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Abstract

One of the important questions in understanding infectious diseases and their prevention and control is how infectious
agents can invade and become endemic in a host population. A ubiquitous feature of natural populations is that they are
spatially fragmented, resulting in relatively homogeneous local populations inhabiting patches connected by the migration
of hosts. Such fragmented population structures are studied extensively with metapopulation models. Being able to define
and calculate an indicator for the success of invasion and persistence of an infectious agent is essential for obtaining general
qualitative insights into infection dynamics, for the comparison of prevention and control scenarios, and for quantitative
insights into specific systems. For homogeneous populations, the basic reproduction ratio R0 plays this role. For
metapopulations, defining such an ‘invasion indicator’ is not straightforward. Some indicators have been defined for specific
situations, e.g., the household reproduction number R�. However, these existing indicators often fail to account for host
demography and especially host migration. Here we show how to calculate a more broadly applicable indicator Rm for the
invasion and persistence of infectious agents in a host metapopulation of equally connected patches, for a wide range of
possible epidemiological models. A strong feature of our method is that it explicitly accounts for host demography and host
migration. Using a simple compartmental system as an example, we illustrate how Rm can be calculated and expressed in
terms of the key determinants of epidemiological dynamics.
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Introduction

For the prevention, control, and potential (local) eradication of

infectious disease agents, it is important to quantify the ability of

the infectious agent to invade into a naı̈ve host population, as well

as its ability to persist in such a population. On this basis, one can

then compare the effects of different scenarios. In homogeneous

populations, the so-called basic reproduction ratio R0 is widely

used for this purpose, making it arguably the most important

quantity in the study of the dynamics of infectious diseases. It is

defined as the expected number of secondary cases caused by one

infected host in an otherwise uninfected host population [1]. This

ratio also provides an endemicity threshold: if R0w1, each

infected host infects on average more than one other host and, as a

result, it becomes likely that the infectious disease will spread in the

population (in most models, this will imply persistence of the

disease). Conversely, if R0v1, the infectious disease will fade out.

A framework for defining and computing R0, based on how

infected individuals spread from one generation to the next, was

introduced by Diekmann et al. [2], and has since then been

referred to in the epidemic-dynamics literature as the ‘next-

generation approach’ [3].

A ubiquitous feature of natural host populations is, however,

that they are not homogeneous. Often, they have a fragmented

spatial structure in which relatively homogeneous local popula-

tions are connected by the relatively rare migration of hosts. Such

populations are formed, for example, by humans living in cities

[4], cattle living in herds on farms [5,6], or wildlife populations,

such as water voles in the U.K. [7], the Iberian lynx [8], or great

gerbils in Kazakhstan [9]. Also populations of plants [10] and

fungi [11] are typically structured in space. These spatially

structured populations are being extensively studied by means of

metapopulation models.

Metapopulation models assume that a population is spread out

over a network of patches, each without significant internal

structure, and that these patches are connected to each other by

the inter-patch dispersal of individuals [12,13]. Such models are

studied both in ecology and in epidemiology. In ecology, typical

questions are whether a species can establish a viable population

[14], or is able to compete successfully with an already established

one [13]. In epidemiology, one of the points of interest is the

invasion of an infectious agent into a fully susceptible host

population, and the possibility for its subsequent persistence

[15,16,17].
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In a fragmented host population, the basic reproduction ratio

R0 is not a suitable measure for assessing the potential for the

invasion and persistence of an infection. This is because, even if

the infection would be likely to die out in each patch if patches

were unconnected, it can still persist in the metapopulation if the

infection spreads among patches faster than it dies out locally.

Conversely, although R0 can characterize invasion success within

a patch, it cannot predict whether an infectious agent can invade a

metapopulation as a whole. For this, the agent needs to be

sufficiently efficient in infecting other patches. While the processes

involved in this play no role in the characterization of R0, they are

key to understand the spread of infections in metapopulations.

For wildlife infections, habitat fragmentation has been shown to

be important for determining infection dynamics; this applies, in

particular, to processes involved in the spread of zoonotic

infections from wildlife to humans [18,19,20], and to the evolution

of infectious agents. Assessing the impacts of habitat fragmenta-

tion, obtaining insights into the underlying epidemiological

mechanisms, and, even if only qualitatively, evaluating alternative

options for intervention and control, all require a suitable

quantitative indicator of an infection’s potential for invasion and

persistence. As a concrete and practically important example, one

can think of attempts to vaccinate a fragmented wildlife population

so as to prevent the spill-over of an infection to either humans or

domestic animals (e.g., in the case of badgers or possums as sources

of bovine tuberculosis). In such situations, R0 will not be a good

indicator of the required vaccination effort. This is because, in

addition to the local disease dynamics, the host’s connectivity

structure and associated dispersal dynamics are crucial determi-

nants of an infection’s spread [13]. Broadly speaking, factors

affecting invasion either relate to within-patch dynamics (such as

contacts between individuals, transmission routes and rates, life-

history states, individual heterogeneity, and infectious period) or to

between-patch dynamics (such as the connectedness of patches

and factors changing the migration of hosts). Which of these

factors are particularly relevant for an infection’s spread will

depend on the particularities of the considered biological system.

Whatever the specific factors involved, what is needed is an

indicator that can take all relevant factors into account, and thus

assume, for spatially fragmented settings, the important role that

R0 plays for analyzing infection dynamics in homogeneous host

populations.

For populations inhabiting a finite number of patches, with each

patch being occupied by an infinitely large number of individuals,

Fulford et al. [21] investigated the basic reproduction ratio based

on the next-generation approach, using a matrix representation.

The elements of this matrix represent the expected number of new

infected hosts of one type caused by a single infected host of

another type. This matrix thus accounts for heterogeneity among

individuals, based on considering hosts to be of different types

when they occupy different patches. The dominant eigenvalue of

this matrix then characterizes invasion success. The approach of

Fulford et al. [21] extended work by Hess [22], who assessed the

influence of specific spatial arrangements of a small number of

patches, while also assuming infinitely many individuals per patch.

However, assuming infinitely large populations in each patch is

often not appropriate – for example, for a wildlife population

structured in small (family) groups or in the case of humans living

in households – even though this assumption becomes increasingly

suitable as the considered groups of individuals are getting

sufficiently large.

