
J
H
E
P
0
9
(
2
0
1
1
)
0
1
7

Published for SISSA by Springer

Received: June 21, 2011

Revised: July 19, 2011

Accepted: August 19, 2011

Published: September 5, 2011

Black holes and black branes in Lifshitz spacetimes
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1 Introduction and summary of results

One of the directions in which the AdS/CFT correspondence [1] has been extended in

recent years is towards the construction of gravity models conjectured to be dual condensed

matter systems with anisotropic scaling [2–4]. It is expected that this direction of research,

if successful in finding a dictionary translating between the gravitational degrees of freedom

and field theory operators, would shed light onto the non-perturbative dynamics of non-

relativistic models with this kind of scaling.

In this work we will be interested in the development of the gravitational dual descrip-

tion of models exhibiting anisotropic scale invariance of the type

t → λzt ~x → λ~x , (1.1)

where z is called the dynamic exponent. For z = 1, the scaling is isotropic; it corresponds

to relativistic invariance. For generic values of z, the system is said to have Lifshitz scaling.

The dual boundary field theory is not relativistic, but still allows for particle production.

For the special case of z = 2 there is an extension of the Lifshitz scaling symmetry group

to the Schrödinger group, in which particle number and special conformal transformations

are conserved. See e.g. [2, 3, 5–8] for some more references on this topic.

In [4] it was proposed that gravity duals of field theories with Lifshitz scaling should

have metric solutions that asymptote the form

ds2 =
ℓ2

r2
dr2 − r2z

ℓ2z
dt2 +

r2

ℓ2
d~x2

d−1 , (1.2)

– 1 –
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which is the generalization of anti-de Sitter spacetime (z = 1) to non-trivial dynamic

exponent. A metric that locally looks like (1.2), we call a Lifshitz metric; it is invariant

under the Lifshitz scaling if we let the radial coordinate scale as r → λ−1r. The real

parameter ℓ represents the radius of AdS when z = 1, and we will refer to it as the radius

of Lifshitz spacetime.

In a holographic fashion, the dual theory would be formulated in a d-dimensional

hypersurface located at infinite radial distance, the boundary. A boundary system on

Rt × Sd−1 or Rt × R
d with finite temperature and chemical potential can be realized from

charged black holes or black branes respectively. In this paper, we will study the properties

of asymptotically Lifshitz black holes and black branes by their own, and will not pay

much attention to the holographic connections to non-relativistic field theory. We expect to

address this issue in the future, and will have this application in mind throughout the paper.

There is a large number of papers available in the literature discussing black holes in

asymptotically Lifshitz spacetimes, mostly using numerical methods. Some examples of

analytic solutions, not necessarily with an Einstein gravity action, exist for fixed value of

z [9–17]. Numerical methods can be also employed to study a continuous range of z for

both black holes and black branes, as done for example in [18–24].

Most of the papers cited in the previous paragraph are based on an action containing a

massive gauge field. In [25], an Einstein-Maxwell-scalar action with U(1) gauge invariance

was considered, thereby providing an alternative realization of a gravity model supporting

Lifshitz geometries. Both formulations have their own virtues, but also their disadvantages.

The formulation with massive gauge fields can be embedded in supergravity models and

string compactifications [5, 16, 24, 26–29], but as mentioned above, the study of black holes

is mostly numerical or for special values of the dynamical exponent z. This makes it less

suitable or practical for applications in holography. On the other hand, the background

in [25], including a dilaton-like scalar, is under better analytic control, and analytic charged

black hole solutions can be found easily, as we demonstrate in this paper. The disadvantage

of this model is that the dilaton is not constant and diverges on the boundary, which might

be problematic for holography. It also means that the boundary theory is not exactly

Lifshitz, but obeys some generalized scaling behavior.1 Presumably, a proper embedding

of this model into string theory will shed more light on this issue.

In this paper we will give analytic solution for black holes and black branes in any

number of spacetime dimensions d ≥ 3. This solution will have z ≥ 1 as a continuous

parameter and, in a sense, can be seen as a Reissner-Nordström version of asymptotically

Lifshitz black holes. The matter content of the system we study, which is described by

the action given later in equation (1.3), consists of N ≥ 1 abelian U(1) fields and one

real scalar. It is an extension of the model considered in [25], and is similar to the models

studied in [30, 31]. Some of the gauge fields (how many depends on the topology of the black

hole studied, as we will see below) and the scalar field are needed to support the Lifshitz

spacetime at the boundary, and the remanent matter fields will contribute to Reissner-

Nordström-like terms in the metric, which will have a clear signature in the thermodynamics

of the system as a chemical potential term (in the grand-canonical ensemble).

1We thank Marika Taylor and Kostas Skenderis for a discussion on this issue.
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Before summarizing our results in the rest of this section, we find convenient to remind

the reader of previous results found in asymptotically AdS (z = 1) spaces, both for the

sake of comparing the solution to known cases and as a basis for our analysis.

In [32] it was shown that, for black holes with spherical topology in asymptotically AdS

spacetimes, there is a phase transition at a given temperature from a description in terms

of thermal AdS (lower temperature) to a black hole setup. This Hawking-Page transition

is due to a competing effect between the scale set by the volume of the spacetime and

the scale set by the temperature. In [33] it was generalized to arbitrary dimension, and

an explanation in terms of a confinement/deconfinement transition via a dual holographic

field theory was given. The existence of unstable small black holes and the corresponding

Hawking-Page transition, for the specific value z = 2, was predicted in [24] in a setup

derived from string theory. We will find that the transition is present in the range 1 ≤ z ≤ 2

in our model.

A U(1) gauge field was included in the setup in [34], and the properties of charged

black holes described by an Einstein-Mawell action with negative cosmological constant

were computed. These solutions describe an asymptotically AdS Reissner-Nordström black

hole with a horizon topology Sd−1 at fixed time. The existence of charged solutions gives

rise to a rich phase structure both in the canonical and grand-canonical ensembles, which

we describe below.

The scale determined by the volume of the Sd−1 plays a crucial rôle in the construction

of the phase diagrams, as in the case of the Hawking-Page transition commented above.

A black brane solution (with a horizon with fixed-time topology R
d−1) can be obtained by

considering an infinite volume limit, which we will denote η → ∞, where η is a dimensionless

parameter to be introduced later. In this case the phase structure becomes trivial, with

thermodynamics dominated by black holes for all temperatures.

The results in [34] can be generalized to consider the abelian group U(1)N without a

significant change in the phase structure. Of course, the theories with M < N gauge fields

can be recovered by setting N − M charge densities, ρi, to zero. In figure 1 we outline a

diagram showing the relations between theories with different number of gauge fields and

horizon topology.

