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Abstract. In this paper we study the interpretations of a weak arithmetic,

like Buss’ theory S1
2, in a given theory U . We call these interpretations the

arithmetics of U . We develop the basics of the structure of the arithmetics of

U . We study the provability logic(s) of U from the standpoint of the framework

of the arithmetics of U . Finally, we provide a deeper study of the arithmetics
of a finitely axiomatized sequential theory.
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1. Introduction

In this paper, we propose and expose a particular way of viewing theories. We
look at theories as a class of interpretations of a given weak arithmetical theory.
Consider a theory U . We view the interpretations of the given weak arithmetical
theory in U as ‘occurrences’ of that given theory in U . Thus, U appears as a class
of copies of the given weak theory. If we consider a model M of U , the versions of
the weak theory sitting inside U take the form of the set of internal models of the
weak theory in M.

We will call an interpretation N of the given weak theory in U an arithmetic of
U . The arithmetics of U have a natural ordering, the (definable) initial embedding
ordering �. We study basic facts concerning the arithmetics of U and the ordering
� in Section 3.

From the perspective of theories as containers of (possibly) lots of arithmetics, we
study the provability logics of theories. We fully characterize the propositional
modal principles for provability that hold in all arithmetics in any theory U . The
only assumption being a constraint on the complexity of the set of axioms of U . The
comparatively easy success of this characterization contrasts with the remaining
great open questions of provability logic concerning the provability logics of theories
like S1

2 or I∆0 + Ω1.

Section 4 briefly reviews some basic ideas concerning provability logic.

In Section 5, we study Solovay’s Theorem in various settings. In Subsections 5.1,
5.2, 5.3, and 5.4, we present a proof of Solovay’s Completeness Theorem for Löb’s
Logic via a wonderful version of the proof given by Dick de Jongh, Marc Jumelet
and Franco Montagna. The main part of the proof is itself formulated in a richer
modal logic which was formulated and studied by David Guaspari and Robert
Solovay. The advantage of the de Jongh, Jumelet, Montagna proof is that it allows
us to see clearly what arithmetical principles are involved in Solovay’s proof. In
Subection 5.5 we prove our characterization of the provability logic of all arithmetics
of a given theory. In Subsection 5.6, we give a sufficient condition for when the
provability logic of all theories is assumed at a single arithmetic N in U .

In Section 7, we provide an example of a theory U where the provability logic of U
is not assumed at any arithmetic N in U .

In Section 6 we study the wondrous world of the arithmetics of a finitely axiomatized
sequential theory U . In the sequential case we have many extra properties of our
structure of arithmetics to work with. In this section we strengthen certain results
due to Harvey Friedman and, indepently, to Jan Kraj́ıček. We use the methods of
Section 6 to construct the example of Section 7.

The reader interested in Provability Logic could very well choose to read Sections
2,3,4,5. The reader who is interested in the fine structure of the arithmetics of a
theory could study Sections 2,3,6,(7). More details on the basics are provided in
Appendix A.

About this Paper. The present paper is, in a sense, a remake of my paper
[Vis91a]. It is the result of my reflection on what the earlier paper is saying.
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We strengthen the results of that paper by presenting them in a better framework
and we add new results relevant to the framework.

Prerequisites. We will presuppose some knowledge of weak arithmetics. See e.g.
[Bus86] or [HP91, chapter V]. Some basic knowledge of provability logic will help
to understand the paper. At present there are many expositions: [Smo85b], [BS91],
[Boo93], [Lin96], [JdJ98], [Šve00], [AB04]. The most comprehensive source con-
cerning the provability logic of weak theories is [Ver93].

2. Basics

In this section we sketch the framework in which our discussion will take place.
One problem of sections with basic notions and facts is that they are so long and
so boring that the reader gets stuck in them and never arrives at the real stuff. So
what I did is to make the present section rather sketchy. At the end of the paper,
in Appendix A more details are provided. Regrettably, even without the details
this section is rather long, so the reader is advised to go over it lightly and come
back to it or Appendix A when needed.

2.1. Theories. Theories are, in this paper, one-sorted theories of first-order pred-
icate logic, that have a finite signature and that are axiomatized by an axiom set
that is represented by a ∆b

1-formula.1

Remark 2.1. The demand for ∆b
1-axiomatization seems to be rather restrictive.

However, it seems to me,that every real-life theory is given by an axiomatization
that is p-time decidable.

Because in S1
2, we have the Σb

1-replacement axiom, we can relax our demand to the
consideration of theories which are Σb

1-axiomatized. In this case, the witnesses of
2UA would not be really a code of a proof but a somewhat modified object.

Note that, by a version of Craig’s trick, every RE theory in extension can be given
a ∆b

1-axiomatization. Of course, a weak theory will not be able to see that both
axiomatizations prove the same theorems, so for the eyes of the weak theory the
craigified theory will be a different theory. We need a theory like EA, aka I∆0 +exp,
plus Σ1-replacement to make this construction work in a verifiable way.

The formula specifying the axiom set is part of the data for the theory. Thus, we
treat theories intensionally and not as mere sets of theorems. We will explain why
this is important for our purposes in Section 4.

We say that a theory is finitely axiomatized if its axiomatization has the form∨
i<n x = pAiq.2 Note that S1

2 may prove that a theory has an axiom-set of, say,
less than two axioms, without being able to prove the equivalence of the formula
defining the axiom set with any formula of the prescribed form.

1See [Bus86] or [HP91] for an explanation of the relevant formula classes.
2The function p·q sends a syntactical object to its Gödel number. The function (·) sends a

number to its numeral. We will employ efficient numerals that reflect binary notation.
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We take identity to be a logical constant. Our official signatures are relational,
however, via the term-unwinding algorithm, we can also accommodate signatures
with functions.

2.2. Translations and Interpretations. The notion of interpretation that we
will employ in this paper will be m-dimensional interpretation without parameters.
There are two extensions of this notion: we can consider piecewise interpretations
and we can add parameters. We refrain from considering piecewise interpretations.
We explain why in Subsection A.3 of Appendix A. We sketch a few basic ingredients
of adding parameters in Subsection A.4 of Appendix A. We explain why, in the
sequential case, addition of parameters makes no difference for the provability logic
of all arithmetics of a given theory in Remark 3.9.

Consider two signatures Σ and Θ. An m-dimensional translation τ : Σ → Θ is a
quadruple 〈Σ, δ,F ,Θ〉, where δ(v0, . . . , vm−1) is a Θ-formula and where for any n-
ary predicate P of Σ, F(P ) is a formula A(~v0, . . . , ~vn−1) in the language of signature
Θ, where ~vi = vi0, . . . , vi(m−1). Both in the case of δ and A all free variables are
among the variables shown. Moreover, if i 6= j or k 6= `, then vik is syntactically
different from vj`.

We demand that we have ` F(P )(~v0, . . . , ~vn−1)→
∧
i<n δ(~vi). Here ` is provability

in predicate logic. This demand is inessential, but it is convenient to have.

We define Bτ as follows:

• (P (x0, . . . , xn−1))τ := F(P )(~x0, . . . , ~xn−1).

• (·)τ commutes with the propositional connectives.

• (∀xA)τ := ∀~x (δ(~x)→ Aτ ).

• (∃xA)τ := ∃~x (δ(~x) ∧Aτ ).

We allow identity to be translated to a formula that is not identity. We can define
the identity translation idΣ on Σ, the composition ρ◦ τ of translations τ and ρ, and
the disjunctive translation τ〈A〉ρ, that is τ if A and ρ if ¬A. We refer the reader
to Appendix A for details.