For populations structured by (possibly small) group size, so-

called household models, Ball [23] introduced an indicator R�
based on an idea by Ball et al. [24]. These models consider a large

number of households of constant size, and two types of contacts

among individuals: local (or within-household) contacts and global

(or between-household) contacts. The measure R� is the

household-level analogue of R0 [25], defined as the expected

number of households infected by one infected household in an

otherwise susceptible population. In an analogous manner, other

reproduction numbers have been defined, e.g., to account for

overlapping groups, such as workplaces and schools [26], to allow

for various household sizes [27], to describe households exchang-

ing infections on a clustered contact network [28]. The same

framework has also been adapted to study the effects of different

control strategies, such as vaccination [29]. Furthermore, R� has

been applied to study the spread of influenza [30] and measles

[31], and a numerical method has been developed for its efficient

calculation for infections with waning immunity [32]. However,

migration of hosts is an essential ingredient of many wildlife

systems and the current household reproduction numbers,

constructed with human populations in mind, cannot account

for this.

An approach to this problem that works for finite local

populations and allows accounting for migration between such

populations can be found in evolutionary biology. Specifically,

Metz and Gyllenberg [33] investigated how to predict the success

of a mutant phenotype invading a metapopulation of residents

phenotypes structured into a large number of patches inhabited by

finite numbers of individuals, while explicitly accounting for the

migration of individuals between patches. This is achieved by

defining an invasion indicator Rm as the expected number of

secondary mutant immigrants produced by a patch that has been

invaded by a single mutant. This invasion indicator has a

threshold at Rm~1: for Rmw1, there is a possibility that the

number of mutants in the metapopulation increases, so that

mutants can invade the population, whereas for Rmv1, the

mutants are expected to die out. The calculation of this invasion

indicator is conceptually closely related to an R0-calculation based

on a next-generation matrix. The purpose of the present study is to

adapt this invasion indicator Rm for epidemiological models by

replacing the distinction between residents and mutants made by

Metz and Gyllenberg [33] with a multi-compartment population

structure that can represent life-history- and infection-related

states and changes between them, including infection and

recovery.

Although the conceptual framework devised by Metz and

Gyllenberg [33] is general, they only give calculation recipes for

the case of unstructured within-patch populations. The case of

infinitely large local populations was further examined by

Gyllenberg and Metz [34]. Parvinen and Metz [35] describe an

extension to the invasion of mutants in diploid populations, with

two types of mutant dispersers, heterozygotes and homozygotes.

Massol et al. [36] reinterpret the invasion indicator of Metz and

Gyllenberg [33] as a population dynamical threshold parameter,

and provide a mathematically rigorous presentation, which, on an

abstract level, also covers discrete population structures and

multiple disperser types. An equally rigorous (but possibly less

accessible) version of the latter result can already be found in

Chesson [37].

In an epidemiological context, Rm can – in addition to its main

use in comparing control options for a specific infection in a

specific metapopulation – be used, for example, to study the

invasion of a mutant infectious agent into a population in which

other infectious agents are already present. The former agent

might have a slightly different effect on the host species, resulting,

e.g., from a different transmission rate. The indicator Rm then

helps determine whether or not this mutant infectious agent can

Infectious Agents in Metapopulations

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e24006



invade and spread in the resident population, thus enabling studies

of the adaptive evolution of infectious agents.

The present paper shows how to calculate Rm for a general

compartmental system of the kind naturally arising in epidemio-

logical dynamics. To aid readers interested in applying our general

approach to specific systems, we illustrate our results by studying

the simplest disease-metapopulation compartmental system, con-

sisting of only two compartments, one for susceptible and one for

infected hosts, with infected hosts becoming susceptible again after

recovery. To maximally bring out the effects of habitat

fragmentation, we purposely develop this example in a setting

that remains as close as possible to the idealization of an infinite

homogeneously mixing (mass-action) population that underlies the

definition and calculation of R0, but with the crucial difference

that the population we study is fragmented into finite populations

inhabiting an infinite number of habitat patches that are equally

connected through inter-patch dispersal.

Methods

Infection invasion in a general compartmental system
Our objective is to study the invasion of an infectious agent into

a fragmented population of susceptible hosts that has an implicit

spatial structure: we assume that the host population inhabits an

infinite number of identical patches, with each patch being equally

connected to all other patches and containing a finite number of

hosts. We expect such a structure to provide a reasonable idealized

model for infection scenarios in which the number of patches is

large and long-range host dispersal is frequent enough for an

infection to move from any given part of the landscape to any

other in relatively few steps. To highlight the features of suitable

systems, we can think of the great gerbils in Kazakhstan [9], living

in family groups in underground burrow systems, in which the

plague bacterium Yersinia pestis spreads. In the resultant gerbil

metapopulation, short-range host migration occurs for establishing

new family groups and for foraging. In addition, there is long-

range dispersal, by birds, of the pathogen across the entire

landscape of burrow systems.

We build on general ideas for studying invasion fitness in

compartmental systems, introduced already in [1,2] in a much

broader setting, and more recently reviewed for compartmental

systems by Diekmann et al. [3]. Those earlier expositions already

accounted for heterogeneity among host individuals by allowing

for an arbitrary number of ‘types’ of hosts in terms of host features

that can be relevant for the infection dynamics, such as ageclass,

development stage, or sex. On that basis, a next-generation matrix

was defined, the elements of which give the expected number of

new infected hosts of one type caused by a single infected host of

another type. This matrix does exactly what its name suggests: it

gives the next generation of infected individuals, distributed over

all possible infected host types, starting from that distribution in

the current generation. The basic reproduction ratio R0 is then

obtained as the dominant eigenvalue of this matrix, and functions

as an indicator for the growth or decline of the total number of

subsequent generations of infected hosts upon iterating the matrix.

Here we integrate this general approach to compartmental models

with the framework for defining invasion fitness in spatially

implicit metapopulation dynamics introduced by Metz and

Gyllenberg [33].

Metapopulation dynamics. A compartmental model in

epidemiology classifies each individual into one compartment, or

state, at any given point in time, where the various compartments

correspond to the different stages in the course of the infection

within an individual, and possibly in the individual’s life history.

So, for example, one may consider a susceptible juvenile female, or

an infectious adult male. In compartmental models, the switch

between individual states is instantaneous. If a more gradual

change is called for, e.g., for describing changes in the severity of

the disease, additional consecutive compartments can be

introduced, or a continuous description based on integral

equations can be employed (for epidemiological examples, see

[1]). The assumed transition rates between states specify a system

of dynamical equations. Births into at least one compartment, and

deaths in all compartments, are typically also considered. Here, we

augment these within-patch dynamics with equations that describe

emigration from and immigration into patches. The terms

‘‘demographic dynamics’’, ‘‘infection dynamics’’, and ‘‘migratory

dynamics’’ can be used to distinguish the parts that describe,

respectively, the transitions between ‘‘normal’’ or infection-free

life-history states, including birth and death rates, the transitions

that involve states associated with the infection, and the migration

events. An individual’s compartment fully characterizes its

(dynamically relevant) state. Below we consider models with n

compartments in a convenient ordering: the first n’ compartments

describe the infection-free life states of an individual and the

remaining m~n{n’ compartments describe its infection-related

states. In the case of the invasion of infection in populations of

great gerbils in Kazakhstan, we could consider three

compartments (n~3): one for susceptible, one for infectious, and

one for recovered gerbils (n’~1 and m~2).

