [18]).

Additionally, we looked at nanoparticle-mediated immunomod-

ulation after nasal application in a chronic inflammatory condition

by using the PGIA model. In various experimental arthritis

models, Hsp(-peptides) were shown to have a capacity to down

modulate arthritis, which seems to be mediated by the induction of

Hsp-specific regulatory CD4+ T-cells [38–41]. Recently, we

uncovered a therapeutic potential for mouse Hsp70-peptide

mB29a to suppress arthritis after nasal application [31].

Here we show that mB29a peptide encapsulation into PLGA

and PLGA-TMC nanoparticles enhanced the tolerogenic capacity

of the peptide. Intranasal treatment with 30 mg of peptide

dissolved in PBS did not reduce the severity of arthritis compared

to encapsulated peptide (Table 1). We have seen that nasal

application of encapsulated antigen can induce a tolerogenic

response not only in a typical Th1 mediated DTH response, but

also in principle in a model of chronic and relapsing arthritis. A

difference in tolerogenic capacity was observed for the PLGA-

TMC particles that suppress PGIA completely (Figure 4), but only

partially suppressed the OVA DTH response (Figure 3A). This

difference can be the result of the nature of the antigen and the

chronic nature of the model itself. Hsp70 in the PGIA model is a

self antigen that is expressed also by immune cells of the host,

thereby enhancing the regulatory T cells induced by the intranasal

treatment. In addition, arthritis is a chronic inflammation in

contrast to the DTH response prolonging the effective window of

the tolerogenic effect of PLGA-TMC treatment.

In conclusion, our results indicate that nasal administration of

antigen by PLGA-containing nanoparticles can enhance an

immunosuppressive response even at a low antigen dose, while

TMC-TPP nanoparticles enhance humoral immunity. As men-

tioned in the introduction both antigen and vaccine characteristic

affect the induced type of the immune response. Our results

Figure 4. Nasal application of low-dose mB29a-PLGA containing particles reduces severity of arthritis. A and B. Effect of mB29a-
nanoparticles on nasally induced suppression of PG-induced arthritis in BALB/c mice. Mice received 30 mg of mB29a peptide i.n. dissolved in PBS or
encapsulated in PLGA or PLGA-TMC nanoparticles prior to arthritis induction. Arthritis scores of mB29a-PBS (black squares), PLGA (black circles) or
PLGA-TMC (black triangles) treated mice as assessed by swelling and redness of the paws. Data are shown as the mean arthritis scores 6 SEM. of n = 3
mice per group. Statistically significant: **, P,0.01.
doi:10.1371/journal.pone.0026684.g004

Table 1. Onset of disease and maximum arthritis scores.

Treatment group Onset of disease Maximum arthritis scores

PBS 15.063.6 5.262.8

PLGA 23.068.2 1.260.6

PLGA-TMC 27.769.9 1.261.3

Hsp70-mB29a peptide loaded PLGA, PLGA-TMC nanoparticles or PBS control
(10 mg) were given i.n. on day 27, 25 and 23 and arthritis was induced by PG/
DDA immunization on day 0 and 21. Arthritis symptoms were scored as
described in materials and methods. Day of onset and maximum arthritis scores
were depicted as mean 6 SEM. of n = 3 mice per group of one experiment.
doi:10.1371/journal.pone.0026684.t001
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confirm that particle and antigen combinations need to be

carefully constructed to design successful vaccines that induce

the preferred type of immune response.

These findings may help the development of nanoparticle based

interventions to drive an antigen-specific immunomodulatory

response and will enable future rational vaccine design for

prophylactic and therapeutic vaccination, respectively in infectious

diseases and autoimmune diseases.

Methods

Ethics statement
All mice were kept in our animal facility at the Central Animal

Laboratory (GDL), Utrecht University, The Netherlands under

standard housing conditions. Experiments were approved by the

Animal Experiment Committee of the Utrecht University,

Utrecht, The Netherlands (Permit Number: 2007.II.03.072 and

2009.II.08.075).

Mice
Male BALB/c mice (8–12 weeks) and female BALB/c mice

(retired breeders aged between 16–26 weeks) were purchased from

Charles River Laboratories (Maastricht, The Netherlands). OVA-

specific TCR transgenic (Tg) mice on BALB/c background

(DO11.10 mice), were bred at the Central Animal Laboratory

(GDL), Utrecht University, The Netherlands.

Antibodies and antigen encapsulated nanoparticles
In all in vitro and in vivo experiments, endotoxin-low OVA was

purchased at Calbiochem (San Diego, CA). Murine Hsp70 peptide

mB29a (HspA9-derived sequence VLRVINEPTAAALAY) was

encapsulated into PLGA, PLGA-TMC or TMC-TPP nanoparti-

cles and OVA-encapsulated PLGA, PLGA-TMC and TMC-TPP

nanoparticles were generated as described previously [17,18]. For

detailed information about the particle characteristics such as size,

zeta potential, loading efficiency and the polydispersity index, we

refer to the paper published by Slütter et al. [18]. Anti-DO11.10

TCR (KJ1.26) was purchased from Molecular Probes (Invitrogen,

Breda, The Netherlands), 7-Amino-actinomycin-D (7-AAD)-un-

conjugated, Anti-CD11c (HL3), anti-CD4 (RM4-5), anti-CD40

(3/23), anti-CD86 (GL1), anti-MHC class II (M5/114), antibodies

were purchased from BD Pharmingen (Woerden, The Nether-

lands). Anti-Foxp3-PE (FJK-16s) and an appropriate isotype

control were purchased from eBioscience (Breda, The Nether-

lands)..