A translation relates signatures; an interpretation relates theories. An interpreta-
tion K : U → V is a triple 〈U, τ, V 〉, where U and V are theories and τ : ΣU → ΣV .
We demand: for all axioms A of U , we have V ` Aτ .

In the context of the formalization of interpretability, we have to distinguish be-
tween axioms-interpretability, which is the notion we just introduced and theorems-
interpretability, where we demand that: for all theorems A of U , we have V ` Aτ . In
the real world these notions are equivalent, but we need a principle like Σ1-collection
to prove that, so, for example Buss’ theory S1

2 does not ‘know’ this equivalence. See
[Vis91b] for more information about this matter.

Here are some further definitions and conventions.

• Suppose K : U → V . We often write AK for AτK , in the context of a
theory W that extends V .
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• We write U for the set of theorems of U . Suppose K : U → V . We write
K := {A | V ` AK}. We note that U ⊆ K. If K = U , we will say that K
is faithful.

• IDU : U → U is the interpretation 〈U, idΣU , U〉.

• Suppose U ⊆ V . Then, EUV : U → V is 〈U, idΣU , V 〉.

• Suppose K : U → V and M : V → W . Then, KM := M ◦K : U → W is
〈U, τM ◦ τK ,W 〉.

• Suppose K : W → U and U ⊆ V . We write K ↑ V for EUV ◦K.

• Suppose M : V → Z and U ⊆ V . We write U ↓M for M ◦ EUV .

• Suppose K : U → (V +A) and M : U → (V +¬A). Then K〈A〉M : U → V
is the interpretation 〈U, τK〈A〉τM , V 〉. In an appropriate category K〈A〉M
is a special case of a product.

The notation K : U → V is inspired by the idea of interpretations as arrows
in a category. There is also an intuition of interpretability as a generalization of
provability. The traditional notations and notions associated to this intuition are:

• K : U � V stands for K : U → V .

• K : V � U stands for K : U → V .

• U � V stands for ∃K K : U � V . We say: U is interpretable in V .

• V � U stands for ∃K K : V � U . We say: V interprets U .

• U �loc V means: all finitely axiomatized subtheories U0 of U are inter-
pretable in V . We say that U is locally interpretable in V .

• U �mod V means that, for every M |= V , there is a translation τ such that
τ(M) |= U . We say that U is model-interpretable in V .

2.3. i-morphisms. Consider an interpretation K : U → V . We can view this
interpretation as a uniform way of constructing internal models τK(M) of U from
modelsM of V . This construction gives us the contravariant model functor as soon
as we have defined an appropriate category of interpretations.

Now consider two interpretations K,M : U → V . Between the inner models τK(M)
and τM (M) we have the usual structural morphisms of models. We are interested
in the case where these morphisms are V -definable and uniform over models. This
idea leads to the notion of i-morphism. An i-morphism F : K → M is a triple
〈K,F (~u,~v),M〉, where F (~u,~v) is a V -formula and where in all models of V , F
represents a morphism of models from τK(M) to τM (M).

Two i-morphisms F,G : K →M are i-equal, when:

V ` ∀~u,~v (F (~u,~v)↔ G(~u,~v)).

We will think about i-morphisms modulo i-equality without dividing this equiva-
lence relation out.

In the obvious way, we can define the identity i-morphism IdK : K → K, composi-
tion of i-morphisms, i-isomorphisms, etc. All these operations preserve i-equality.
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We easily see that i-isomorphisms really are isomorphisms in the category given by
these operations.

We will say that two interpretations K,M are i-equivalent when there is an i-
isomorphism between them, i.e. they are i-isomorphic. The notion of i-equivalence
is our intended notion of sameness of interpretations. We will, however, not divide
out i-equivalence. This enables us to use the notation τM meaningfully, to speak
about the dimension of an interpretation, etc. Of course, we demand that opera-
tions on interpretations preserve i-equivalence. One may show that operations like
identity, composition, (·)〈·〉(·) do indeed preserve i-equivalence. Moreover, if K is
i-equivalent to M , then K = M .

The category INT1 is the category of theories (as objects) and interpretations mod-
ulo i-equivalence (as arrows). One may show that we have indeed defined a category.
Two theories U and V are bi-interpretable if they are isomorphic in INT1. Wilfrid
Hodges calls this notion: homotopy. See [Hod93], p222.

Thus, U and V are bi-interpretable if there are interpretations K : U → V and
M : V → U , so that M ◦ K is i-isomorphic to IDU and K ◦ M is i-isomorphic
to IDV . We call the pair K,M a bi-interpretation between U and V . One can
show that the components of a bi-interpretation are faithful interpretations. Many
good properties of theories like finite axiomatizability, decidability, κ-categoricity
are preserved by bi-interpretations.

2.4. Sequential Theories. The sequential theories form an important class of
theories in this paper. A sequential theory provides an interpretation N of a weak
number theory, say S1

2, and sequences of all objects of the domain of the theories
with projections in N . We can use these sequences to develop partial satisfaction
predicates. Using these we can prove restricted consistency statements of U in U .
See Subsection 2.5 for more about this.

The notion of sequential theory has an very simple definition discovered by Pavel
Pudlák. We first need the definition of a very weak set theory. The theory Adjunc-
tive Set Theory or AS is a one-sorted theory with a binary relation ∈.

AS1 ` ∃x∀y y 6∈ x,

AS2 ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).

We note that we do not demand extensionality. E.g., in AS we could have lots of
‘empty sets’.

An interpretation is direct iff it is one-dimensional, unrelativised (i.e. it has the
trivial domain) and identity preserving (i.e. it translates identity to identity).

A theory U is sequential iff it directly interprets AS. By a substantial bootstrap, we
can define, in a sequential theory U , an interpretation N of a weak number theory,
sequences of all objects, etc.

For details see, e.g., [Pud83], [Pud85], [MPS90], [HP91], [Vis09] and [Vis10].

We can generalize the notion of sequentiality a bit to poly-sequentiality by re-
placing direct interpretation in the definition by its obvious generalization to the
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m-dimensional case. All results in this paper that we prove for sequential theories
also hold for poly-sequential theories.

2.5. Complexity and Satisfaction. Restricted provability plays an important
role in this paper. An n-proof is a proof from axioms with Gödel number smaller or
equal than n only involving formulas of complexity smaller or equal than n. To work
conveniently with this notion, a good complexity measure ρ is needed. This should
satisfy three conditions. (i) Eliminating terms in favour of a relational formulation
should raise the complexity only by a fixed standard number. (ii) Translation of a
formula via the translation corresponding to an interpretation K should raise the
complexity of the formula by a fixed standard number depending only on K. (iii)
The tower of exponents involved in cut-elimination should be of height linear in the
complexity of the formulas involved in the proof.

Such a good measure of complexity together with a verification of desideratum (iii)
—a form of nesting degree of quantifier alternations— is supplied in the work of
Philipp Gerhardy. See [Ger03] and [Ger05]. It is also provided by Samuel Buss in
his preliminary draft [Bus11]. Buss also proves that (iii) is fulfilled. We give some
details about these measures in Appendix A.

We will use proofU,n for the proof predicate where only U -axioms with Gödel num-
bers ≤ n are allowed and where the formulas occurring in the proof are in the
complexity class Γn of all formulas of complexity ≤ n. Similarly we use U `n A,
conn(U), 2U,mA, etc.

In sequential theories we can define partial satisfaction predicates for formulas with
complexity below n, for any n. The presence of these predicates has as a conse-
quence that for any sequential theory U and for any n, we can find an interpretation
N of a weak arithmetic like Buss’ S1

2 in U such that U ` conNn (U). See e.g. [Vis93]
for more details.