1.1 Summary of results

In this paper we study the thermodynamic properties of charged asymptotically Lifshitz

black holes. The solution we present is analytic for any value of the dynamic exponent

z ≥ 1 and for any number of spacetime dimensions d > 2. The model we consider is given

by

S = − 1

16πGd+1

∫

dd+1x
√
−g

[

R − 2Λ − 1

2
(∂φ)2 − 1

4

N
∑

i=1

eλiφF 2
i

]

, (1.3)

with electric fields in the radial direction turned on. Notice that this is a diffeomorphism-

invariant action and we look for a metric solution that asymptotically approaches (1.2)

that breaks this symmetry explicitely. In order to accommodate a Lifshitz spacetime in

Einstein gravity, the presence of extra matter fields is required. The case with N = 1 was

– 3 –
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· · · U(1)N U(1)N+1 · · ·

BB N N + 1
ρ→0

ks

BH N

η→∞
OO

N + 1

η→∞
OO

ρ→0
ks

Figure 1. Diagram showing the relations between theories with one gauge field less, with boundary

topology Rt × Sd−1 (BH, after black hole) and Rt × R
d−1 (BB, after black brane). The square

represents asymptotically AdS spaces. The diagram continues indefinitely to the right and to the

left up to U(1)0, consisting on the Schwarzschild-AdS solution. The framed quantities indicate how

many charges are there in the black hole.

studied for the first time in [25], where a BB solution was found. Strikingly, the solution for

the metric in this case does not present the usual Reissner-Nordström properties that one

finds in asymptotically flat/AdS solutions of the Einstein+Maxwell action. In concrete,

the blackening function b(r) defined in (2.4) (defining the position of the horizon rh by

means of b(rh) = 0) has just one non-negative root, and extremal black holes with finite

entropy cannot be constructed.

The gauge field is completely determined by the other fields present in the theory. In

principle one would expect to have one free parameter associated to the gauge field, given

by the constant of motion associated to A, since it appears in the action only through its

derivatives. However, the requirement of having an asymptotically Lifshitz manifold (i.e.,

for z 6= 1) forces a relationship between this constant of motion and the magnitude of the

scalar field φ. In a way, the rôle of the gauge field is to provide the appropriate potential to

support an (asymptotically) Lifshitz spacetime, and the charge associated to the gauge field

translates in the asymptotic properties of the manifold, and not in the horizon structure

of the black hole.

In the next section we present a generalization of this construction with an arbitrary

number of U(1) fields. Remarkably, in the black brane case all the AN≥2 gauge fields con-

tribute to give a form of b(r) resembling that of the Reissner-Nordström solution. Indeed,

the constants of motion associated to these extra gauge fields remain undetermined and

are interpreted as charge densities ρi. In general, there is more than one root of b(r) and

extremal solutions with a finite horizon size do exist. As in the asymptotically AdS case,

we can relate theories with a different number of U(1) fields by consistently turning off

charges. In figure 2 we present a sketch of these relations.

Consider now the case with N = 2 gauge fields. As we just commented, it is possible

to find a black brane solution with a rich horizon structure. One would be interested to

know whether it is possible to find the correspondent solution but with a black hole, i.e.,

considering spherical symmetry in the form of the metric.2 As we will show explicitely

2We are interested in this case and not in the hyperspherical one because it will describe finite size effects

in an eventual dual field theory.

– 4 –
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· · · U(1)N−1 U(1)N U(1)N+1 · · ·

N − 1 N
ρ→0

ks

_^]\XYZ[N − 1

z→1

ddH
H

H
H

H _^]\XYZ[N
ρ→0

ks

z→1
ddH

H
H

H
H

Figure 2. Diagram showing the relations between theories with one gauge field less and the AdS

limit for black brane solutions of our model. Circles represent asymptotically Lifshitz spacetimes

whereas squares correspond to asymptotically AdS ones. The diagram continues indifenitely to the

right and to the left up to U(1)0. The framed quantities indicate how many charges contribute to

give the Reissner-Nordström-like factor in b(r).

· · · U(1)N−2 U(1)N−1 U(1)N U(1)N+1 · · ·

N − 2 N − 1
ρ→0

ks

_^]\XYZ[N − 2

z→1

iiT
T

T
T

T
T

T
T

T
T

T _^]\XYZ[N − 1
ρ→0

ks

z→1

iiT
T

T
T

T
T

T
T

T
T

T

Figure 3. Diagram showing the relations between theories with one gauge field less and the AdS

limit for black hole solutions. Circles represent asymptotically Lifshitz spacetimes whereas squares

correspond to asymptotically AdS ones. The diagram continues indifenitely to the right and to the

left up to U(1)0. The framed quantities correspond to the number of charges contributing to give

the RN-like factor of b .

in the next section, such construction leads to an algebraic equation whose solution fixes

completely the form of both gauge fields in terms of the amplitude of the scalar field. The

b function has a form reminiscent of that of the Schwarzschild-AdS case. This situation is

completely analogous to the one found in [25] for the BB solution. In fact, the second gauge

field also diverges at the boundary. Therefore, the rôle of this gauge field is to support the

“sphericity” of the solution, and not to modify the horizon structure of the black hole.

For the spherically symmetric case with more than 2 U(1) fields, the extra AN≥3 will

again contribute in b to a new term resembling the charge-term in the Reissner-Nordström

solution, thus modifying the horizon structure. As we did above, we present in figure 3 the

relations between theories with different number of gauge fields when we turn off charges

or take the AdS limit.

We have seen that the system described by the action (1.3) has a rich web of limiting

cases. The question of whether we can recover black brane solutions by taking the appro-

priate η → ∞ limit in the black hole solutions for asymptotically Lifshitz spacetimes has a

positive answer. It turns out that this limit effectively decreases the number of U(1) fields

– 5 –
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· · · U(1)N−2 U(1)N−1 U(1)N U(1)N+1 · · ·

BB N − 1 _^]\XYZ[N − 1

z→1
yy M

V_h
q

BH N − 2 N − 1
ρ→0

ks

η→∞
OO

_^]\XYZ[N − 2

z→1

gg p
m

khe_YV
S

Q

_^]\XYZ[N − 1

η→∞
ddHH

H
H
H
H
H
H
H
H
H

ρ→0
ks

z→1

gg p
m

khe_YV
S

Q

Figure 4. Relations between the different specific cases arising from action (1.3). See previous

captions for symbolism. The web of relations for the cases showed is incomplete for the sake of

clarity, but can be completed with the previous diagrams.

in the theory by one, since now the inclusion of a gauge field supporting the “sphericity”

of the solution is not required anymore. In figure 4 we present a partial diagram of the

relations existing between the black hole and black brane solutions.

1.1.1 Phase diagrams

The study of the thermodynamic properties of the Lifshitz black hole solution leads to the

phase diagrams showed in figure 5, both for the canonical and grand-canonical ensembles,

where we sketch the results derived in the rest of the paper.

In this figure we observe that the phase transitions depend crucially on the value of the

dynamical exponent z. For 1 ≤ z < 2 we find a situation completely analogous to the one

studied in [34] (which corresponds to the z = 1 AdS case). In the grand-canonical ensemble

there is a line of first order phase transitions (the blue line on the top-left diagram), where

the thermodynamically preferred solution is given by thermal Lifshitz spacetime at low

values of the temperature and the chemical potential and by the black hole solution in the

rest of the parameter space. As in the AdS case, the T = 0 line is dominated by Lifshitz

spacetime below a critical value of the chemical potentical Φc (see equation (4.2)), and by

extremal black holes for larger values. These extremal black holes have a non-vanishing

entropy, and therefore are not expected to correspond to the true ground state of the

theory. In the canonical ensemble, for low values of the charge, there is a first order phase

transition between small and large black holes (for low and large temperatures respectively)

which ends at a critical point (blue line and red point in the top-right diagram), above

which the transition between small and large black holes is smooth. However, the solutions

described in this paper present an electric instability, given by the shadowed region (see [35]

for the AdS case). This instability implies that the addition of an infinitesimal charge to

the black hole would contribute to a reduction of the electric potential. At zero charge

a Hawking-Page transition between thermal Lifshitz spacetime and a black hole occurs,

whereas at T = 0 the solution is dominated by extremal black holes.