The state of a patch can be described by a vector

x~(x1, . . . ,xn) specifying the numbers of individuals inhabiting

this patch that belong to each of the n considered compartments.

Since local populations within patches have a finite size, with a

maximum occupation of k individuals, there is only a finite

number n of possible patch states, and counting these states gives

n~
kz1

n

nzk

kz1

� �
: ð1Þ

For any application, one can define a bijective map from the set of

possible indices j~1, . . . ,n to the set of possible patch states x.

Accordingly, we can speak either of a patch state j or of a patch

state x, and we will use either as a subscript depending on what

seems more informative. For convenience, the ordering of patch

states is again such that the first n’ patch states are infection-free,

and the remaining u~n{n’ patch states are infection-related.

Apart from their differential occupation by individuals, all

patches are assumed to be equivalent. The state of the

metapopulation can therefore be described by specifying, for each

possible patch state j, the fraction pj of patches currently found in

this state. The resultant n-vector p thus has non-negative

components that sum to 1. In addition, we introduce a disperser

pool to keep track of the individuals in each of the n compartments

that have emigrated from one patch and have not yet immigrated

into another. The state of the disperser pool is described by an n-

vector d, which we keep normalized so that its components di can

be interpreted as the average number of dispersers per patch in

compartment i. We thus employ a general and very flexible way of

modeling dispersal, through which the biology of any specific

system can be respected by specifying how long individuals on

average stay in the disperser pool and what can happen to them

during that time. Effectively, this just involves a simple

bookkeeping of individuals while they are not residing in a patch.

In the case of great gerbils, one should think of the disperser pool

being populated by individuals searching for a suitable empty

patch to establish a new family.

Infectious Agents in Metapopulations
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The full metapopulation dynamics can be compactly described

by the following system of ordinary differential equations,

_pp~B(d)p, ð2aÞ

_dd~f (d,p), ð2bÞ

where the dots denote time derivatives and with B and f as

specified below. The v|v-matrix B contains the transition rates.

These depend on the state of the disperser pool, because this

determines the number of individuals currently available for

immigration. An off-diagonal element bij of B measures the rate at

which a patch in state j transforms into a patch in state i. A

diagonal element bii of B measures the total transition rate at

which a patch in state i transforms into any other state j=i. It is

therefore negative, as it describes a flow out of patches in state i,
and consequently, the columns of B add up to 0. The n-vector-

valued function f describes the dynamics in the disperser pool and

is assumed to have the general form

f (d,p)~C(p)dzg(p), ð2cÞ

in which an n|n-matrix C describes mortality and transformation

in the disperser pool, as well as immigration into patches, the latter

possibly depending on patch states, and the function g describes

emigration from patches. This form leaves room for, e.g., an

individual in a latent stage to become infectious before it enters a

new patch, or a sick individual to recover; in many specific

systems, the length of stay in the disperser pool will be too short for

these changes of state to be practically important. We preclude,

however, infections from occurring in the disperser pool. This is

because in natural systems contacts between hosts in the disperser

pool are typically so infrequent that they do not make a significant

contribution to transmission. Otherwise, one would have to

consider the possibility of the infection becoming endemic in the

disperser pool, which is beyond the scope of the Rm-calculations

developed here.

Based on this framework, we now investigate the fundamental

question whether an infectious agent can spread in an established

host metapopulation and become endemic. For terminological

convenience, we will distinguish between m ‘‘invader types’’,

‘‘invader compartments’’, or ‘‘invaders’’, and n’ ‘‘resident types’’,

‘‘resident compartments’’, or ‘‘residents’’.

Reinvasion cycle. The possibility for long-term persistence of

certain invader types in an existing environment can be inferred

from their full population dynamics, i.e., from their transition rates

between compartments and patch states. If there is but a single

attractor of the resultant dynamics, we can infer their long-term

persistence in a simpler manner, by investigating the population

dynamics of the invaders while they are rare. This simplification is

possible because, whatever happens when the invaders become

more abundant, they would again have to become rare before

going extinct.

Whether invaders become more or less abundant depends both

on their dynamics within patches and on their emigration,

dispersal, and immigration into new patches. This ‘‘reinvasion

cycle’’ (Fig. 1) is at the focus of all our analyses below.

The assumption of invader rarity considerably simplifies the

population dynamics of invaders. As long as invaders are rare in

the metapopulation, it is very unlikely that a once-invaded patch

will be invaded again. Consequently, within-patch dynamics can

be examined while being temporarily undisturbed by the arrival of

more invaders from the disperser pool. Also the effect of rare

invaders on the distribution of patch states is negligible; therefore,

the population dynamics of the dispersers is approximately linear.

To define invader dynamics efficiently, it is helpful to monitor,

or census, the invaders at the ‘‘narrowest’’ point of the reinvasion

cycle. Since the within-patch dynamics (Eq. 2a) has many more

states than the disperser-pool dynamics (Eq. 2b), we census the

invaders as they leave the disperser pool.

For the models considered here, the reinvasion cycle can be

decomposed into four stages (Fig. 1), each of which is described by

a matrix:

N Immigration of invaders from the disperser pool and

distribution over patches (S).

N Population dynamics within invaded patches (T).

N Emigration of invaders from patches and collection into the

respective compartments of the disperser pool (U).

N Population dynamics of invaders in the disperser pool (V).

This sequence of stages thus describes how an invader leaving

the disperser pool contributes to future invaders leaving the

disperser pool. The latter individuals may include the former

Figure 1. Reinvasion cycle. The dynamics of invaders in a
metapopulation depend on within-patch and disperser-pool dynamics,
coupled through dispersal behavior. The cycle of immigration of
invaders into a set of patches, production of new invaders within those
patches, emigration of invaders into the disperser pool, survival and
transformation of invaders within the disperser pool, and, finally, re-
immigration of invaders into the patches, can be broken up into four
stages as shown. The processes taking place in the four stages are
described by the matrices S, T, U, and V. These are multiplied to yield
the matrix R~(rij)~VUTS, whose elements describe the expected
number of secondary invasions by invaders of type i~1, . . . ,m resulting
from a primary invasion of invaders of type j~1, . . . ,m. Generalizing the
key role R0 plays for the analysis of infectious diseases in unstructured
host populations, the dominant eigenvalue Rm~ld(R) measures the
factor by which the total number of invaders grows during each turn of
the cycle. Thus, Rm exceeds 1 if and only if the invader population
expands, making it a natural invasion indicator. The construction and
interpretation of the four matrices is explained in the text.
doi:10.1371/journal.pone.0024006.g001
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individual or comprise just its offspring. Therefore, the reinvasion

cycle need not correspond to the life cycle of an invader individual,

which, in general, might go through the reinvasion cycle partly or

repeatedly. Furthermore, while transitions between the four stages

are fully stochastic, the four matrices above quantify the resultant

deterministic expectations: T and V describe the expected total

sojourn times (i.e., durations of stay) in the two dynamical stages,

whereas S and U describe the expected rates of transition through

the two migration stages.