3. The Arithmetics of a Theory

There are many heuristic ways to look at interpretations. For example, an in-
terpretation is a uniform internal model construction. In the case of definitional
extensions an interpretation is an enrichment of the interpreting or target theory. In
this paper, we opt for a third heuristic: we view an interpretation as the interpreted
theory in the context of the interpreting theory.

We will say that an interpretation N : S1
2 → U is an arithmetic in U or an arith-

metic of U . The theory S1
2 is Buss’ theory of p-time computability. See [Bus86].

We stipulate we work with a version of S1
2 that is formulated in the language of

arithmetic with (the relational versions of) 0, S, + and ×.

Remark 3.1. In our definition of arithmetic we are both rewarded and punished
for having a strict typing regime om interpretations. The reward is that the target
theory or interpreting theory or context is part of the data for an arithmetic. So we
can speak about an arithmetic N without mentioning the context. The punishment
is that, e.g., an interpretation K : EA → U is not an arithmetic. The associated
arithmetic is S1

2 ↓ K. See also Remark A.1.
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There are several reasons for choosing S1
2. First it is a sequential theory. Secondly,

the usual metamathematics leading up to Gödel’s Incompleteness Theorems can
be formalized in S1

2 without the use of any extraneous tricks. Moreover it is a
reasonably weak choice among theories in which this can be done. Thirdly, S1

2 is
finitely axiomatizable. On the other hand the results of the present paper are rather
robust w.r.t. to different choices of the basic arithmetic. E.g., T1

2 or I∆0 +Ω1 would
have worked as well. (But often some extra care is needed for I∆0 + Ω1, since it is
not known whether this theory is finitely axiomatizable.)

The main structure between arithmetics that we will consider is the initial embed-
ding ordering �. Consider two arithmetics N and N ′ in U . An initial embedding
F : N → N ′ is an i-morphism satisfying the following additional property:

• U ` (F (~x0, ~y0) ∧ ~y1 <N ′ ~y0)→ ∃~x1 <N ~x0 F (~x1, ~y1).

We write N � N ′ for: there is an initial embedding 〈N,F,N ′〉 of N in N ′. We note
that � is preserved by i-equivalence. I.o.w., i-equivalence is a congruence relation
for the arithmetics of U with �. So, i-equivalence is a subrelation of the induced
equivalence relation of �.

We call N a cut of N ′ iff emb : N � N ′, where emb is the identical embedding.

The most salient fact about � is upwards preservation of Σ1-sentences and down-
ward preservation of Π1-sentences. We formulate this as a theorem.

Theorem 3.2. Suppose N and N ′ are arithmetics in U and N � N ′. Let S be
any Σ1-statement and let P be any Π1 statement. We have: U ` SN → SN

′
and

U ` PN ′ → PN .

We leave the trivial proof to the reader. Arithmetics commute in all the right ways
with bi-interpretations, as is shown in the next theorem.

Theorem 3.3. Suppose K : U → V and M : V → U are a bi-interpretation between
U and V . Then the mapping Φ : N 7→ NK is a bijection between the arithmetics
of U and the arithmetics of V modulo i-equivalence, that is an isomorphism w.r.t.
�. Moreover, Φ is an isomorphism w.r.t. � and N = Φ(N).

Proof. Let Ψ : N ′ 7→ N ′M be a mapping between the arithmetics of V and the
arithmetics of U . It is easy to see that Ψ is the inverse of Φ, modulo i-equivalence.
Clearly Φ and Ψ preserve �, so it easily follows that Φ is an isomorphism w.r.t. �.

Since the interpretations of an bi-interpretation are faithful, we find N = Φ(N). 2

Arithmetics of a sequential theory can always be assumed to be one-dimensional,
as is formulated in the following theorem.

Theorem 3.4. Suppose U is sequential and N is an arithmetic in U . Then there
is a 1-dimensional arithmetic M in U that is i-equivalent to N .3

3Similarly, if U is polysequential via an m-dimensional interpretation of AS, any arithmetic N
in U is i-equivalent to an m-dimensional arithmetic N .
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We leave the trivial proof to the reader.

A fundamental fact about the arithmetics of a sequential theory follows by Pavel
Pudlák’s adaptation of Dedekind’s proof of his Categoricity Theorem for second
order arithmetic.

Theorem 3.5 (Púdlak). Consider a sequential theory U . Let N0 and N1 be arith-
metics in U . Then, there is an arithmetic M in U such that M � N0 and M � N1.

For a proof see e.g. [Pud85].

In a sequential theory we have have a convenient reflection principle. We write Γn
for the class of all formulas of complexity ≤ n.

Theorem 3.6. Consider any sequential theory U and let N be an arithmetic in U .
For any n, we can find an arithmetic M � N such that, verifiably in S1

2, we have,
for all sentences A in Γn, that U ` 2M

U,nA→ A.

Sketch of the proof. The idea of the proof is that, in U , we can define a satisfaction
predicate for Γn, using the N -numbers, and prove Γn-reflection by replacing induc-
tion over proof-length by the use of a definable cut M of N . For details see the
proof of Fact 2.4.5(ii) of [Vis93]. In [Vis93] only verifiability of this fact in EA was
claimed. However, the big disjunctions and conjunctions of exponential size used
there are not needed, since for each proof p we only need the truth of the axioms
occurring in p. So the disjunctions we really need are polynomial in p. 2

As far as we can ascertain, this theorem was known (or versions of it were known),
at an early stage, to, independently, Pavel Pudlák, Robert Solovay, Alex Wilkie &
Jeff Paris and Harvey Friedman. The paper [Pud85] contains a version.

The previous theorem shows that, for any n, we can ‘improve’ a given N to obtain
n-reflection. In contrast, if U is finitely axiomatized, for any N , we can find an
n such that, for any m ≥ n, we have anti-m-reflection, i.o.w., a version of Löb’s
theorem for N and m. We first need Lemma 4.1. of [Vis93]. For the convenience
of the reader we reproduce it here.

Lemma 3.1. The following fact is verifiable in S2
1. Suppose A is any finitely

axiomatized theory, ρ(A) ≤ m, ρ(B) ≤ m and A ` B. Then, S1
2 ` 2A,mB.

We note that without the verifiability clause we could conclude A `m B from
A ` B. Since this step uses superexponentiation, it is not available in the context
of S1

2.

Proof. We can prove the lemma in two ways.

The first uses the insight of [Pud86, Lemma 2.2] that, in S1
2, we have, for all x and

y, that S1
2 ` itexp(x, |y|) exists. Here we define:

• itexp(x, 0) := x,

• itexp(x, z + 1) := 2itexp(x,z).
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Suppose A ` B. By ∃Σb
1-completeness, we find, for some p, S1

2 ` proofA(p,B). Since
we have, S1

2 ` itexp(kp, k′|p|) exists, for standard k, k′, we can apply cut-elimination
to p inside S1

2.

The second way is to note that, in S1
2 + conm(A + ¬B)), we can build a Henkin

interpretation H of A + ¬B. It follows that con(S1
2 + conm(A + ¬B)) implies

con(A+ ¬B). We find the desired result by contraposition. 2

Theorem 3.7. Suppose A is a finitely axiomatized sequential theory and that N is
an arithmetic in A. We can find an n, such that m ≥ n, we have, for all B ∈ Γm,
if A ` 2N

A,mB → B, then A ` B. This fact is verifiable in S1
2.

This theorem is a weaker version of Theorem 4.1 of [Vis93]. We sketch the proof
since it is easier to read without the ballast of the stronger version of [Vis93].