DC culture
Bone marrow-derived dendritic cells (BMDC) were cultured

from BALB/c donor mice as previously described with minor

modifications [42]. Briefly, femurs and tibia of adult BALB/c mice

were flushed with culture medium. Single cell suspensions were

seeded in complete Iscove’s Modified Dulbecco’s Medium

(IMDM) supplemented with 561025 M 2-mercaptoethanol,

penicillin (100 units/ml) and streptomycin (100 mg/ml) (Gibco,

Karlsrule, Germany) and 20 ng/ml murine rGM-CSF (Cytogen,

The Netherlands). On day 2 and 4, 10 ng/ml murine rGM-CSF

was added. The cells were cultured in a humidified 5% CO2

atmosphere at 37uC. On day 7, the BMDCs were routinely pure

between 70% and 80% based on CD11c and MHC class II

expression and used for further experiments.

CD4+ T- cell enrichment and CFSE labeling
Spleens were isolated from DO11.10 donor mice and were

prepared into single cell suspensions. CD4+ T-cells were obtained

by negative selection with sheep-anti-rat IgG Dynabeads (Dynal,

Invitrogen, Breda, The Netherlands) using an excess amount of

anti-B220 (RA3-6B2), anti-CD11b (M1/70), anti-MHC class II

(M5/114), anti-CD8 (YTS169) mAb. Enriched CD4+ T-cells were

routinely pure between 85 and 90%. Labeling of cells with

carboxy-fluorescein diacetate succinimidyl ester (CFSE; Molecular

Probes, Leiden, The Netherlands) was performed as previously

described [43].

In vitro effect of nanoparticles on DC
To address maturation of BMDC by nanoparticles, BMDC

were cultured in the presence of PLGA, PLGA-TMC or TMC-

TPP nanoparticles containing 25 ng/ml to 1.0 mg/ml OVA or

10 ng/ml LPS (Sigma) as a maturation control. After 24 h, DC

maturation was determined by flow cytometry (FACS-Calibur; BD

Pharmingen) and FlowJo Software V8.8.6.

BMDCs were incubated for 1.5 hours at either 4uC or 37uC
with FITC-labeled OVA protein purchased from Molecular

probes (Invitrogen, Breda, The Netherlands) dissolved in PBS or

with antigen incorporated into PLGA, PLGA-TMC or TMC-

TPP. To quench external FITC, trypan blue stain (Gibco,

Invitrogen) was added to each sample 5 minutes before FACS

analysis at a final concentration of 0.02% and uptake was analyzed

by flow cytometry. BMDCs were pre-incubated at 37uC for 2 h in

the presence of OVA protein dissolved in PBS or incorporated in

nanoparticles (PLGA, PLGA-TMC or TMC-TPP) at concentra-

tions of 25 ng/ml, 0.5 mg/ml or 1.0 mg/ml. OVA-specific CD4+

T-cells were added at an 1:10 DC:T-cell ratio and T-cell

proliferation was assessed after 72 h by CFSE dilution.

T-cell activation in the local lymph nodes after
nanoparticle vaccination

BALB/c recipient mice were adoptively transferred with 1.107

CFSE-labeled CD4+KJ1.26+ cells in 100 ml PBS, intravenously.

The next day mice received a single application of 30 mg of OVA

dissolved in 10 ml of PBS or encapsulated into PLGA, PLGA-

TMC or TMC-TPP nanoparticles i.n. or intramuscular i.m. in the

hind limbs. 72 h after i.n. or i.m. OVA administration, the spleen,

NALT and CLN as well as the thigh-draining ILN were harvested

and single cell suspensions were analyzed.

Delayed-type hypersensitivity (DTH) reaction
BALB/c mice received 20 mg of OVA i.n. three times at 24 h

intervals either dissolved in PBS or encapsulated in PLGA, PLGA-

TMC or TMC-TPP nanoparticles. Control groups received PBS

alone or OVA at a final concentration of 100 mg in PBS. Mice

were sensitized for a DTH the next day with 100 mg of OVA in

25 ml of PBS, mixed with 25 ml of Incomplete Freund’s Adjuvant

(IFA) (Difco, BD. Alphen a/d Rijn, The Netherlands) subcutane-

ously (s.c.) administered in the tail base. Five days later, ear-

thickness of both ears was measured with an engineer’s

micrometer (Mitutoyo, Tokio, Japan). Subsequently, mice were

challenged with 10 mg of OVA in 10 ml of PBS given in the auricle

of each ear and 24 h post-challenge, the increase in ear thickness

of both ears was determined.