– 6 –
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Grand-canonical ensemble Canonical ensemble

1 ≤ z < 2

BH

Lifshitz

T

Fc

F

Tcrit THP
T

Q

z = 2

BH

Lifshitz

T

Fc

F

THP=Tcrit
T

Q

z > 2

BH

T

Fc

F

T

Q

Figure 5. Sketch of the phase diagrams obtained here for different values of the dynamic exponent

z. See text for details.

When z = 2 the phase diagram in the grand-canonical ensemble remains qualitatively

the same as in the 1 ≤ z < 2 case. However, in the canonical ensemble the critical

value of the charge for which there are no phase transitions above it is precisely given by

Q = 0 (see the middle-right diagram in figure 5), and therefore only the Hawking-Page

transition between thermal Lifshitz spacetimes and black holes setups remains. Further-

more, the electric instability also dissappears from the phase diagram at this value of the

dynamic index.

Last, for values of the dynamical exponent z > 2 the phase diagrams simplify even

more. In the grand-canonical ensemble the line of first order phase transitions disappears,

and black holes dominate the thermodynamics in almost all the parameter space. The ex-

ceptions occur at T = 0, where the extremal black hole dominates everywhere but exactly

at the point Φ = Φc, where the description is given by Lifshitz spacetime. Obviously, when

Φ = 0 the solution is also given by Lifshitz spacetime, since it is the only description avail-

able to us. In the canonical ensemble black holes dominate the phase diagram everywhere.

– 7 –
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These situations are shown in the bottom diagrams of figure 5, where the black dots signal

the points where the description is given by Lifshitz spacetime.

1.2 Outline

The rest of the paper is organized in the following way. We start in section 2 by presenting

the simple case in which the action (1.3) has two U(1) gauge fields and the solution is of the

black brane type. Once this is done we proceed to consider the case of the black hole with

N ≥ 2 gauge fields, and analyze the limiting cases commented on in the previous summary.

In section 3 we calculate the relevant thermodynamic quantities associated to the black

holes found in section 2. These will be later used in section 4 to unravel the phase diagram

of the system for generic number of dimensions and dynamic index.

We conclude in section 5 with some last comments and remarks.

2 Setup and solution

Consider the action (1.3), consisting of the usual Einstein gravity with a cosmological

constant Λ < 0, a scalar, and N U(1) gauge fields Ai coupled to the scalar. The equations

of motion following from it are

Rµν − 2Λ

d − 1
gµν − 1

2
∂µφ∂νφ − 1

2

N
∑

i=1

eλiφ

(

(Fi)µσ(Fi)ν
σ − 1

2(d − 1)
F 2

i gµν

)

= 0 , (2.1)

Dµ

(

eλiφFµν
i

)

= 0 , (2.2)

�φ −
N

∑

i=1

1

4
λie

λiφF 2
i = 0 . (2.3)

We are interested in finding an asymptotically Lifshitz spacetime. Furthermore, we

will assume no dependence on the spatial directions, which will have the topology of R
d−1

in the black brane case or Sd−1 in the black hole case, and we restrict to the static case in

which all the fields’ dependence is along the radial direction of the asymptotically Lifshitz

spacetime. We now choose an ansatz for the metric based on a single function bk(r),

ds2 =
ℓ2

r2

dr2

bk(r)
− bk(r)

r2z

ℓ2z
dt2 + r2dΩ2

k,d−1 , (2.4)

with dΩ2
k,d−1 the metric of a unit-radius Sd−1 if k = 1 or the metric of R

d−1 if k = 0.

ℓ is the radius of the spacetime. One can also consider the case k = −1, based on a

hyperbolic metric for dΩ2
k=−1,d−1, but later on in this paper we derive that k = −1 is not

acceptable unless z = 1. The function bk should asymptote 1 at large values of the radius

to recover Lifshitz spacetime. The spatial components of the gauge fields are chosen to

vanish to preserve rotational symmetry, and we will work in the gauge in which the radial

component is also vanishing, therefore we will be concerned only with Ai,t(r) turned on.3

Finally, for the scalar we consider it to be a function of the radial coordinate only.

3To avoid confusion in our notation, let us emphasize that Ai,t(r) denotes the temporal component of

the i−th gauge field Ai,µ, and not its time-derivative.

– 8 –
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2.1 Black brane with two U(1) fields

We consider first the warmup exercise in which we set k = 0 (constant-r slices with Rt×R
d−1

topology) and N = 2 in the ansatz given before

ds2 =
ℓ2

r2

dr2

b0(r)
− b0(r)

r2z

ℓ2z
dt2 +

r2

ℓ2
d~x2

d−1 . (2.5)

The Maxwell equations and the combination of Einstein equations Et
t − Er

r are solved by

eφ = µ r
√

2(d−1)(z−1) , (2.6)

(Fi)rt = ρi r
−(d−z)e−λi φ , (2.7)

with i = 1, 2 and ρi integration constants. These are related to the constants of motion

associated to the gauge fields Ai, which enter in the action via the radial derivative, and

therefore there are two conserved quantities

δS

δA′
i,t

=
ρiℓ

z−1

16πGd+1
, (2.8)

which correspond to charge densities, as can be seen by calculating the total charge

Qi =
1

16πGd+1

∫

eλiφ ∗Fi =
Vd−1ρiℓ

z−1

16πGd+1
, (2.9)

with Vd−1 = ℓ1−d
∫

dd−1x a dimensionless volume factor.

The Einstein equation in any of the spatial directions, with the expressions (2.6)–(2.7)

plugged in, gives a first-order differential equation for b0 with solution

b0 = − 2Λℓ2

(d − 1)(d + z − 1)
− m r−(d+z−1) +

ℓ2z

2(d − 1)

2
∑

i=1

ρ2
i µ

−λi r2(1−d)−
√

2(d−1)(z−1)λi

d − z − 1 +
√

2(d − 1)(z − 1)λi

.

(2.10)

The integration constant m will be related to the mass, as we discuss in the next section.

With this solution at hand the rest of the Einstein equations, and the equation of motion

for the scalar, become the algebraic equation

4Λ
√

2(d−1)(z−1)=
2

∑

i=1

ρ2
i r

−2(d−1)−λi

√
2(d−1)(z−1)µ−λi

[

(d−1)λi−
√

2(d−1)(z−1)
]

ℓ2(z−1).

(2.11)

The r.h.s. of (2.11) can be equal to the l.h.s. if we choose for the first gauge field

λ1 = −
√

2
d − 1

z − 1
ρ2
1 = −4Λµλ1ℓ2(1−z) z − 1

d + z − 2
. (2.12)

With these values, the contribution coming from the second gauge field has to vanish,

which is the case if

λ2 =

√

2
z − 1

d − 1
. (2.13)

– 9 –
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Let us comment what just happened. In order to satisfy the equations of motion we

had to fix not only the coupling constant λ1, but also the charge of the first gauge field

in terms of the scalar field amplitude µ. As discussed in the introduction, this gauge field

is needed to support the structure of (asymptotically) Lifshitz spacetime. On the other

hand, the second gauge field has a free charge, which will contribute to the thermodynamic

analysis as a single chemical species. It is also the term responsible of having a b0 function

resembling that of RN black holes. With expressions (2.12)–(2.13), the solution reads

ds2 =
ℓ2

r2

dr2

b0
− r2z

ℓ2z
b0 dt2 +

r2

ℓ2
d~x2

d−1 , (2.14)

b0 = 1 − m r−(d+z−1) +
ρ2
2µ

−
q

2 z−1
d−1 ℓ2z

2(d − 1)(d + z − 3)
r−2(d+z−2) , (2.15)

A′
1,t = ℓ−z

√

2(d + z − 1)(z − 1) µ

q

d−1
2(z−1) rd+z−2 , (2.16)

A′
2,t = ρ2 µ

−
q

2 z−1
d−1 r2−d−z , (2.17)

eφ = µ r
√

2(d−1)(z−1) , (2.18)

where we have used

Λ = −(d + z − 1)(d + z − 2)

2ℓ2
, (2.19)

to get the right asymptotics at infinity.