Proof. The proof is just the usual proof of Löb’s Theorem with some checks that all
the complexities are correct and one step involving Lemma 3.1 added. We choose:

n := max(ρ(provNA,y(z)) + 1, ρ(subN (x, y)) + 1, ρ(A)).

Here sub is the formula defining the Gödel substitution function. It follows that
n ≥ 2N

A,mB, for any B and m, since both B and n appear as numerals and, thus,
only add a non-alternating block of quantifiers.

Let C be Gödel fixed point with A ` C ↔ (2N
A,mC → B). The complexity of C is

again m as can be seen by inspecting the construction.

Note that e.g. ρ(provNA,y(z)) is polynomial in the data for N .

Suppose A ` 2N
A,mB → B. We have:

A ` 2N
A,mC → (2N

A,m2N
A,mC ∧2N

A,m(2N
A,mC → B))

→ 2A,mB

→ B

So, (a) A ` 2N
A,mC → B, and, hence, A ` C. By Lemma 3.1, we find that (b)

A ` 2N
A,mC. Combining (a) and (b), we may conclude that A ` B. 2

Theorem 3.8. Consider a theory U and an arithmetic N in U . Then, there is an
arithmetic N ′ � N and a U -formula TRUE such that, for Σ1-sentences S, we have
U ` TRUE(S)↔ SN

′
. (Here S is coded in N ′.)

Proof. We first work S1
2. Let sat(v) be a ∆0-satisfaction predicate for formulas with

just one designated variable v free. The main ingredients for the construction of
such a predicate can be found in [HP91, Chapter V(5)].4 We will use the following
two properties of sat: for D(v) in ∆0,

S1. S1
2 ` ∀x (sat(x,D(v))→ D(x)),

S2. S1
2 ` ∀x ((22x exists ∧D(x))→ sat(x,D(v))).

4The two classical works on this subject are [Les78] and [PD82].
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Let J be an S1
2-cut such that S1

2 ` x ∈ J → 22x exists. We suppose Σ1-sentences
are written in the form ∃xS0(x) where S0 is ∆0. (If not, we add an algorithm that
rewrites the Σ1-sentence to this normal form.) We define:

• true(∃xS0(x)) := ∃x ∈ J sat(x, S0(v)),

• N ′ := N ◦ J ,

• TRUE(x) := trueN (x).

We easily verify that TRUE has the desired property. 2

Inspection of the proof of Theorem 3.8 shows that we can obtain reasonable com-
mutation properties for TRUE in addition to mere Tarskian disquotation.

Remark 3.9. Suppose U is sequential. Let N be an arithmetic with parame-
ters in U . In a model M of U we can view N as a definable class of internal
models parametrized by models of U . Theorem 3.5 tells us how to construct an
parameter-free arithmetic below two parameter-free arithmetics. With some care
we can generalize the construction to produce one parameter-free arithmetic below
N viewed as a class of internal models. For details on such a construction, see
[Vis10], the second proof of Theorem 5.2. As a result of this observation, the prov-
ability logic of all parameter-free arithmetics of U is the same as the provability
logic of all arithmetics of U with parameters.

We end this section with a tentative discussion of what it means that � has a
minimal element.

Theorem 3.10. Consider any theory U . Suppose N is a �-minimal arithmetic in
U , i.e., for any arithmetic M in U with M � N , we have N �M . Then, we have:

i. For any Σ1-sentence S, and any M � N , that U ` SN → SM .

ii. U proves parameter-free Π1-induction for the N -numbers. In other words, we
have U ` (IΠ−1 )N . As a consequence, we have sentential Σ1-completeness in
N .

iii. We have a Σ1-truth predicate TRUE satisfying Tarskian disquotation for Σ1-
sentences on N .

Proof. We have (i) simply because if M � N , then M � N , and Σ1-sentences are
upwards preserved.

Ad (ii): As is easily seen parameter-free Π1-induction is equivalent to the parameter-
free Σ1-minimum principle (over PA−).5 We prove the parameter-free Σ1-minimum
principle for N . We reason in U . Suppose ∃x ∈ N S(x), where S is Σ1. Consider
the virtual class X := {x ∈ N | ∀y < x¬S(x)}. Clearly 0 ∈ X. If X is not closed
under successor, there is a z ∈ N such that z ∈ X and Sz 6∈ X. By elementary
reasoning we find that z is the minimal N -number such that Sz. If X is not closed
under successor, we can shorten X to a cut J that satisfies S1

2. Thus J is an
arithmetic below N . It follows that on J we have both ¬∃xSx and ∃xSx. A
contradiction.

5See [KPD88] and [CFL11] for details on IΠ−
1 .
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The theory IΠ−1 proves sentential Σ1-completeness since EA is conservative over
IΠ−1 w.r.t. Σ2-sentences as was proved in [KPD88].

Ad (iii): The existence of the desired truth-predicate is immediate from Theo-
rem 3.8. 2

Theorem 3.11. Consider any sequential theory U . Suppose N is a �-minimal
arithmetic in U . It follows that:

i. N is a �-minimum in U , i.o.w., for all arithmetics M in U , N �M .

ii. U is parameter-free essentially reflexive for N , i.e., for any n, and any sentence
B ∈ Γn, we have U ` 2N

U,nB → B.

iii. U is not finitely axiomatizable.

Proof. (i) is immediate by Theorem 3.5. (ii) follows from Theorem 3.6 in combina-
tion with Theorem 3.10(i). Claim (iii) is immediate from (ii) in combination with
Theorem 3.7. 2

Remark 3.12. Consider a sequential theory U and suppose that N is �-minimal
in U . It follows that the interpretability logic of U (for sentential substitutions),
w.r.t. arithmetization in N , is ILM. See [BV05] for most ingredients of the proof.

Open Question 3.13. Suppose U is sequential and has a �-minimal arithmetic
N . Can we get a precise estimate what this implies? E.g., can one show that we
do not get full induction for N? Is any M � N i-equivalent to N? Such questions
are both interesting in general and in the sequential case.

4. Introduction to Provability Logic

We start with the basics concerning Löb’s Logic GL. We define the language Lmod

of propositional modal logic by:

• α ::= p0 | p1 | . . .

• φ ::= α | ⊥ | > | ¬φ | 2φ | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ)

The logic GL is axiomatized by the following axioms and rules.

GL1. We have all substitution instances of propositional tautologies.

GL2. ` 2(φ→ ψ)→ (2φ→ 2ψ).

GL3. ` 2φ→ 22φ.

GL4. ` 2(2φ→ φ)→ 2φ.

GL5. If ` φ→ ψ and ` φ, then ` ψ.

GL6. If ` φ, then ` 2φ.

We have a completeness theorem for GL in finite, transitive, irreflexive Kripke
models.
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We define arithmetical interpretations of the modal language as follows. Let U
be a theory and let N be an arithmetic in U . We define an N -translation σ as a
mapping of the formulas of Lmod to the sentences of the language of U , where σ
commutes with the propositional connectives and where:

σ(2φ) := 2U (σ(φ))N := provU (p(σ(φ))Nq).

The variable ‘a’ will range over 0,1,. . . , ∞. We define:

• 20φ := φ, 2n+1φ := 22nφ, 2∞φ := >.

• φ ∈ prl(N) iff, for all N -translations σ, U ` σ(φ).

• φ ∈ prlall(U) iff, for all arithmetics N in U , φ ∈ prl(N).

• deg(N) := min({a | 2a⊥ ∈ prl(N)}).

• degall(U) := min({a | 2a⊥ ∈ prlall(U)}).

• In case U is an extension of S1
2 in the language of arithmetic, we write

prl(U) for prl(ES1
2 U

) and deg(U) for deg(ES1
2 U

).