The product

R~VUTS ð3Þ

is a dimensionless m|m-matrix, with m being the number of

invader compartments (an efficient procedure for obtaining the

matrix product UT is given in Appendix S2). The elements of R
describe the expected number of secondary invasions of invaders

in a given compartment resulting from the primary invasion of a

single invader in a (potentially different) compartment. Following

Metz and Gyllenberg [33], we obtain the factor by which the

invader population is expected to grow during one reinvasion cycle

as the dominant eigenvalue of this matrix,

Rm~ld(R)~ld(VUTS): ð4Þ

If Rmw1, the invader can invade, whereas if Rmv1 it cannot.

Throughout the remainder of this study, we therefore refer to Rm

as the invasion indicator.

Another natural decomposition of R would be

R~VW, ð5aÞ

with W~UTS describing the processes involving patches and V
describing the processes taking place solely in the disperser pool.

Both W and V are m|m-matrices; the fact that one can reverse

their order of multiplication without changing the dominant

eigenvalue, ld(WV)~ld(VW)~Rm, mathematically reflects the

biological fact that the invasion indicator is unaffected by the

choice of census point. Analogously, if we chose our census point

after immigration into, or before emigration from patches, we

would end up with a product of two u|u-matrices, with u~n{n’
being the number of invader patch states, which again possesses

the same dominant eigenvalue Rm. In summary, all four possible

census points yield the same result.

Instead of the decomposition into dimensional matrices V (with

elements having the unit of time) and W (with elements having the

unit of rate, or time{1) discussed above, one can alternatively

consider a similar decomposition,

R~LV, ð5bÞ

into dimensionless matrices L and V. These matrices have a direct

individual-based interpretation: for all pairs of invader patch types,

the elements of L are the expected numbers of immigrants into a

patch per emigrant from a patch, and the elements of V are the

expected numbers of emigrants from a patch per immigrant into a

patch. Since such an individual-based perspective is preferable in

some studies, below we will mention also how to construct L and

V.

Invasion indicator. Given a metapopulation state (p̂p,d̂d) that

describes a resident population at its interior equilibrium, we

consider the arrival of an invader in an arbitrary patch. When the

maximum patch occupancy is finite, eventual extinction of the

invader type within any one patch is certain. Before this happens,

however, invader types may migrate from a patch into the

disperser pool, and eventually arrive in new patches. We now

quantitatively analyze the resultant reinvasion cycle (Fig. 1).

We recall that the resident is described by the n’ infection-free

compartments and n’ infection-free patch states, while the invader

is described by the remaining m~n{n’ infection-related com-

partments and u~n{n’ infection-related patch states. We can

thus refer to the n’ patch states as invader-free states and to the u

patch states as invader states.

Immigration and distribution over patches. The u|m-

matrix S describes immigration from the disperser pool into

patches. Its elements sij are the expected rates at which an invader

of type j in the disperser pool creates a patch in invader state i. To

facilitate the calculation of S, we decompose this matrix as

S~YE, so that the diagonal m|m-matrix E specifies the rates ei

at which an invader of type i encounters patches, and the u|m-

matrix Y specifies the probabilities yij that the arrival of an invader

of type j in a random patch creates a patch in invader state i.

Since invader types are assumed to be rare, invasions creating a

patch state with more than one invader can be neglected, so the

distribution of patch states as it presents itself to the invader

encountering patches at random is approximately given by p̂p. To

determine yij , we introduce the probabilities ai’j that an invader of

type j enters a patch in invader-free state i’. Therefore, if i is an

invader patch state with exactly one invader of type j, we obtain

yij~aD(i,j),j p̂pD(i,j), ð6Þ

whereas yij~0 otherwise. Here the function D turns an invader

patch state n’zi with exactly one invader of type n’zj into the

corresponding invader-free patch state i’ƒn’ by removing that

invader. The immigration rates of the m invader types are given by

the m row sums of S; these depend on p and can be assembled in a

diagonal m|m-matrix Min with min,jj~
X

i
sij.

Within-patch dynamics. The u|u-matrix T describes the

outcome of within-patch dynamics. Its elements tij are the

expected total sojourn times (i.e., durations of stay) in invader

patch state i, given an initial invader patch state j. T is obtained by

integrating over a matrix P(t) of time-dependent probabilities

pij(t) to find a patch in state i at time tw0 that had initially been in

state j after invasion at t~0,

T~

ð?
0

P(t)dt: ð7Þ

Because each element of P(t) is smaller than 1, the matrix is

exponentially bounded, and the expected total sojourn times are

thus finite.

P(t) is obtained by solving the part of Eq. 2a corresponding to

the invader patch states while the resident patch states are fixed at

the equilibrium (p̂p,d̂d) of the invader-free resident population. This

implies that in Eq. 2a the resident immigration rates are constant

in time, determined by d̂d, and the invader immigration rates are 0,

reflecting that secondary immigration by invaders can be

neglected due to their initial scarcity. Denoting the u-vector of

invader patch frequencies as ~pp and the corresponding u|u-

submatrix of B as ~BB, we thus have

_~pp~pp(t)~~BB(d̂d)~pp(t), ð8Þ

with the straightforward solution

Infectious Agents in Metapopulations
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~pp(t)~exp(~BBt)~pp0: ð9Þ

The initial states ~pp0 of interest to us are those in which the patch is

with certainty in a given invader state, i.e., ~pp0,i~1 for a given state

i and 0 otherwise. Jointly, all these u initial states, when arranged

as column vectors in a matrix and properly sorted, are thus

represented by the u|u identity matrix. Therefore,

P(t)~exp(~BBt)I~exp(~BBt), ð10Þ

which yields

T~

ð?
0

exp(~BBt)dt~{~BB{1 ð11Þ

for the matrix of expected total sojourn times.