It is now straightforward to check that in the uncharged limit, ρ2 → 0, one recovers

the result in [25], whereas in the AdS limit, z → 1, the A1,t field vanishes.4 Without it,

this solution is nothing but the AdS-RN solution considered in [34]. These limiting cases

are the ones outlined in figure 2.

The solution presents a singularity at the origin r = 0, where curvature invariants

diverge (except when z → 1 and ρ2 = 0, where the spacetime is AdS). However, the

existence of an event horizon at a position rh ≥ 0 cloaks it. The parameter m, which is

related to the mass of the black brane, has to be positive definite, otherwise there will

be no horizon and the singularity becomes a naked one. Following an argument on [36],

we will impose the null energy condition Tµνξµξν ≥ 0 with ξµ = (
√

grr,
√

−gtt,~0) a null

vector. From our solution it follows that Tµνξµξν ∝ ℓ2(Rr
r −Rt

t) = (d − 1)(z − 1)b0, so the

null energy condition translates into z ≥ 1. This range of values of the dynamic index also

ensures that we deal with real fields.

2.2 Generic case

A question that arises after the analysis performed in the previous section is whether we

could have obtained a black hole solution, i.e., a solution with k = 1. In this case equa-

tion (2.11) would have changed to (2.21) below (with N = 2 plugged in). A solution does ex-

ist by fixing the charge of the second gauge field in a similar way as done before. The result-

ing black hole is similar to a Schwarzschild black hole in asymptotically Lifshitz spacetimes.

4Actually, it vanishes provided that eφ = µ < 1. However, in the AdS limit λ1 → −∞ and the first U(1)

field decouples from the system.
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In this section we will consider the black hole case with N ≥ 2 gauge fields, which

contains the case we just referred to. The metric is given by the ansatz (2.4) with k = 1.

As in the previous case, the Maxwell equations and a combination of the Einstein equations

have as a solution for the scalar and the gauge field the expressions (2.6) and (2.7). The

first difference appears in the equation of motion for b1, which now reads (we keep an

explicit factor k for later convenience)

bk =
k(d−2)

d+z−3

ℓ2

r2
− 2Λℓ2

(d−1)(d+z−1)
−m r−(d+z−1)+

ℓ2z

2(d−1)

N
∑

i=1

ρ2
i e

−λiφ0 r2(1−d)−
√

2(d−1)(z−1)λi

d−z−1+
√

2(d−1)(z−1)λi

.

(2.20)

With this, the algebraic equation equivalent to (2.11) is

0 =

N
∑

i=1

ρ2
i r

−2(d−1)−λi

√
2(d−1)(z−1)e−λiφ0

[

(d − 1)λi −
√

2(d − 1)(z − 1)
]

ℓ2(z−1)

+2
√

2(d − 1)(z − 1)
(

k(d − 1)(d − 2)r−2 − 2Λ
)

. (2.21)

As before, the first gauge field can be used to cancel the term proportional to Λ by choos-

ing (2.12), and the contribution from the next N − 2 gauge fields can be cancelled by

choosing

λj =

√

2
z − 1

d − 1
, j = 2, · · · , N − 1 . (2.22)

Finally, the N -th gauge field can be used to cancel the term proportional to k if one fixes

λN = −d − 2

d − 1

√

2
d − 1

z − 1
ρ2

N = k µλ2ℓ2(1−z) 2(d − 1)(d − 2)(z − 1)

d + z − 3
. (2.23)

Notice that, once again, the charge of the first gauge field is fixed to support the Lifshitz

spacetime. Additionaly, the N -th gauge field’s charge is also fixed, in this case to support

the existence of the Sd−1 topology for k = 1. The hyperbolic case, k = −1, leads to

imaginary charge densities (unless z = 1). Therefore, here and below, we will only consider

the cases k = 0 or k = 1.

Summarizing, the generic solution we found to (1.3) is

ds2 =
ℓ2

bk

dr2

r2
− r2z

ℓ2z
bk dt2 + r2dΩ2

k,d−1 , (2.24)

bk = k

(

d−2

d+z−3

)2 ℓ2

r2
+ 1 − m r−(d+z−1)+

N−1
∑

j=2

ρ2
j µ

−
q

2 z−1
d−1 ℓ2z

2(d − 1)(d + z − 3)
r−2(d+z−2) , (2.25)

A′
1,t = ℓ−z

√

2(d + z − 1)(z − 1) µ

q

d−1
2(z−1) rd+z−2 , (2.26)

A′
j,t = ρj µ

−
q

2 z−1
d−1 r2−d−z , (j = 2, · · · , N − 1) (2.27)

A′
N,t = ℓ1−z

√

2k(d − 1)(d − 2)(z − 1)√
d + z − 3

µ
(d−2)√

2(d−1)(z−1) rd+z−4 , (2.28)

eφ = µ r
√

2(d−1)(z−1) , (2.29)

where again Λ = −(d + z − 1)(d + z − 2)/2ℓ2.
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We see that this solution depends on the parameters ρj , µ and m, which will correspond

to the charge densities, the amplitude of the scalar field and the energy of the black

hole, respectively. As commented several times already, two of the gauge fields have their

charges fixed to support a spherical black hole in Lifshitz spacetime. The metric presents

a horizon which, in general, has a near-horizon geometry given by the direct product of a

2-dimensional Rindler spacetime (the coordinates being r and t) and the spacetime given

by dΩk,d−1, which are spectator coordinates in this approximation. For a certain value of

m and ρ the black hole becomes extremal. In this case the near-horizon geometry is given

by AdS2 × Sd−1 or AdS2 × R
d−1 depending on whether k = 1, 0.

We can take the AdS limit z → 1. In this case we recover once again the results

in [34]. The fixed-charge gauge fields A1,t and AN,t are set to zero (provided µ < 1) and

their coupling to the scalar field in the action goes to λ1,N → −∞, decoupling them from

the rest of the matter fields. The scalar field becomes constant as well. Figure 3 represents

this limit and the reduction of the number of charges in consideration.

We are also interested in recovering the solution characterized by k = 0 (this is, with

flat topology of the constant-r slices) as an explicit limit of (2.24)–(2.29). Following [34],

we introduce the dimensionless parameter η and we scale r → η r. Given the form of the

metric (2.24) we must impose also t → η−zt. We will focus on the neighborhood of a point

in the Sd−1, considering just a flat metric around it ℓ2dΩ2
1,d−1 → η−2dΩ2

0,d−1. Taking the

scalar field to be scale-invariant, the appropriate scaling is fixed to be µ → η−
√

2(d−1)(z−1)µ.