We note that degall(U) := sup({deg(N) | N is an arithmetic in U}).

We have the following two major insights. Let exp be the axiom stating that
exponentation is total.

Theorem 4.1. Consider any theory U . Let N be an arithmetic in U . We have:

I. prl(N) extends GL (and is closed under the rules of GL).

II. If U ` expN , then prl(N) = GL + 2deg(N)⊥.

In essence the proof of (I) is given in [Bus86]. Most of the ideas are also in [WP87].
Robert Solovay proved (II) for theories like PA which are reasonably strong and
Σ1-sound. The extension to the case of Σ1-unsound theories extending PA was
proved in [Vis81]. The fact that EA was needed on the designated interpretation of
arithmetic slowly emerged. See [Ver93]. In Section 5 we give a sharper formulation
of Theorem 4.1(II).

The gap between (I) and (II) provides the great open problem of provability logic.
What happens in the gap? For an extensive discussion of this problem, see [BV06].

Is the provability logic of an arithmetic a good property of arithmetics? It should
at least be preserved under our chosen notion of sameness of arithmetics. We note
that, if N is i-equivalent to N ′, then S1

2 verifies this i-equivalence. It follows that:

Theorem 4.2. Consider any theory U and suppose that N and N ′ are arithmetics
in U and that N is i-equivalent to N ′. Then, for any N -translation σ and N ′-
translation σ′, we have: if σ(p) = σ′(p) for all atoms p, then, for all φ, we have
U ` σ(φ) ↔ σ′(φ). It follows that prl(N) = prl(N ′) and deg(N) = deg(N ′). We
have the same result on the weaker assumption that N � N ′ and N ′ � N .
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So, in this sense, the provability logic of an arithmetic is a good property. On
the other hand the provability logic of a theory-in-extension is dependent on the
specification of the axiom set. The provability logic of a theory is intensional.6

Example 4.3. Consider the theory U := PA + 2PA2PA⊥ with the obvious axiom-
atization. Clearly U ` 2U2U⊥. On the other hand, suppose U ` 2U⊥. Then,

PA + 2PA2PA⊥ ` 2PA+2PA2PA⊥⊥.
So,

PA + 2PA2PA⊥ ` 2PA¬2PA2PA⊥.
And, hence,

PA + 2PA2PA⊥ ` 2PA¬2PA⊥.
By applying the formalized Second Incompleteness Theorem to the conclusion, we
get: PA + 2PA2PA⊥ ` 2PA⊥. By Löb’s Theorem, we obtain PA ` 2PA⊥. Quod
non. So U 0 2U⊥.

Now we modify the formula defining U , thus obtaining the theory Ũ , by taking
something to be an axiom if it is an axiom of U or it is of the form p 6= p, where p
is a PA-proof of 2PA⊥. Clearly, U and Ũ are extensionally equal.

Clearly PA + 2PA2PA⊥ ` 2eU⊥, and, hence, Ũ ` 2eU⊥.

We conclude that degall(U) = deg(U) = 2 and degall(Ũ) = deg(Ũ) = 1.

We note that the arithmetics in our example are Σ1-unsound. It is unknown whether
we can find two extensionally equal theories V and V ′ and two arithmetics N :=
〈S1

2, τ, V 〉 and N ′ := 〈S1
2, τ, V

′〉 such that N and, a fortiori, N ′ are Σ1-sound that
give rise to different provability logics. In case V ` expN , where exp is the axiom
stating that exponentiation is total, we will see that prlall(U) = prl(N) = GL =
prl(N ′) = prlall(V ′). So any counterexamples for prl(N) and prl(N ′) should fail to
prove the totality of exponentiation for N and any counterexamples for prlall(V ) and
prlall(V ′) should not contain any Σ1-sound arithmetic M that proves the principle
expM .

Because of intensionality, provability logics and degrees need not to be preserved
by bi-interpretation. To get the appropriate notion of sameness that preserves
provability logics and degrees we consider bi-interpretability for S1

2-verifiable inter-
pretations.

• K : U � V is S1
2-verifiably an interpretation, if S1

2 ` ∀A (2VA→ 2UA
K).

We have chosen the formalized version of the theorems formulation of interpretabil-
ity. This is convenient but not really necessary. As Emil Jeřábek pointed out to me
Buss’ witnessing theorem implies that S1

2-verifiable axioms-interpretability implies
S1

2-verifiable theorems-interpretability.

Theorem 4.4. Suppose that K : U → V and M : V → U form a bi-interpretation.
Suppose further that both K and M are S1

2-verifiably interpretations. Let N be an
arithmetic in U . Then, K◦N is an arithmetic in V . We have: prl(K◦N) = prl(N).
It follows that prl(U) = prl(V ). Similarly for the deg.

6This fact is folklore. I learned it first from Sergei Artemov around 1984.
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Proof. We first note that (†) U proves, for some F that “F is an isomorphism
between IDU and M ◦ K”. It follows that S1

2 verifies the formalization of (†).
Similarly, for the isomorphism between IDV and K ◦M . Thus, we may conclude
that (†) S1

2 ` 2UA↔ 2VA
K , etcetera.

Suppose σ is an N -translation. We prove by induction on φ, that, for al φ, we have
V ` (σ(φ))K ↔ (K ◦ σ)(φ). The only interesting case is when φ = 2ψ. We have:

V ` (σ(2ψ))K ↔ (2N
U σ(ψ))K(1)

↔ 2K◦N
U σ(ψ)(2)

↔ 2K◦N
V (σ(ψ))K(3)

↔ 2K◦N
V (K ◦ σ)(ψ)(4)

We note that step (3) uses (†) and that step (4) uses the induction hypothesis.

Suppose that φ is in prl(K ◦ N), then, for any N -translation σ, we have V `
(K ◦ σ)(φ). Ergo, V ` σ(φ)K . Hence, U ` σ(φ). It follows that φ ∈ prl(N).

Conversely, suppose φ is in prl(N). Then, by Theorem 4.2, it follows that φ is in
prl(M ◦ K ◦ N). By the above argument applied with V and U and K and M
interchanged and with K ◦N in the role of N , we find: If φ is in prl(K ◦N), then
φ is in prl(M ◦K ◦N). Hence, if φ is in prl(K ◦N), then φ is in prl(N). 2

Thus, if U and V are bi-interpretable via S1
2-verifiable interpretations, then the

interpretations provide an isomorphism between their arithmetics that preserves �
and deg and prl.

5. Solovay’s Theorem

In this section, we study the forms that Solovay’s Theorem takes in various settings.

5.1. The Guaspari-Solovay System R−. In this subsection we give a careful
analysis of the proof of Solovay’s Theorem. We follow the modal presentation of
the proof due Dick de Jongh, Marc Jumelet and Franco Montagna in their paper
[dJJM91].

We introduce the logic R− of Guaspari and Solovay and some subsystems of this
logic. See [GS79]. The language of R− is given by:

• α ::= p0 | p1 | . . .

• φ ::= α | ⊥ | > | ¬φ | 2φ | (φ∧ φ) | (φ∨ φ) | (φ→ φ) | 2φ < 2φ | 2φ ≤ 2φ

The logic R− is axiomatized by the axioms and rules of GL (for the extended
language) plus the following axioms.