Emigration and collection into compartments. The

m|u-matrix U describes emigration from the patches into the

various compartments of the disperser pool. Its construction is

similar to that of S, except that the disperser pool is ‘‘encountered’’

with certainty and that emigration rates uij could depend on the

patch state i.

Often, however, the simplifying assumption can be made that

emigration rates depend only on the emigrant’s type. In this case,

we decompose U as U~MoutG, so that the diagonal m|m-

matrix Mout specifies, for each invader type, the emigration rate

into the disperser pool, and the m|u-matrix G describes the

associated collection into invader compartments. The elements gij

are the number of invaders of type i in invader patch state j. This

matrix is easily constructed from the correspondence of patch-state

indices and patch-state vectors, by arranging as column vectors in

the appropriate u m-subvectors (xn’z1, . . . ,xn) of the n possible

patch-state vectors x~(x1, . . . ,xn).
Disperser-pool dynamics. Finally, we consider the m|m-

matrix V, whose elements vij describe, for invaders arriving in

invader compartment j of the disperser pool, the expected time

spent in invader compartment i. This matrix depends on the

function f in Eq. 2b, which in most practical cases will be of the

form in Eq. 2c. Reduced to invader states, this yields

~ff (~dd,~pp)~(A{Min(~pp))~ddzU~pp, ð12Þ

where the m|m-matrix A describes the state transitions and death

rates of individuals in the disperser pool. The expected total

sojourn times in the disperser pool are then given by

V~(Min{A){1: ð13Þ

Dimensionless matrices. The dimensionless matrices

describing, respectively, for the various invader types the

expected number of immigrants into a patch per emigrant from

a patch, and the expected number of emigrants from a patch per

immigrant into a patch (Eq. 4b), can be constructed from the

above matrices as L~MinV and V~UTSM{1
in . Again,

Rm~ld(LV)~ld(VL).
Viability and endemicity. With all these matrices in place,

we can determine R and find its dominant eigenvalue (Eq. 3), to

obtain the invasion indicator Rm of the invader.

In addition to studying the invasion of an infectious agent into

an established host population, we can also study if a host

population can viably establish itself in a patch structure in the

absence of the infection. As already pointed out by Massol et al.

[36], both of these questions concern a specific kind of persistence

and can be answered using the same formal procedure of

calculating an invasion indicator. In the former case, this indicator

describes the invasion potential and viability of the infection-free

host, while in the latter case, it describes the invasion potential and

endemicity of the infectious agent. To highlight this distinction, we

use the symbols Rm,V and Rm,E instead of the more generic Rm,

and call the former quantity the ‘‘viability indicator’’ of the host

and the latter quantity the ‘‘endemicity indicator’’ of the infectious

agent. Despite this distinction, there is a close correspondence in

how these quantities are defined:

N To assess viability, we consider the trivial equilibrium,

corresponding to an empty metapopulation, and then analyze

the invasion potential of an infection-free host. Here the

invaders are the infection-free hosts, so we reinterpret m as the

number of infection-free compartments while setting n’~0

N To assess endemicity, we consider an equilibrium of an

infection-free viable host population, and then analyze the

invasion potential of an infected host. Here the invaders are

the infected hosts, so we interpret m as the number of

infection-related compartments and n’ as the number of

infection-free compartments.

Accordingly, for assessing viability, we need to consider the

trivial equilibrium (p̂p,d̂d) (i.e., p̂p~(1,0, . . . ,0) and d̂d~0), while for

assessing endemicity, (p̂p,d̂d) is an equilibrium of an infection-free

viable host population, computed from Eqs. 2 in the absence of

invaders. Denoting the corresponding within-patch transition

matrix and disperser-pool function by B0 and f ’, respectively, this

yields

0~B’(d̂d)p̂p, ð14aÞ

0~f ’(d̂d,p̂p): ð14bÞ

Since the coupling of the within-patch dynamics with the

disperser-pool dynamics prevents a general solution of this

equilibrium, we provide in Appendix S1 an iterative numerical

scheme inspired by Metz and Gyllenberg [33]. Before attempting

to calculate this equilibrium, it will be good practice first to

ascertain the host population’s viability by calculating its viability

indicator.

Summary of procedure. Based on these specifications, we

can summarize the suggested procedure for studying the invasion

of an infectious agent in to a fully connected metapopulation with

explicit host migration:

1. Write down the dynamical equations for the host in the

absence of the infectious agent.

2. Calculate the viability indicator Rm,V of the infection-free host

metapopulation using Eq. 3.

3. For Rm,Vw1, find the non-trivial equilibrium (p̂p,d̂d) of the

infection-free host metapopulation using Eqs. 13.

4. Enhance the aforementioned dynamical equations by incor-

porating compartments and interactions required to describe

the infection of hosts.

5. For (p̂p,d̂d) from step 3, calculate the endemicity indicator Rm,E

of the infectious agent using Eq. 3.

Infectious Agents in Metapopulations
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To illustrate the application of our framework with an example,

we now show how to calculate and analyze the invasion indicator

Rm for a simple concrete compartmental system.

A concrete example: application to a compartmental
system

Applying the framework introduced in the previous section, we

now study as an example an infectious-disease dynamics described

by a simple model with only two compartments, corresponding to

a ‘‘susceptible’’ and an ‘‘infected’’ state, respectively, with hosts

becoming susceptible again after recovery from infection (a so-

called SIS-model). Following the steps outlined in the preceding

subsection, we show explicitly how to calculate the invasion

indicator and express it in terms of the ingredients of the model.

Host dynamics. Each patch has a carrying capacity K and a

maximum occupancy kwK . The patch state is described by a

single compartment for the number of susceptible hosts; according

to Eq. 1, there are, therefore, kz1 possible patch states.

Consequently, the state of the metapopulation is described by a

kz1-vector p with components p(x) that specify the fractions of

patches containing exactly x individuals, along with a scalar d that

specifies the number of individuals per patch in the disperser pool.

As discussed before, we can use the patch-state vector x as the

subscript of p; to avoid any mix-ups with subscripts based on the

consecutive numbering of patch states, we enclose the x in

parentheses.

Patch states change through births, deaths, and migrations. The

birth rate bx in a patch is logistically density dependent,

bx~maxf0,r(1{x=K)g, with r denoting the intrinsic birth rate.