Now, the scaling on µ determines completely the scaling of the A1,t and AN,t gauge field

charges. For the remaining ρj charges we use the fact that these parameters actually

correspond to charge densities, and therefore, to have scale-invariant charge, they have to

transform under the scaling as ρj → ηd−1ρj. All in all, the N field strengths scale as

F1 → F1 , Fj → Fj , FN → η−1FN (2.30)

so in the large η → ∞ limit we should not consider the gauge field AN , consistently with

setting k = 0 in the general solution. Furthermore, in this limit the metric becomes (2.14)

with a blackening function b0 given by (2.15) (there N = 2). So we consistently reduced

the black hole case to the black brane one, and are able to construct the web of relations

depicted in figure 4.

An interesting special class of solutions (for k = 1 and N = 3 for simplicity) are those

that satisfy the mass-charge relation

m2 =
2(d − 2)2ℓ2(1+z)µ

−
q

2 z−1
d−1

(d − 1)(d + z − 3)3
ρ2 . (2.31)

In this case, the black function reduces to

b1 = 1 +





d − 2

d + z − 3

ℓ

r
− ρµ

− 1
2

q

2 z−1
d−1 ℓz

√

2(d − 1)(d + z − 3)
r−(d+z−2)





2

. (2.32)

This function is always positive and therefore there is no horizon. At r = 0 there is instead

a naked singularity. For z = 1 this is precisely what happens for the supersymmetric RN
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solutions. For z 6= 1, one may expect that the solution with (2.31) and (2.32) can be

embedded as BPS solutions in some gauged supergravity action. These would need to be

extensions of the present action (1.3), since in gauged supergravity with scalar fields, the

scalar potential is not constant.

Lastly, notice that even when the case d = 2 is not included in our analysis, it turns

out that the solution also works in this case. For this value of the dimension, the solutions

with k = 0 and k = 1 coincide locally. This is so because in this case there is only one

spatial direction, and the difference between the two solutions is a global matter: whether

the direction is compact or not.

3 First law of thermodynamics

We will discuss now the thermodynamic properties associated to the solution presented

in (2.24)–(2.29). For the sake of clarity we will restrict to 3 U(1) gauge fields with a black

hole with spherical topology, i.e., just one non-trivial charge ρ2 ≡ ρ. We will mark the dif-

ference between the black hole and black brane analysis keeping explicit terms of k, though.

Temperature and entropy. Unfornutately, it is not possible to obtain a general, an-

alytical expression for the position of the horizon rh (given by the larger positive root of

bk(rh) = 0) as a function of the three parameters m, µ and ρ. However, we can still proceed

to a thermodynamic study.

Let us first notice that even when the parameter m is related to the mass of the black

hole, as we will show in (3.8), it is not a fundamental parameter of the theory. These

parameters are given by µ, the amplitude of the scalar, ρ, corresponding to the charge

(potential) in the canonical (grand-canonical) ensemble and the temperature T . Therefore

we find it convenient to express m = m(µ, ρ, T ). However, as it is not possible either to

obtain a closed expression for the temperature, we will use instead m = m(µ, ρ, rh), given

by

m = rd+z−1
h



1 + k

(

d − 2

d + z − 3

)2 ℓ2

r2
h

+
ρ2µ

−
q

2 z−1
d−1 ℓ2z

2(d − 1)(d + z − 3)
r
−2(d+z−2)
h



 . (3.1)

Notice that m is non-negative. Using this expression, the temperature as a function of the

position of the horizon radius rh, µ and ρ reads

T =
rz
h

4πℓ1+z



(d + z − 1) + k
(d − 2)2

d + z − 3

ℓ2

r2
h

− ρ2µ
−

q

2 z−1
d−1 ℓ2z

2(d − 1)
r
−2(d+z−2)
h



 . (3.2)

The entropy is given, as usual, by the Bekenstein-Hawking formula

S =
Vd−1

4Gd+1
rd−1
h . (3.3)

The temperature (3.2) vanishes when the horizon radius satisfies

ρ2 = 2(d − 1)µ

q

2 z−1
d−1 ℓ−2z

(

(d + z − 1) + k
(d − 2)2

d + z − 3

ℓ2

r2
ext

)

r
2(d+z−2)
ext , (3.4)
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where we have denoted with rext the position of the horizon at extremality, defined by the

conditions b(rext) = b′(rext) = 0. Using the relation (3.1) we can determine the value of

mext as

mext =



k
2(d − 2)2ℓ2

(d + z − 3)2
rd+z−3
ext

d + z − 1
+

d + z − 2

d + z − 3

ρ2µ
−

q

2 z−1
d−1 ℓ2z r3−d−z

ext

(d − 1)(d + z − 1)



 . (3.5)

Mass. We proceed to calculate now the internal energy for our black hole solutions. We

should evaluate holographically the one point function for the dual operator associated to

the tt component of the metric. A direct evaluation of this quantity leads to a divergent

result, and a renormalization procedure is needed. To achieve this, one usually includes

boundary terms in the action to enforce a well-defined variational problem. These coun-

terterms affect the calculation of the one point function, canceling divergences and possibly

contributing with a finite term.

Such a renormalization procedure is beyond the scope of this paper. Instead, we

use the Komar mass as a definition for the internal energy. The equivalence between

this definition and the renormalization of the one point function can be seen once the

counterterms have been added, by obtaining the conserved charges. However, we can give

an a posteriori argument supporting the validity of such an equivalence: the expression

obtained from the Komar mass integral satisfies the first law of thermodynamics in the

presence of non-trivial chemical potentials and charge densities, both in the canonical and

grand-canonical ensembles.

The satisfaction of the first law is highly non trivial, and a potential holographic renor-

malization procedure for our action would have to satisfy it too. As this is a differential

relation, the difference between the Komar mass and the renormalized one point function

is, at most, a constant (and possibly extra terms vanishing at the boundary), specifically

not depending on the thermodynamic variables that describe our system. Since we are com-

paring to a fixed background (whose renormalized one point function would exhibit exactly

the same constant) our expression for the mass will not be sensitive to this energy shift.

Furthermore, certain limits of our solution suggest that the difference between the

Komar mass and the renormalized one point function is identically zero. The first case

where this situation occurs is the AdS case z → 1, where we recover the results in [34].

The second one consists in the limit where we have a single U(1) gauge field, studied in [25].

In both limits, the Komar mass and the renormalized one point function agree perfectly,

and given the fundamental differences between these two cases (which affect the matter

present in the setup and the asymptotics of spacetime independently) we conjecture that

this agreement holds true in the general case.

Recall the expression for the Komar mass

MT = − 1

8πGd+1

∮

dSµνD
µKν

T , (3.6)

with KT = ∂t and subtract the result from the thermal case (this is, the case with m = ρ =

0, but such that the euclideanized time is periodic). We must match the normalizations
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of the Killing vectors between the black hole and thermal cases at r∞ to ensure they have

the same norm expression at infinity. This is done by considering

K0 =

√

b(r∞)
√

b0(r∞)
KT , (3.7)

with K0 the Killing vector in the thermal setup. The result is

M = MT − M0 =
Vd−1

16πGd+1
m ℓ−1−z(d − 1) , (3.8)

where Vd−1 is the volume of the unit Sd−1 sphere.