R−1. ` 2φ ≤ 2ψ → 2φ

R−2. ` (2φ ≤ 2ψ ∧2ψ ≤ 2χ)→ 2φ ≤ 2χ

R−3. ` 2φ < 2ψ ↔ (2φ ≤ 2ψ ∧ ¬2ψ ≤ 2φ)

R−4. ` 2φ→ (2φ ≤ 2ψ ∨2ψ ≤ 2φ)

R−5. ` 2φ ≤ 2ψ → 2(2φ ≤ 2ψ)
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R−6. ` 2φ < 2ψ → 2(2φ < 2ψ)

We can split Axiom R−4 into two parts that are jointly equivalent to R−4:

R−4a. ` 2φ ≤ 2φ→ (2φ ≤ 2ψ ∨2ψ ≤ 2φ)

R−4b. ` 2φ→ 2φ ≤ 2φ

We will consider two subsystems of R− to wit R−0 and R−1 . R−0 is given by by the
axioms and rules of GL (for the extended language) plus R−1, R−2, R−3, R−4a and
R−1 is R−0 plus R−4b, i.o.w., R−1 is given by R−1, R−2, R−3, R−4.

5.2. Arithmetical Interpretations of R−. Consider any arithmetical theory U
and any arithmetic N in U . We specify what it is to be an interpretation of the
language of R− for U,N .

We remind the reader of the witness comparison notation. We define, for any
C = ∃xC0(x) and D = ∃y D0(y):

• C ≤ D := ∃x (C0(x) ∧ ∀y < x¬D0(y)),

• C < D := ∃x (C0(x) ∧ ∀y ≤ x¬D0(y)),

• (C ≤ D)⊥ := (D < C).

We interpret the language of R− as follows. An N -translation σ sends the propo-
sitional variables to U -sentences, commutes with the propositional connectives and
satisfies:

• σ(2φ) = provNU (pσ(φ)q),

• σ(2φ ≤ 2ψ) = provNU (pσ(φ)q) ≤ provNU (pσ(ψ)q),

• σ(2φ < 2ψ) = provNU (pσ(φ)q) < provNU (pσ(ψ)q).

We assume that we are employing an ordinary single conclusion proof predicate. A
modal formula φ is N -valid if for all N -translations σ, we have U ` σ(φ).

It is easily seen that the theory R−0 is N -valid, for any N . The principles R−4b, on
the one hand, and R−5 and R−6, on the other, are not known to be N -valid. e.g.
in case N = IDS1

2
.

The principle R−4b is a modal articulation of a special case of the minimum-
principle. It tells us that if a certain sentence has a proof than it has a minimal
proof. Since the proof-predicate is ∆b

1(S1
2), a reasonable principle to ask for is the

Σb
1-minimum principle, i.e., Buss’ minimization axiom Σb

1-MIN. By the results of
[Bus86, Section 2.9], this principle is equivalent over S1

2 with Σb
1-induction, i.e.,

Buss’ principle Σb
1-IND. This means that a salient not-too-strong theory in which

we have R−4b is the theory T1
2. Thus, if U ` (T1

2)N , then R−1 is N -valid.

The principles R−5 and R−6 are instances of sentential ∃Πb
1-completeness. Is there a

natural theory extending T1
2 that is as weak as possible that delivers this principle?

Of course, B0 := T1
2 + {S → 2S1

2
S | S ∈ ∃Πb

1-sent} does the trick but this principle
involves coding. Let J := {x | 2x ↓}. We define:

B := T1
2 + {S ∈ ∃Πb

1-sent | S → SJ }.
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Since the proof of completeness for ∃Πb
1-sentences only needs one exponent, we find

B ` S → 2S1
2
S, for S a ∃Πb

1-sentence. So B extends B0.7 Thus, if U ` BN , then R−

is N -valid.

The two main theorems concerning provability logic of this paper, to wit Theo-
rems 5.5 and 5.9, will employ T1

2 to ensure the principle R−4b. In contrast, we will
not use B to obtain R−5 & R−6. This last theory is, in a sense, still too strong.
The theory T1

2 is interpretable in S1
2 on a cut, but B is locally but not globally

interpretable in S1
2. See Remark 5.1.

Remark 5.1. The two minimal salient theories in the literature in which we have
B0 are EA and IΠ−1

1 . Since IΠ−1
1 does not fit our framework, we will consider

IΠ−1
1 + Ω1 instead. The theory B is both a subtheory of EA and of IΠ−1

1 + Ω1. The
theories EA and IΠ−1

1 have the same BΣ1-consequences. See [KPD88] or [CFL11].

In [CFL11, Theorem 1.3(2)] it is shown that the BΣ1-consequences of IΠ−1
0 and,

hence, of EA can be axiomatized by the theory:

CFL := I∆0 + {S ∈ Σ1-sent | S → SJ }, 8

Clearly, CFL+Ω1 extends B. The theories IΠ−1
1 +Ω1 and, a fortiori, CFL+Ω1 and B

are locally interpretable in S1
2. The proof that IΠ−1

1 + Ω1 is locally interpretable in
S1

2 can be found in [Vis12]. Thus, they are locally weak. One can show that S1
2 does

not interpret B, so B is not a weak theory and, a fortiori, neither are CFL + Ω1 and
IΠ−1

1 + Ω1. To prove this one shows that B ` conn(S1
2), for every n. By the results

of [Pud85], S1
2 cannot interpret S1

2 + {conn(S1
2) | n ∈ ω}. See also e.g. [Vis11].

5.3. The Basic Proof. In this subsection we present the version of Solovay’s proof
that is due to de Jongh, Jumelet & Montagna.

Our first aim is to embed a finite Kripke frame for ordinary modal logic in the logic
R− extended with a finite set of constants and a finite set of axioms concerning
these constants. Via the arithmetical validity of our modal theory this embedding
subsequently induces an embedding in an arithmetic.

Let F be a finite, irreflexive, transitive Kripke frame on worlds {0, . . . , n− 1}. Our
frame need not be rooted.

We write i ‖ j for: i and j are incomparable, i.e., i 6� j and j 6� i.

For i = 0, . . . , n − 1, we add constants `i to the language of R−. Consider the
following axioms.

F1. ` `i ↔ (2¬ `i ∧
∧
j�i 3`j ∧

∧
j‖i

∨
k�i, k‖j 2¬ `k < 2¬ `j).

F2. For i 6= j, we have:
` 2¬ `i ≤ 2¬ `j → 2¬ `i < 2¬ `j .

7The theory B as defined here seems to suffice. However, I am not sure that a definition using
∃∗Πb

1-sentences is not more natural.
8It takes a little argument to prove the equivalence of our formulation of CFL and the formu-

lation in [CFL11]. For the definition it does not matter, modulo provable equivalence over T1
2,

whether the Σ1 sentences are written in the form ∃∆0 or ∃∗∆0. We may also consider sentences
in ∃∗∆0 and just relativize only the first of the block of existential quantifiers to J .
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We add these axioms to R−i and to R−, thus obtaining R−i,F and R−F . (Here we let
the axioms and rules of R−(i) apply to the extended language with the new axioms.)

We adhere to the usual convention that the empty conjunction is > and the empty
disjunction is ⊥.

The N -interpretation of these principles is given as follows. By the Multiple Fixed
Point Lemma we find sentences Li such that:

S1
2 ` Li ↔ (2U¬LNi ∧

∧
j�i

3LNj ∧
∧
j‖i

∨
k�i, k‖j

2U¬LNk < 2U¬LNj ).

We will assume that, for i 6= j, we have Li 6= Lj .9

We demand that σ(`i) := LNi . Thus we treat the `i as constants.10 For an abritrary
arithmetic N this gives us the validity of R−0,F .

Below we want to reason in an informal way in the theory R−(1),F . We want to
reason as if we have predicate logic available, so that we can talk about statements
like i � j and so that we can quantify over the nodes of F . These problems can
be solved as follows. A statement like i � j in the context of R−(1),F . stands for >
when it is true and for ⊥ when it is false. Quantification over our finite domain is
handled by translating it to iterated conjunctions and disjunctions.