We denote the per capita death rate by m, the per capita

emigration rate to the disperser pool by mout, and the patch-

encounter rate in the disperser pool by e. Hosts always enter a

patch, unless the patch is already filled to capacity. The

metapopulation dynamics (Eqs. 2) of the host is thus given by

_pp(x)~{p(x)½x(bxzmzmout)zed�zp(xz1)(xz1)(mzmout)

zpx{1½(x{1)bx{1zed�,
ð15aÞ

_dd~mout

Xk

x~0

xp(x){ed
Xk{1

x~0

px{md: ð15bÞ

Eq. 14a formally assumes p(x)~0 for xv0 or xwk, and can also

be written in the matrix-vector form of Eq. 2a. As a concrete

example for k~3, Eqs. 14 become

_pp(0)

_pp(1)

_pp(2)

_pp(3)

0
BBB@

1
CCCA~

{ed mzmout 0 0

ed {b1{m{mout{ed 2(mzmout) 0

0 b1zed {2(b2zmzmout){ed 3(mzmout)

0 0 2b2zed {3(mzmout){ed

0
BBB@

1
CCCA

p(0)

p(1)

p(2)

p(3)

0
BBB@

1
CCCA,ð16aÞ

_dd~mout(p(1)z2p(2)z3p(3)){ed(p(0)zp(1)zp(2)){md: ð16bÞ

Host invasion: viability. To determine the conditions under

which the host population is viable, we calculate its viability

indicator Rm,V, which equals the single element of the 1|1-matrix

R of the infection-free dynamics. Since u~k of the kz1 possible

patch states contain at least one host individual, the immigration

matrix S~YE is a k|1-matrix. By the assumption of rarity, a

host with certainty invades an empty patch and turns it into a

patch containing exactly one host, Y~(1,0, . . . ,0)T . E is a 1|1-

matrix with the patch encounter rate e as its single element.

For the calculation of the k|k-matrix T, Eqs. 7, together with

Eq. 14a, yield

_~pp~pp(x)~{~pp(x)x(bxzmzmout)z~pp(xz1)(xz1)(mzmout)

zpx{1(x{1)bx{1,
ð17Þ

for x~1, . . . ,k, with ~pp(0)~p̂p(0)~1, and, again, formally ~pp(kz1)~0.

These equations can be rewritten in the matrix-vector form of Eq.

7, whence we can extract the k|k-matrix ~BB required for the

calculation of T via Eq. 10. For k~3, we thus obtain

~BB~

{(b1zmzmout) 2(mzmout) 0

b {2(b2zmzmout) 3(mzmout)

0 2b2 {3(mzmout)

0
B@

1
CA:ð18Þ

As for calculation of the emigration matrix U~MoutG, the

number of hosts in each invader patch state is given by the 1|k-

matrix G with g1i~i, so that G~(1, . . . ,k). The 1|1-matrix

Mout of emigration rates has as its single element the host

emigration rate mout.

Finally, the 1|1-matrix V of total sojourn times in the disperser

pool has the single element v~1=(minzm), with min~e (because

all patches are empty, and thus
X

xƒk
p̂p(x)~p̂p(0)~1), gleaned

from the disperser-pool dynamics in Eq. 14b. We can now

multiply all these matrices according to Eqs. 3, using Eq. 10, to

obtain the viability indicator,

Rm,V~{ld(VmoutG~BB{1Ye), ð19Þ

which, in our example with k~3, yields

Rm,V~
moute

mze
(1 2 3)

1

mzmout

1

mzmout

1

mzmout

b1

2(mzmout)
2

b1zmzmout

2(mzmout)
2

b1zmzmout

2(mzmout)
2

b1b2

3(mzmout)
3

(b1zmzmout)b2

3(mzmout)
3

(mzmout)
2z(b1zmzmout)b2

3(mzmout)
3

0
BBBBBBBBB@

1
CCCCCCCCCA

1

0

0

0
BB@

1
CCA,

ð20aÞ

and thus

Rm,V~
emout(mzmout)

2zb1(mzmoutzb2)

(mz2)(mzmout)
2

: ð20bÞ

The explicit expression now available for Rm,V through Eq. 19b,

enables the easy numerical analysis of host viability. An example of

such a study is illustrated in Fig. 2, where the influence of the

intrinsic birth rate, emigration rate, and patch-encounter rate, on

the viability indicator is shown by fixing one of these parameters to

a default value and varying the other two. For this purpose, time is

rescaled so that the death rate equals 1, m~1, meaning that all

parameters involving the unit of time are expressed relative to the

lifespan 1=m of the host, where m denotes the un-scaled death rate.

ð16aÞ

ð20aÞ
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Furthermore, we arbitrarily set the carrying capacity to K~10,

because we are interested in the dynamics of small populations.

The default patch-encounter rate is chosen such that individuals

do not spend a long time in the disperser pool, and no dynamics

occur in this pool except deaths. The default emigration rate is

chosen so as to describe hosts migrating on average twice during

their lifetime. The default intrinsic birth rate is chosen such that

each host gives on average birth to three other hosts.

Only for Rm,Vw1, the infection-free host population is viable.

For model parameters fulfilling this condition, we determine the

interior equilibrium (p̂p,d̂d) of the infection-free host population as a

stationary solution of Eqs. 13, using the numerical scheme

described in Appendix S1. On this basis, we can proceed with

studying the invasion of the infectious agent.

Infection dynamics. In addition to the compartment

representing susceptible hosts, we now introduce a second

compartment (n~2) that represents infected, and in our case

also infectious, hosts (m~1). According to Eq. 1, this results in

n~(kz1)(kz2)=2 different patch states, of which n’~kz1
contain no infected hosts, and u~k(kz1)=2 contain at least one

infected host. Thus, each patch state can be described by a 2-

vector, x~(x1,x2), where x1 represents the number of susceptible

hosts and x2 the number of infected hosts. Likewise, the disperser-

pool state is now given by a 2-vector, d~(d1,d2).

Hosts are born susceptible, and when they recover from the

infectious disease, they are immediately susceptible again. The

state of the metapopulation is now described by the fractions

p(x1,x2) of patches containing exactly x1 susceptible and x2 infected

hosts. Patches are assumed to be small, so that individuals are

saturated in the amount of contacts they have, and the fraction of

encounters of a given infected host with a susceptible host thus

equals the fraction of susceptible hosts in the patch. We denote the

within-patch contact rate by c, the transmission probability upon

contact by b, and the recovery rate by c. The infection is

furthermore assumed to be demographically neutral, in the sense

that the migration rates and the mortality of infected individuals

are the same as those of susceptible individuals. The corresponding

equations for the patch fractions are then

_pp(x1,x2)~{p(x1,x2)½(x1zx2)(bx1zx2
zm)zmoutx1zmind1

zx2(cb
x1

x1zx2
zczmout)zed2�

zp(x1z1,x2)(x1z1)(mzmout)

zp(x1,x2z1)(x2z1)(mzmout)

zp(x1z1,x2{1)cb
(x1z1)(x2{1)

x1zx2

zp(x1{1,x2z1)(x2z1)c

zp(x1{1,x2)½(x1{1zx2)bx1{1zx2
zed1�

zp(x1,x2{1)ed2,

ð21aÞ

where we again formally assume p(x1,x2)~0 for x1v0, x2v0, or

x1zx2wk. The disperser-pool dynamics are now given by

_dd1~mout

X
x1zx2ƒk

x1p(x1,x2){ed1

X
x1zx2vk

p(x1,x2){md1, ð21bÞ

_dd2~mout

X
x1zx2ƒk

x2p(x1,x2){ed2

X
x1zx2vk

p(x1,x2){md2: ð21cÞ

At the onset of infection invasion, dispersing infected hosts are so

diluted by uninfected hosts that contacts among the former can be

neglected.