Expression (3.8) will be useful in the grand-canonical case, where the charge is free to

vary but the potential is fixed. In the canonical ensemble, however, one must fix the charge,

which is proportional to ρ, and therefore the correct comparison scheme is to substract the

result of the extremal black hole with the appropriate value for rext. It is not difficult to

show that in this case

∆M = MT − Mext =
Vd−1

16πGd+1
(m − mext)ℓ

−1−z(d − 1) . (3.9)

Charges and chemical potential. As commented above, there are three conserved

charges

Qi =
Vd−1ρiℓ

z−1

16πGd+1
, (3.10)

but two of them are completely specified in terms of the metric and the scalar

Q1 =
Vd−1ℓ

−1

16πGd+1

√

2(d + z − 1)(z − 1)µ
−

q

d−1
2(z−1) , (3.11)

Q2 =
Vd−1ℓ

z−1ρ

16πGd+1
, (3.12)

Q3 = k
Vd−1

16πGd+1

√

2(d − 1)(d − 2)(z − 1)

d + z − 3
µ
− d−2

d−1

q

d−1
2(z−1) . (3.13)

The potentials associated to these charges in the thermodynamic relations come from

the form of the the gauge fields potentials as functions of the radial coordinate

A1,t =

√

2(z − 1)

d + z − 1
µ

q

d−1
2(z−1) ℓ−z

(

rd+z−1 − rd+z−1
h

)

, (3.14)

A2,t = −ρµ
−

q

2 z−1
d−1

d + z − 3

(

r3−d−z − r3−d−z
h

)

, (3.15)

A3,t = k

√

2(d − 1)(d − 2)(z − 1)

(d + z − 3)3/2
µ

d−2√
2(d−1)(z−1) ℓ1−z

(

rd+z−3 − rd+z−3
h

)

, (3.16)

where we have fixed the integration constants such that the gauge fields vanish at the

horizon, impliying that their norm-squared is non-singular there. The A1 and A3 fields

diverge at the boundary, however they will not be of importance for a thermodynamic

analysis, as we will see shortly.
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First law of thermodynamics. It is now straightforward to check that the first law of

thermodynamics holds5

dM = TdS + ΦdQ , (3.17)

where we define

Φ = A2,t(∞) =
ρµ

−
q

2 z−1
d−1

d + z − 3
r3−d−z
h . (3.18)

Specifically we have

T =

(

∂M

∂S

)

Q

, Φ =

(

∂M

∂Q

)

S

. (3.19)

In case we compare to the extremal case and not the thermal one, we have to consider

the thermodynamic relation

d(∆M) = TdS + (Φ − Φext) dQ . (3.20)

We can calculate now the heat capacity at constant charge, finding the result

CQ = T

(

∂S

∂T

)

Q

=
∂M/∂rh

∂T/∂rh
(3.21)

=
π T Vd−1

Gd+1

(d − 1)ℓ1+zrd−z−1
h

z(d + z − 1) + k (d−2)2(z−2)
d+z−3

ℓ2

r2
h

+ 2d+z−4
2(d−1) ρ2µ

−
q

2 z−1
d−1 ℓ2zr

2(2−d−z)
h

,

from where we conclude that the specific heat at constant charge is always positive and

regular for z ≥ 2. For 1 ≤ z < 2 there is an instability for some values of the black hole

parameters in the spherically symmetric case. We will comment further on this in the

next section.

Notice also that, for the first law of thermodynamics to be satisfied, the gauge fields

A1 and A3 (and their associated charges) are not needed. The fact that these two gauge

fields do not seem to affect the thermodynamics may be related to having their charges

completely determined by the scalar parameter µ and their diverging at the boundary,

which would affect drastically a potential holographic interpretation. Therefore, it seems

natural to assume that these fields, which are needed just to support the structure of the

asymptotically Lifshitz spacetime solution, do not have a thermodynamic interpretation.

4 Phase structure

4.1 Grand-canonical ensemble

Let us define the free energy from the thermodynamic relation

W = M − TS − ΦQ , (4.1)

where we have not included the contribution coming from Φ1Q1 + Φ3Q3, i.e., as these two

charges are fixed to support the asymptotic topology of the black hole solution, they must

5From now on we will denote Q2 ≡ Q, since this is the only charge of importance in the thermodynamic

relations.
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correspond to an ensemble in which those terms do not contribute to the free energy. In

other words, we keep the charges Q1 and Q3 fixed, since otherwise these gauge fields would

spoil the asymptotic topology of our solution. This is equivalent to keep the value of µ

fixed in the phase structure analysis performed in the following.

Defining a critical potential given by

Φ2
c = k

2(d − 1)(d − 2)2

(d + z − 3)3
ℓ2(1−z)µ

−
q

2 z−1
d−1 , (4.2)

we can write parametric equations for the temperature T and the free energy W

W =
Vd−1ℓ

−1−z

16πGd+1
rd+z−1
h

[

−z + (2 − z)
d + z − 3

2(d − 1)
µ

q

2 z−1
d−1

(

Φ2
c − Φ2

)

ℓ2zr−2
h

]

, (4.3)

T =
rz
hℓ−1−z

4π

[

(d + z − 1) +
(d + z − 3)2

2(d − 1)
µ

q

2 z−1
d−1

(

Φ2
c − Φ2

)

ℓ2zr−2
h

]

. (4.4)

The z = 2 case. Let us start the analysis of the parametric equations (4.3) and (4.4) by

studying the case with z = 2. The temperature will be a bijective function of the radius of

the horizon, and therefore every temperature is described by only one black hole. Clearly,

there is a minimum value for T given by the setup with a vanishing radius of the horizon

T(rh=0,z=2) =
(d − 1)

8π
µ

q

2
d−1 ℓ

(

Φ2
c − Φ2

)

. (4.5)

The previous expression is negative when Φ2 > Φ2
c , and a quick look at equation (4.4)

shows that the temperature diverges as rh → ∞. Therefore, being the relation between

T and rh a bijective one, all positive values of the temperature are supported by a black

hole. That this is the thermodynamically preferred solution is clear from the expresion for

the free energy as a function of T and Φ

W = − Vd−1

8πGd+1

(

4π

d + 1

)
d+1
2

ℓ
3
2
(d−1)

(

T − T(rh=0,z=2)

)
d+1
2 . (4.6)

On the contrary, for potentials less than the critical potential (in absolute value) the low

temperature description has to be given by thermal Lifshitz spacetime. The line along

which this phase transition occurs can be given in analytic form

Φ =

√
2 µ

−
q

1
2

1
d−1

(d − 1)ℓ

√

(d − 2)2 − 4π(d − 1)T ℓ ∼
(

T (z=2)
c − T

)1/2
, (4.7)

where T
(z=2)
c = (d − 2)2/4π(d − 1)ℓ.

The 1 ≤ z < 2 case. In this case, the competition between the two terms in the free

energy (4.3) depends on the sign of Φ2
c − Φ2. This case is reminiscent of the z = 1 case

studied in [34].

For values of the potential larger than the critical one the free energy is clearly negative

and the black hole setup is favored in all the temperatures where such a description is valid.
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Figure 6. Temperature as a function of the horizon radius for Φ = 1.1Φc (blue), Φ = 1.5Φc (red)

and Φ = 2Φc (yellow). There is a minimum radius at which T = 0. An evaluation of the free energy

shows that it is negative everywhere along the lines, specifically at T = 0. This plot was made for

d = 6, z = 1.6 and µ = 2 in units where ℓ = 1.