We define:

• hi := (2¬ `i ∧
∧
j‖i

∨
k�i, k‖j 2¬ `k < 2¬ `j).

Lemma 5.1 (R−1,F ). Suppose i ‖ j, then ¬ (hi ∧ hj). I.o.w., hi and hj, implies
i � j or j � i.

Proof. Reason in R−1,F . Suppose i ‖ j and hi and hj . Consider the i′, such that
i′ � i, i′ ‖ j, and 2¬`i′ . We note that there is such an i′, to wit i, because i � i,
i ‖ j and 2¬ `i. The 2¬`i′ are linearly ordered in the witness comparison ordering
<. Suppose 2¬`i? is the <-smallest such element. Consider the j′, such that j′ � j,
j′ ‖ i, and 2¬`j′ . The node j is an example of such a j′. The 2¬`j′ are linearly
ordered in the witness comparison ordering <. Suppose 2¬`j? is the ≤-smallest
such element.

By the second conjunct of hi applied to j?, we find 2¬ `i? < 2¬ `j? . By the second
conjunct of hj applied to i?, we find 2¬ `j? < 2¬ `i? . A contradiction. 2

Lemma 5.2 (R−1,F ). Suppose i 6= j, then ¬ (`i ∧ `j).

9I was aware of two essentially different constructions for the Multiple Fixed Point Lemma.
Vincent van Oostrom, after I asked him, provided a third construction. All three constructions

automatically guarantee the desired property even in the presence of non-trivial automorphisms
of the frame. One reason that this happens is that the choice of substitution-variables is explicitly

arithmetically coded in the construction.
10Note that the Li are not necessarily uniquely determined by the fixed point equations. Thus,

we are looking at some choice of the Li.
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Proof. Reason in R−1,F . In case i and j are incomparable, this is immediate by the
previous lemma. Suppose, e.g., i ≺ j. Suppose `i and `j . From `i, we have 3`j ,
and, from `j , we have 2¬ `j . A contradiction. 2

Lemma 5.3 (R−1,F ). Suppose hi and ¬ `i. Then, for some j � i, we have hj.

Proof. Reason in R−1,F . Suppose hi and ¬ `i. Then for some j′ � i, we have 2¬ `j′ .
The 2¬ `j′ with j′ � i can be linearly ordered by the witness comparison ordering
<. Let 2¬ `j? be the <-minimal element among these j′.

Consider any m ‖ j?. If m ‖ i, by hi, we can find such that k � i ≺ j?, and k ‖ m
and 2¬ `k < 2¬ `m. If not m ‖ i, we must have i ≺ m. In case 2¬`m, by the
choice of j?, we find 2¬ `j? < 2¬ `m. In case ¬2¬ `m, the axioms of R− imply
2¬ `j? < 2¬ `m. So in all cases we can find a k, such that k � j? and k ‖ m and
2¬ `k < 2¬ `m. We may conclude hj? . 2

Lemma 5.4 (R−1,F ). Suppose hi, then, for some j � i, we have `j.

Proof. Reason in R−1,F . Suppose hi. If `i, we are done. If not, by Lemma 5.3,
there is a i′ � i such that hi′ . If `i′ , we are done. By repeating this procedure, we
eventually find a j � i, such that `j . 2

Lemma 5.5 (R−1,F ). Suppose 2¬ `i. Then, for some j, we have `j.

Proof. Reason in R−1,F . Suppose 2¬ `i. Consider all j′ such that 2¬ `j′ . There is
one such j′, to wit i. The 2¬ `j′ are linearly ordered by the witness comparison
ordering <. Let j? be the minimal such. It is easy to see that hj? . By Lemma 5.4,
we find a j � j? such that `j . 2

We define the theory R−2,F as R−1,F plus the following axioms:

F3. `
∧
i<n(hi → 2hi)

Let K be any Kripke model on the frame F . We define an interpretation σ? from
Lmod to the closed formulas of the language of R−F , by setting σ?(p) :=

∨
j
p `j ,

where σ? commutes with the propositional connectives and 2. We have:

Theorem 5.2. We have, for every formula φ of the modal language:

• if i 
 φ, then R−2,F ` `i → σ?(φ);

• if i 1 φ, then R−2,F ` `i → ¬σ?(φ);

Proof. The proof is by induction on φ. The cases of the atoms and of the proposi-
tional connectives are trivial using Lemma 5.2

Suppose φ = 2ψ.

Suppose i 
 2ψ. We reason in R−2,F . Suppose `i. Then, hi and, hence 2hi. By
Lemma 5.4, in combination with 2¬ `i, we find 2

∨
j�i `j . So, by the induction

hypothesis, we have 2σ?(ψ).



20 ALBERT VISSER

Suppose i 1 2ψ. Then, for some j � i, j 1 ψ. We reason in R−2,F . Suppose
`i. It follows that 3`j . Ergo, by the induction hypothesis, 3¬σ?(ψ). Hence,
¬2σ?(ψ). 2

Remark 5.3. The most naive attempt to avoid the use of ` hi → 2hi, is to
replace 2¬ `i by 2

∨
j�i `j (where we read 3 as ¬2¬) everywhere in the above

definitions and arguments. This certainly will give us the “i 
 2ψ”-part in the
proof of Theorem 5.2 for free. It may amuse the reader to try this and to see where
and why precisely it goes wrong.

5.4. Application to Arithmetic. In this subsection, we articulate what Theo-
rem 5.2 tells us about a theory U with aritmetic N .

Consider a theory U and an arithmetic N in U . Suppose that deg(N) = α and
U ` (T1

2)N . Suppose GLα 0 φ. Let K be a finite counter Kripke model with frame
F . We choose K in such a way that the set of worlds is {0, . . . , n − 1}, that the
root is 0 and 0 1 φ. Note that the depth of the root must be k ≤ α.

Let τ be the N -interpretation of the language of R−F that is generated by `i 7→ LNi .
(We are only interested in τ on the closed fragment of R−F .) Clearly, τ(hi) is of
the form HN

i , where Hi is S1
2-provably equivalent to an ∃Πb

1-sentence. Let σ? be
the interpretation of the language of provability logic in the closed fragment of
R−2,F generated by p 7→

∨
i
p `i. We take the interpretation ν of the language of

provability logic into the language of U to be τ ◦σ?. Thus, ν is the N -interpretation
generated by p 7→

∨
i
p L

N
i . We assume that U `

∧
(Hi → 2UHi), in other words,

that R−2,F is N -valid. We show that U 0 ν(φ).

Suppose U ` ν(φ). Since U ` LN0 → ¬ ν(φ), we find that U ` ¬LN0 . It follows that
U ` 2N

U ¬LN0 , and, hence U `
∨
j<n L

N
j . Since U ` ¬LN0 , we find U `

∨
0<j<N L

N
j .

Thus, since each j > 0 satisfies 2k−1⊥, we find U ` 2
N,k−1
U ⊥, quod non. We may

conclude that U 0 ν(φ).

The following theorem is an immediate consequence of these considerations.

Theorem 5.4. Consider a theory U and an arithmetic N in U . We suppose that
U ` (T1

2)N and U ` SN → 2N
U S

N , for all sentences S in ∃Πb
1. Then prl(N) =

GL + 2deg(N)⊥.

5.5. All Arithmetics of a Theory. In this subsection, we apply the Solovay
argument to all arithmetics of a theory U . We first show how we can improve our
local arithmetic.