Infection invasion: endemicity. Based on the interior

equilibrium of the infection-free host population, (p̂p,d̂d), and the

metapopulation dynamics specified in Eqs. 20, we can calculate

the invasion indicator Rm,E.

As before, the matrix E of patch encounter rates has as its single

element e. The distribution matrix Y is now a k(kz1)=2|1-

matrix with components y(x1,1)~p̂px1
and y(x1,x2)~0 for x2w1 in

its single column. For the calculation of the matrix T of expected

total sojourn times in the patches from Eq. 10, we construct ~BB
from the reduced Eqs. 20a,

_pp(x1,x2)~{p(x1,x2)½(x1zx2)(bx1zx2
zmzmout)

zmind̂d1zx2(cb
x1

x1zx2
)zc�

zp(x1z1,x2)(x1z1)(mzmout)

zp(x1,x2z1)(x2z1)(mzmout)

zp(x1z1,x2{1)cb
(x1z1)(x2{1)

x1zx2

zp(x1{1,x2z1)(x2z1)c

zp(x1{1,x2)½(x1{1zx2)bx1{1zx2

zmind̂d1�,

ð22Þ

Figure 2. Illustration of an analysis of the viability indicator
Rm,V. The indicator is shown as a function of (a) emigration rate and
intrinsic birth rate, (b) patch encounter rate and intrinsic birth rate, and
(c) emigration rate and patch encounter rate. Parameter regions in
which the uninfected host population is viable (Rm,Vw1) are
highlighted by shading, while regions in which it goes extinct are
marked by a cross ({). Other parameters: K~10, m~1, r~3, mout~2,
and e~200.
doi:10.1371/journal.pone.0024006.g002
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where we again formally assume ~pp(x,0)~p̂p(x) and ~pp(x1,x2)~0 for

x1v0 or x1zx2wk (x2 is always positive). The collection matrix

G describes the number of infected individuals per infection-

related patch state and thus contains a single row with components

g(x1,x2)~x2. The matrix Mout of emigration rates has as its single

element mout. The matrix V of total sojourn times in the disperser

pool likewise again has a single element v~1=(minzm), with

min~e
X

xvk
p̂p(x).

Finally, although we have no particular biological interest in our

example, other than using it as such, we note that one can explore,

using these results, the influence of all model parameters (intrinsic

birth rate, transmission rate, recovery rate, and emigration rate) on

the endemicity indicator Rm,E can easily be explored. We illustrate

this with the set of two-parameter plots shown in Fig. 3.

Discussion

In this paper, we have reinterpreted the invasion indicator for a

mutant in a metapopulation, introduced by Metz and Gyllenberg

[33] and Gyllenberg and Metz [34] in evolutionary biology, as an

invasion indicator in infectious-disease dynamics. Explicitly

accounting for host migration between the patches of a

fragmented host population, we have used this approach to

investigate the viability of uninfected host metapopulations, as well

as to analyze the invasion and possible endemicity of an infectious

agent in such metapopulations. Describing the life-history stages

and the infection-related stages of hosts using a general

compartment model, our framework is applicable to a very wide

range of disease models. As an example, we have demonstrated

how to use our framework for studying the invasion and

endemicity of a disease in a simple SIS-model.

The basic idea of invasion analysis is that to assess the long-term

chance of success of a particular type of individual or infectious

agent trying to invade a given environment, it suffices to determine

its fitness, or basic reproduction ratio, in this environment while

the considered type is still rare, and its effect on that environment

thus still is negligible. An important assumption underlying this

invasion indicator for infectious agents is that the host population

is at equilibrium when the infectious agent tries to invade it. This is

often a reasonable assumption. But it is also possible that a small

host population settles in a new habitat without taking any

infectious agents along [38]. Then, when shortly after this host

invasion an infectious agent is introduced, the host population is

not at equilibrium yet. Instead, we may expect the host population

to be overall smaller, with more empty patches and smaller

populations in the occupied patches, thus making it less easy for

the disease to invade. If such is indeed the case, Rmv1 will still

preclude invasion, whereas for Rmw1 the disease may have to

bide some time before its invasion becomes feasible. In this sense,

the invasion indicator introduced here is conservative. Under

special circumstances, it is possible, however, that invasion cannot

occur at equilibrium, Rmv1, even though it may occur during a

phase of host expansion. For example, the infectious agent may

target mainly young hosts, of which there may be relatively more

Figure 3. Illustration of an analysis of the endemicity indicator Rm,E. In each panel, the indicator is shown as a function of two parameters.
Parameter regions in which the disease can become endemic (Rm,Ew1) are highlighted by shading. For intrinsic birth rates rv1:6 and emigration
rates moutv0:2, the uninfected host population is not viable (Fig. 2); the corresponding parameter regions are marked by a cross ({). Other
parameters: K~10, m~1, r~3, mout~2, e~200, b~50, and c~10.
doi:10.1371/journal.pone.0024006.g003
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during the build-up of a host population. Yet, even in this case

Rmv1 would normally imply that the infectious agent cannot

remain endemic once the host population has equilibrated.

In a large class of compartmental systems with susceptible

replenishment, R0w1 implies persistence, and thus endemicity.

Nevertheless, there exist exceptional models in which the

infection-free equilibrium is locally stable (R0v1), and yet coexists

with a stable interior equilibrium does not imply persistence and

endemicity in the mathematical sense, but may do so in an

intuitive biological sense. Such cases are rare in epidemiology, and

appear to occur basically only in models in which behavioral

changes play an important role. We therefore expect that for

reasonable assumptions about susceptible replenishment (such as

the absence of Allee effects), and without infection-related

behavioral changes or complicated effects of the immune system,

endemicity occurs in metapopulations if and only if Rm,Ew1 (with

endemicity formally defined as the existence of at least one interior

attractor). In any case, in practice Rm,Ew1 more often than not

will serve as a sufficient condition for endemicity. While in

principle more severe measures than suggested by the objective

Rm,Ev1 may be necessary to eradicate a disease, the invasion

indicator introduced in this study can always be used to assess

whether proposed measures have no chance of success.