Now, in view of (4.4), it is clear that there are two terms: one positive and proportional

to rz
h and one negative and proportional to rz−2

h . There will be a positive value of the

horizon radius at which the temperature vanishes, and above this value the temperature

will be a monotonically increasing function of the radius (see figure 6). These two results

imply that, for values of the potential greater than the critical one, there exists a black hole

description of the system which, in turn, is thermodynamically preferred. Indeed, when

T = 0 at a finite radius of the horizon and the potential is not at its critical value Φc, the

free energy is given by

W = −Vd−1ℓ
−1−z

8πGd+1

d − 1

d + z − 3
rd+z−1
h , (4.8)

showing that in this case the system at zero temperature is described by an extremal black

hole, since W < 0 when rh > 0.

When the potential Φ is less than the critical value the expression for the tempera-

ture (4.4) is always positive and diverges when rh → 0 and rh → ∞. When the horizon

radius for a given potential is given by r2
h = (2−z)(d+z−3)2

2z(d−1)(d+z−1)µ

q

2 z−1
d−1 ℓ2z(Φ2

c − Φ2), the tem-

perature approaches a minimum value

Tmin =
d + z − 1

2π(2 − z)
ℓ−1−z

[

(2 − z)(d + z − 3)2

2z(d − 1)(d + z − 1)
µ

q

2 z−1
d−1 ℓ2z

(

Φ2
c − Φ2

)

]z/2

. (4.9)

For any temperature larger than this there are two possible horizon radii. When we study

the free energy, it is direct to see that W (Tmin) > 0. Two branches depart from this

point, one corresponding to values of the horizon approaching rh = 0 and one approaching

rh = ∞, i.e., small and large black holes respectively. The branch corresponding to the

small black holes gives always a positive free energy, whereas the branch associated to the

large black holes corresponds to a negative free energy for all values of the temperature
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Figure 7. Temperature as a function of the horizon radius for Φ = 0.2Φc (blue), Φ = 0.5Φc (red)

and Φ = 0.9Φc (yellow). There is a minimum temperature the black holes can describe. The dashed

line marks the position at which the evaluation of the free energy along the lines changes sign, and

it finishes just above the blue line, on the graph for Φ = 0 (not plotted). For small black holes the

free energy is positive whereas for the larger ones it is negative. The values used to produce this

plot were d = 6, z = 1.6 and µ = 2 in ℓ = 1 units.

T > Tmin (see figure 7). Therefore, there is a first order phase transition between a thermal

Lifshitz spacetime and a black hole when Φ2 < Φ2
c .

The z > 2 case. For values of the dynamic index larger than 2 and potentials less than

the critical one (in absolute value), the free energy is negative for any value of the horizon

radius, as can be seen directly from (4.3). Analyzing the expression for the temperature we

observe that there are two positive terms multiplied by a positive power of rh. Therefore,

the temperature is a bijective function of the horizon radius, with vanishing temperature for

zero horizon radius. Altogether this means that for low potentials and z > 2 the black-hole

solution dominates the phase diagram, even at zero temperature.

On the other hand, if Φ2 > Φ2
c the temperature will vanish at a finite horizon radius,

in a similar way to the one reported on figure 6. Equation (4.8) is still valid, showing that

at low temperatures the thermodynamically favored description is given by the solution

with a black hole. Indeed, this result holds true for any value of the temperature.

The Φ2 = Φ2

c
case. In all the previous cases we studied the phase diagrams for values

of the potential above and below Φc. When the potential is tuned to precisely its critical

value the free energy can be expressed as a function of the temperature only

W = −z
Vd−1ℓ

−1−z

16πGd+1

(

4πTℓ1+z

d + z − 1

)
d+z−1

z

. (4.10)

At T = 0 the preferred phase is the one described by the Lifshitz spacetime with finite

potential. At any other temperature the black-hole description is the favored one. This

signals the point T = 0, Φ2 = Φ2
c as a special one, since its description is always given by

Lifshitz spacetime, independently of the value of the index z.
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4.2 Canonical ensemble

We now proceed to study the case in which we keep the charge Q ∝ ρ fixed, corresponding

to the canonical ensemble. In this case the free energy is defined as

F = ∆M − TS

=
Vd−1ℓ

−1−z

16πGd+1

[

− mext(d − 1) − zrd+z−1
h + k

(d − 2)2(2 − z)

(d + z − 3)2
ℓ2rd+z−3

h

+
2d + z − 4

2(d − 1)(d + z − 3)
ρ2µ

−
q

2 z−1
d−1 ℓ2zr3−d−z

h

]

, (4.11)

with mext given in expression (3.5). As in the grand-canonical case, we should investigate

separately the 1 ≤ z < 2, z = 2 and z > 2 cases.

The 1 ≤ z < 2 case. Analyzing the temperature from (3.2) for fixed charge, we observe

that it can present an inflexion point when plotted against rh. This happens at a position

rcrit when the charge has the specific value ρcrit

r2
crit =

(2 − z)(d − 2)2ℓ2

z(d + z − 2)(d + z − 1)
, ρ2

crit =
2z(d − 1)(d + z − 1)µ

q

2 z−1
d−1 ℓ−2z

(d + z − 3)(2d + z − 4)
r
2(d+z−2)
crit .

(4.12)

For values of the charge ρ < ρcrit there is a region of temperatures described by three

different black holes, with different horizon radii. If the charge is larger than the critical

value then the relation between temperature and black-hole radius is in one-to-one cor-

respondence. This situation is analogous to the one encountered for z = 1 [34], and can

be seen in figure 8. In that figure we present also the results for the free energy, which

show that the branch with ∂T/∂rh < 0, for charges below the critical one, is unstable,

and a first order phase transition is present for these values of the physical parameters. At

ρ = ρcrit the kink in the free energy disappears and for larger values of the charge there is

no phase transition.

Another way to study this case is to consider the heat capacity at constant charge

derived in (3.21). The heat capacity associated to the unstable branch turns out to be

negative, whereas the heat capacity for the two other branches, even beyond the kink in

the free energy, is positive. In fact, one could overheat or undercool the system, keeping it

in a metastable phase. In this case, the heat capacity grows as we enter further into the

metastable region, eventually diverging. Figure 9 shows this behaviour.

The z = 2 case. When z = 2 something peculiar happens. Looking at the expressions

for the critical radius and charge (4.12), we see that it occurs at the origin of spacetime,

and that the critical value corresponds to the uncharged black hole. Any charge will be

greater than ρcrit and we do not expect a phase transition. This can be seen by noticing

that the term taking into account finite size effects in (4.11) has disappeared. Therefore,

for this particular value of the dynamic exponent, the free energy expression is equal to the

one corresponding to the black brane solution.6 This means that, effectively, there are not

6Except for the factor Vd−1, which in this black hole case is finite, whereas in the black brane setup is

infinity.
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Figure 8. (Left) Temperature vs. horizon radius for ρ = 0.2ρcrit (blue), ρ = ρcrit (red), and

ρ = 5ρcrit (yellow). The parameters used are d = 4, z = 1.6, µ = 2 and ℓ = 1. The position

of the critical radius is marked with the dashed black line. (Right) Same color code for the free

energy as a function of the temperature. The branch with ∂T/∂rh < 0 in the left hand side plot

corresponds to the unstable phase given by the cusp in the free energy plot. When T → 0 the free

energy approaches 0 from below.
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T
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Figure 9. Heat capacity for black holes with charge less than, equal to and greater than the critical

charge. The coloring is the same as in figure 8. We have split the plot in two graphs for clarity.
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two scales to compare (namely the horizon size and radius of the Sd−1) and therefore no

phase transitions are present (notice however that the expression for the temperature still

feels the finite size effects, so this is not quite the same as the study of the planar black

brane). The heat capacity is positive for every value of the charge, signal of the absence of

thermodynamic instabilities in the system for this value of the dynamical exponent z.