The early B-cell response was assessed by detection of OVA-

specific B-cells of immunized mice by ELISPOT. Single cell

suspensions from the NALT, CLN and spleen were cultured with

OVA (1 mg/well) or control on high protein binding filter plates

(MultiScreen-IP, Millipore) for 48 hours. After incubation, spot

forming units were detected with goat-anti mouse IgG-biotin

(Sigma) and Avidin-AP (Sigma). Plates were developed with NBT-

BCIP (Roche) and analyzed by using the Aelvis spotreader and
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software. Data are shown as the OVA-specific B-cell count per

1*106 cells (antigen-induced-background).

Nasal tolerance induction and assessment of arthritis
Female retired breeder BALB/c mice were treated 3 times with

10 mg of mouse Hsp70- peptide mB29a in PBS or encapsulated

into PLGA, PLGA-TMC or TMC-TPP nanoparticles i.n.

dissolved in 10 ml PBS on days 27, 25, 23. Arthritis was

induced by intraperitoneal (i.p.) injections of 300 mg proteoglycan

(PG) protein with 2 mg of the synthetic adjuvant dimethyl-

dioctadecyl-ammoniumbromide (DDA) (Sigma) emulsified in PBS

(total volume of 200 ml) on day 0 and day 21 as described [44,45].

After the second PG immunization, the onset and severity of

arthritis were determined using a standard visual scoring system

based on swelling and redness of the paws as described [44].

Luminex
CD4+ T-cells isolated from the spleen of DO11.10 mice were

incubated with BMDCs isolated from BALB/c wt mice at an 1:10

DC:T-cell ratio and stimulated with sOVA or OVA encapsulated

in nanoparticles in complete IMDM supplemented with

561025 M 2-mercaptoethanol, penicillin (100 units/ml) and

streptomycin (100 mg/ml) (Gibco, Karlsrule, Germany) at 37uC.

The amount of cytokine secreted after a 72 h T-cell re-stimulation

was assessed by analyzing the culture supernatants. Briefly,

fluoresceinated microbeads coated with capture antibodies for

simultaneous detection of IFN-c (AN18), IL-2 (JES6-1A12), IL-10

(JES5-2A5), (BD Biosciences Pharmingen) were added to 50 ml of

culture supernatant. Cytokines were detected by biotinylated

antibodies IFN-c (XMG1.2), IL-2 (JES6-5H4), IL-10 (SXC-1), and

PE-labeled streptavidin (BD Biosciences Pharmingen). Fluores-

cence was measured using a Luminex model 100 XYP (Luminex,

Austin, TX, USA).

RT-PCR analysis
Total mRNA was purified from single cell suspensions from

NALT, CLN, ILN or spleen using the RNeasy kit (Qiagen

Benelux B.V.) according to the manufacturer’s protocol. RNA was

reverse transcribed into cDNA using the iScriptTM cDNA

Synthesis Kit (Bio-Rad Laboratories, B.V) according to the

manufacturer’s protocol. RT-PCR was performed using a MyiQ

Single-Color RT-PCR detection system (Bio-Rad Laboratories

B.V.) based on specific primers and general fluorescence detection

with SYBR Green (iQ SYBR Green Supermix, Bio-Rad

laboratories, Hercules, CA). Conditions for the Real-time

quantitative reaction were (95uC for 3 min and 40 cycles of

95uC for 10 s and 59.5uC for 45 s). Expression was normalized to

the detected Ct values of hypoxanthine-guanine phosphoribosyl-

transferase (HPRT) for each sample. The expression levels relative

to HPRT were calculated by the equation: relative expression

level = 22DDCt (Livak Method). Specific primers were designed

across different constant region exons resulting in the following

primers:

HPRT sense 59-CTGGTGAAAAGGACCTCTCG-39, anti-

sense 59-TGAAGTACTCATTATAGTCAAGGGCA-39. IL-10
sense 59- GGTTGCCAAGCCTTATCGGA-39, antisense 59-

ACCTGCTCCACTGCCTTGCT-39. Foxp3 sense 59-CCCAG-

GAAAGACAGCAACCTT-39, antisense 59-TTCT CACAAC-

CAGGCCACTTG-39.

Statistics
Statistical analysis was performed with Prism software (Graph-

pad Software Inc., San Diego, version 4.00) using a one-way

ANOVA followed by a Kruskal-Wallis test and Dunn’s multiple

comparison test was used for the in vitro cytokine and FoxP3

mRNA assay and a one-way ANOVA followed by Bonferroni’s

multiple comparison test was used for statistical analysis of the

Delayed-type hypersensitivity reaction. An unpaired two-tailed

Student’s t test was used for statistical analysis in all other

experiments. Error bars represent the S.D. or S.E.M.. as indicated.

Statistical differences for the mean values are indicated as follows:

*, P,0.05; **, P,0.01; ***, P,0.001.
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