A metapopulation is characterized by, among other features, the

considered patch network and its connectivity structure. Here, we

examined the case in which all patches are equally connected to

each other. One may question the realism of this assumption, since

in reality our implicit spatial structure is replaced by an explicit

spatial arrangement of the patches making up the metapopulation,

with some patches being farther away from a given patch than

others, and thus perhaps less-well visited by individuals emigrating

from that given patch. Of course, the assumption of equal

connectedness is an idealization, just as the assumption of a well-

mixed population underlying many, if not most, models of single

populations (also adopted here to describe the mixing of

individuals within each patch). In fact, the assumption of a well-

mixed population underlies the definition and calculation of R0,

and if we think of patches as individuals that mix, then equal

connectedness is the natural translation of having a well-mixed

situation at the metapopulation level. The biology of the systems

one studies, and the precise questions one studies, will dictate

whether such simplifying assumptions are permissible. We agree

that metapopulation structures in which each patch is connected

to only a handful of neighboring patches may offer a more

accurate description of realistic scenarios and lead to qualitatively

different behavior than described here. This is because different

spatial arrangements tend to result in differences in the spread of

an infection, which in turn affects, for example, which control

measures are best being taken [21,22]. Also the rate of spread is

influenced by such connectivity [39]. The presence of hub patches

in a network, which are highly connected compared to other

patches, can also have a profound influence on an infection’s

spread and persistence, and removing such patches can substan-

tially reduce an infection’s basic reproduction ratio [40,41]. In

conclusion, we can interpret the simplifying connectivity assump-

tion made in this study as a limit that will not always be accurate,

but offers a natural and generic baseline that is approached quickly

when dispersal occurs beyond a patch’s immediate spatial

neighborhood. In our assessment, the latter applies more often

than not.

The assumption of identical patches is made for exposition

purposes only. Our approach also works well when a discrete

number of different patch types are distinguished. Such types

could capture, for example, classes of patch size or patch quality.

While one then needs to calculate equilibrium distributions of

individuals over the different patch types, the key assumption that

the dispersal pool is common among patch types ensures the

applicability of our framework [35].

All networks discussed so far comprise habitat patches and

connections that remain fixed in time. Yet, habitat structures can

change: for example, the degree of fragmentation may increase as

a result of human land use involving the building of roads [42], the

invasion of a predator [43], or by infestation [44]. Habitat

fragmentation and land use have been shown to strongly affect the

spread and persistence of infectious diseases. This applies

especially to vector-borne diseases and to infections carried by

small rodents (e.g., [45,46]).

In our model, emigrating individuals move through a disperser

pool before immigrating into a patch. This pool is not only a

bookkeeping device; instead, its introduction allows to study the

ecological effects of migration on individuals, such as time lost for

reproduction and dispersal mortality resulting from increased

vulnerability [47]. While the SIS-model studied as an example

did, for the sake of simplicity, not feature such effects, the

framework introduced here readily provides for such additions; the

appropriate terms just need to be incorporated into the dynamical

equations. Moreover, the time spent in the disperser pool can

easily be adjusted, so that it reflects the time a host needs to find a

new patch. While our method allows for changes of infection state

during an individual’s stay in the dispersal pool, for most real

systems the average stay will be short compared to the average

length of, e.g., the latency or infectious period. Therefore, state

changes in the disperser pool may well be negligible in many

practical applications.

We also assumed, for convenience, a one-to-one match between

the life-history stages occurring in the patches and in the dispersal

pool. However, our framework applies in an exactly similar

manner when there is no such match, simply by considering the

union of those two sets of stages. This occurs, for example, when

pathogens move between patches independently of their hosts, as

is typical for fungal plant diseases that spread only through seeds

and spores. Likewise, in vector-borne infections of animals, it may

be the vector that spreads, rather than the host, or vector and host

may spread independently. While we have formulated our theory

for situations in which host and vector spread together (as in, for

example, tick-borne or flea-borne infections), it readily carries over

to all such situations. The important point is to specify which types

of individuals are involved in the migration between patches and

to set up the modeled compartment structure accordingly.

Our framework describes immigration from the disperser pool

into the patches through a matrix of expected rates at which

individuals of certain types in the disperser pool create patches in

certain states. To discuss the construction of such a matrix, we

have offered a decomposition of this matrix into a matrix of patch-

encounter rates, which we assume to depend only on type and

nothing else (although this assumption is not the only one that

could be made), and a matrix of probabilities that the patch

encountered has a given state, and hence will have its state

augmented through immigrating by one invading individual in a

given state. We have also sketched how to include, e.g., a

mechanism of active patch selection by migrants. However, such

models with conditional dispersal quickly become too complex and

parameter-rich, and thus had better be avoided in first

explorations.

Similar to immigration, we have described emigration from the

patches into the disperser pool through a matrix of expected rates

at which patches in certain states release individuals of certain

types into the disperser pool. While we have discussed the
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construction of this matrix with the help of a plausible

decomposition, this could be done in a different and more

complex way. In particular, one could choose to include per capita

emigration rates that depend on a patch’s state. In such cases, the

possible effects on sojourn times in the patches can be considered

analogously to how we considered the possible effects of

conditional immigration on sojourn times in the disperser pool.

As in the case of R0 for well-mixed populations, there is an

important distinction between deterministic and stochastic assess-

ments of invasion success. When the number of individuals is

large, chance effects resulting from fluctuations in their number or

distribution will be averaged out. In contrast, if the population size

is relatively small, one can only say that R0w1 implies a positive

probability that a major outbreak occurs [1]. In the case of

metapopulations, analogous arguments apply with regard to the

number of patches. This is why we have assumed a large number

of patches, which implies deterministic dynamics at the metapop-

ulation level, despite the fact that within each patch dynamics are

stochastic.

Being able to determine whether an infectious agent can invade

a metapopulation is useful for many purposes, the most important

of which is the evaluation of eradication strategies. Despite the

underlying simplifying assumptions, such as the large (infinite)

number of patches and their equal connectivity, the invasion

indicator Rm,E can give valuable insights into the invasion

potential of an infectious agent. In this study, we have shown

this with regard to the simplest, and hence most parameter-sparse,

model for infectious-disease dynamics, given by an SIS-model. As

the method we have developed here is much more general, as

explained in the paragraphs above, it opens up the possibility to

study many more realistic scenarios of infectious-disease invasion

and persistence in a similar manner.
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