The z > 2 case. For z > 2 the term in the free energy proportional to k(z − 2) has

reversed sign. One can show that the temperature is a bijective function of the horizon

radius, which has a minimal value at which the black hole becomes extremal (the situation is

completely analogous to the one shown in figure 6). The free energy is negative everywhere

except at T = 0 where it vanishes, and there is no non-trivial phase structure. Equivalently,

the heat capacity at fixed charge is always positive.

5 Final comments

We have determined that for asymptotically Lifshitz spacetimes with a charged black hole

in the center of the geometry, there is a phase structure that depends crucially on the

dynamical exponent z.

For values 1 ≤ z ≤ 2 the situation is reminiscent of that of the asymptotically AdS

case, which corresponds to setting z = 1. In the grand canonical ensemble there is a line

of first order phase transitions. For large values of the temperature or the potential the

thermodynamics are determined by the black hole configuration, whereas for low values of

both parameters the ensemble is dominated by Lifshitz spacetime. When the temperature

vanishes, for values of the potential larger than the critical one given in (4.2), the description

is given in terms of extremal black holes with a nonzero entropy density.

In the canonical ensemble there is also a line of first order phase transitions between

two black hole setups, ending at a critical point given by the coordinates

Tcrit =
(d − 2)z

π z(2d + z − 4)ℓ

[

2 − z

z(d + z − 2)(d + z − 1)

]
z−2
2

(5.1)

ρ2
crit =

2z(d − 1)(d + z − 1)µ

q

2 z−1
d−1

(d + z − 3)(2d + z − 4)ℓ2z

[

(2 − z)(d − 2)2ℓ2

z(d + z − 2)(d + z − 1)

]d+z−2

. (5.2)

For values of the charge greater than ρcrit there is no phase transition. For ρ = 0 a

Hawking-Page transition exists, with the thermodynamic ensemble dominated by Lifshitz

spacetime at low temperatures and by the black hole solution for large temperatures. The

exact point at which this phase transition takes place can be determined by calculating the

non-trivial radius of the horizon at which the uncharged solution has vanishing free energy,

and then plugging in equation (3.2), obtaining

THP =
d − 1

2π(2 − z)ℓ

[

(2 − z)(d − 2)2

z(d + z − 3)2

]z/2

. (5.3)

Notice that the position of the critical point in the ρ − T plane depends crucially on z.

Indeed, for the special case z = 2 one cannot find signs of a phase transition of any order at
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Figure 10. Free energy for the zero charge case with parameters d = 4, µ = 2, ℓ = 1 and z = 1.5

(blue), z = 1.6 (red), z = 1.75 (yellow), and z = 2 (dashed green). The kink is situated at T = Tmin

and the curve with large gradient touches the F = 0 axis at T = THP . For larger values of z the

free energy is negative for all values of the temperature except T = 0, where it vanishes. There is

a branch with zero free energy from T = 0 up to a finite value of the temperature. Then there is

a kink at F = 0 which gives rise to a branch with positive values of the free energy, until Tmin is

reached. The right-most kink (not showed) gets closer to THP as z is increased, until it coincides

when z = 2.

a finite value of the charge, and only the Hawking-Page transition remains at a temperature

given by THP,z=2 = (d − 2)2/4π(d − 1)ℓ. At precisely this value of the dynamic index, the

temperatures Tmin and THP coincide. To understand why, it is useful to plot the free

energy for zero charge and various values of z. We do this in figure 10. There we see that

the value of the temperature at which the free energy presents a kink and is positive is

given by Tmin, whereas this non-trivial branch crosses the horizontal axis at THP . When

we increase the value of the dynamical exponent z, the kink gets closer to the T -axis, and

at precisely z = 2 it sits on top of it. If one increases further the value of the dynamical

exponent, the free energy is negative for any value of the temperature, and therefore the

Hawking-Page transition disappears, the uncharged solution being described by a black

hole except at T = 0.

For z > 2 there is a dramatic change in the phase diagrams, the phase transition disap-

pears in both the canonical and grand-canonical ensembles, and the black hole description

is the dominant one for any value of Φ, T (or ρ, T ) except at the points (Φc, T = 0), as

given by equation (4.10), and (ρ = 0, T = 0).

We have shown that the instabilities associated to thermal fluctuations, given by black

holes with a negative heat capacity as given by equation (3.21), correspond to thermody-

namically unfavored phases. However, one should worry about electric instabilities as well.

The isothermal susceptibility is given by

χ ≡
(

∂Q

∂Φ

)

T

, (5.4)

and has to be non-negative for the configuration to be stable. For 1 ≤ z < 2, as was the

case in [35], there is a region in the (Q,T ) plane where such an electric instability is present.

The line Qins(T ) splitting the phase space into stable and unstable regions is given by the
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condition χ(Qins, T ) = ∞, leading to‘

ρ2
ins =2(d−1)µ

q

2 z−1
d−1 ℓ2(d−2)

(

2πTℓ(2−z)

d+z−1

)2 d+z−3
z

[

(d−2)2

d+z−3
− z(d+z−1)

2−z

(

2πTℓ(2−z)

d+z−1

) 2
z

]

.

(5.5)

This curve exists only for 1 ≤ z < 2, and encloses a region (for a given temperature, the

values of the charge lower than Qins(T )) in which the solution presented here is unstable

under electric perturbations. The critical point at which the line of first order phase

transitions finishes is unstable. However, the temperature at which the Hawking-Page

transition occurs is in the stable region, approaching it as z → 2.

Further directions. We end with some comments for further study. As mentioned in the

introduction, the Lifshitz background supported by a dilatonic scalar suffers from divergen-

cies at the boundary, which complicates a proper holographic formulation. Other issues re-

lated to Lifshitz spacetimes were discussed for example in [36, 37]. It is expected that some

of these problems will be resolved by studying more general models, for instance gauged

supergravities with non-trivial scalar potentials that arise from string compactifications.

Finding an embedding of our model into string theory is therefore worth investigating.

The phases described in this paper should have an interpretation in terms of the dual

boundary field theory. It would be interesting to identify and analyze the properties and

phases of this field theory. For this, one needs to find an order parameter, which acquires

different expectation values in the different phases. In the relativistic case, i.e. for z = 1,

such an order parameter is given by the Wilson loop.

It is also interesting to perform a thorough investigation of the critical exponents

at the phase transition and thermodynamic instabilities, as was done in the AdS case

in [38].The critical exponents may be sensitive to the value of the dynamical exponent z,

as might the properties of the universality classes. Another line of research goes along

the work performed in [39], where transport coefficients were studied in asymptotically

Lifshitz spacetimes.

Finally, another extension of our model is to add bulk fermions in the probe approx-

imation. This allows us to study properties of condensed matter systems with fermions

that obey Lifshitz scaling. A first step in this direction is under investigation [40].
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