Consider any set of Σ1-sentences S with n elements. Let CS :=
∧
S∈S(S → 2S1

2
S).

Let J be an S1
2-cut such that S1

2 ` ∀x ∈ J ∃y 22x = y. We define: J0 := ID,
Jk+1 := ID〈CS〉(J ◦ Jk), JS := Jn.

The following argument is taken from [Vis91a].

Lemma 5.6. We have: S1
2 ` C

JS
S .

Proof. Reason in S1
2. If we have CS , clearly Jn = ID and we are done. Otherwise,

for some S in S, we have S and ¬2S1
2
S. So, inside J , the sentence S will be false.
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It follows that, inside J , the number of true S’s from S is at least one less than
inside ID. Now the game repeats itself inside J for Jn−1. Each time we have ¬CS ,
we move inside J and loose at least one true S. If at some point, we have CS , we
are done. Otherwise we end up with zero true S’s and we have CS in Jn. (Since n
is standard the whole argument can be spelled out with big disjunctions, etc.) 2

We have the following theorem.

Theorem 5.5. Consider any theory U . We have provall(U) = GL + 2deg(U)⊥.

We note that the result also is valid for the case that degall(U) = 0, i.e. when either
U is inconsistent or S1

2 is not interpretable in U .

Proof. Consider any theory U and suppose degall(U) = α. It is easily seen that
GL + 2α⊥ ⊆ prl(U).

Suppose GLα 0 φ. Then, there is a finite Kripke model K with nodes {0, . . . , n− 1}
and with root 0, such that 0 1 φ and d(0) ≤ α.

Since degall(U) := sup({deg(M) | M is an arithmetic in U}) and d(0) is finite, we
can find an arithmetic N0 with d(0) ≤ deg(N0) ≤ α. We can shorten N0 to an
arithmetic N1 � N0 in which we have T1

2. (See e.g. [HP91]. In fact, we can shorten
N0 to a cut on which we have I∆0 + Ω1.) We note that deg(N1) ≥ deg(N0) ≥ d(0).

We simultaneously construct a cut N in N0 and the Li using the Gödel Fixed point
Lemma. We find Li such that:

S1
2 ` Li ↔ (2U¬LN1◦JH

i ∧
∧
j�i

3LN1◦JH
j ∧

∧
j‖i

∨
k�i, k‖j

2U¬LN1◦JH
k < 2U¬LN1◦JH

j ).

Here:

• Hi := (2U¬LN1◦JH
i ∧

∧
j‖i

∨
k�i, k‖j 2U¬LN1◦JH

k < 2U¬LN1◦JH
j ).

• H := {H0, . . . ,Hn−1}.

We note that we have indeed a valid application of the Fixed Point Lemma since
H occurs ‘inside the box’.

We take N := N1 ◦ JH. We note that S2
1 ` 2S2

1
Hi → 2UH

N
i . Hence, we find that

U ` HN
i → 2N

UH
N
i . Moreover, U ` (T1

2)N , since T 1
2 is downwards preserved over

�. Finally, deg(N) ≥ deg(N1) ≥ d(0).

We now employ the interpretation ν of Subsection 5.4 using the Li constructed
above. We find: U 0 ν(φ). 2

5.6. Theories with a Σ1-sound Arithmetic. In this subsection we provide a
sufficient condition for a theory to contain an arithmetic N with prl(N) = GL.

We will use the following facts.

Fact 5.6. Suppose N is an arithmetic in U . Then U � (U + 2N
U⊥).
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This insight was first due Solomon Feferman in his classical paper [Fef60]. The
simple proof below was discovered independently by Per Lindström (see [Fef97])
and the author (see [Vis90]).

Proof. Suppose N is an arithmetic in U . We have U + ¬2N
U⊥ ` 3N

U (2N
U⊥), by

Löb’s Theorem. Hence, it follows that (U + ¬2N
U⊥) � (U + 3N

U2N
U⊥). So, using a

Henkin interpretation, we may conclude that (U + ¬2N
U⊥) � (U + 2N

U⊥). On the
other hand, we trivially have (U + 2N

U⊥) � (U + 2N
U⊥). Thus, using a disjunctive

interpretation, we find that U � (U + 2N
U⊥). 2

Fact 5.7. Suppose U � V . Let N be an arithmetic in V . Then U � (V + 2N
U⊥).

Proof. Suppose M : U �V . We apply Fact 5.6 to the arithmetic M ◦N to find the
desired result. 2

We note that Facts 5.6 and 5.7 can be considered as nice and general formulations
of the Second Incompleteness Theorem. Suppose that, for some arithmetic N in
U , we would have U ` conN (U). Since, by Fact 5.6, we have U � (U + 2N

U⊥), it
follows that U is inconsistent.

Fact 5.8. Suppose U � V and suppose that U contains a Σ1-sound arithmetic N ,
i.e., for all Σ1-sentences S, if U ` SN , then S is true. Then U �faith V .

This fact is a direct consequence of Theorem B.4 of Appendix B. It was first proved
in [Vis05]. The basic idea of the proof is due to Per Lindström.

We prove the following theorem.

Theorem 5.9. Suppose U contains a Σ1-sound arithmetic N0. Then there is an
N in U such that prl(N) = GL.

Proof. Suppose that U contains a Σ1-sound arithmetic N0. We can find an inter-
pretation of T1

2 by shortening N0. By Fact 5.7, we find U � (T1
2 + 2U⊥). Let W

be T1
2 plus sentential Σ1-completeness for U . Since T1

2 + 2U⊥ extends W we find:
U � W . By Fact 5.8, we can find an K such that K : U �faith W . Finally, let
N := S1

2 ↓ K. Since W is a true theory, N is a Σ0
1-sound arithmetic in U . Hence

deg(N) =∞. By Theorem 5.4 we find that prl(N) = GL. 2

6. Deep Arithmetics

In this section we study the fine structure of the arithmetics of a finitely axiomatized
sequential theory. Finitely axiomatized sequential theories have many surprising
properties. The present section builds on and extends a line earlier work, to wit:
[Smo85a], [Pud85], [Kra87], [Vis93] and [Vis05].

We have the following definition. Suppose A is a finitely axiomatized sequential
theory. (We confuse these theories with their single axiom.) Let N be an arithmetic
in A.
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• N is Σ1-veracious in A iff

S1
2 ` ∀S ∈ Σ1-sent (2AS

N → 2S1
2
(conρ(A)(A)→ S)).

Thus, we see that Σ1-veracity is the S1
2-verifiable Σ1-conservativity of N

over ES1
2(S1

2+conρ(A)(A)).

• N is strong in A iff A ` conNρ(A)(A).

• N is deep in A iff N is both Σ1-veracious and strong in A.

Σ1-veracity is connected to Σ1-soundness: this is elucidated by the following theo-
rem.

Theorem 6.1. Suppose that A is a finitely axiomatized sequential theory and N is
Σ1-veracious in A. Then,

I∆0 + supexp + con(A) ` ∀S ∈ Σ1-sent (2AS
N → true(S)).

Here true is a Σ1 truth predicate.

Proof. By [WP87], the theory EA, aka I∆0 + exp, proves uniform Π2-reflection for
cutfree-provability in S1

2. Hence, I∆0 + supexp proves uniform Π2-reflection for
ordinary provability in S1

2. Our theorem is immediate from this. 2

In the definition of Σ1-veracious theory we may replace ρ(A) by any m ≥ ρ(A), in
the light of the following theorem.

Theorem 6.2. Let A be a finitely axiomatized sequential theory. Suppose that
m ≥ ρ(A). We have:

S1
2 ` ∀S ∈ Σ1-sent (2S1

2
(conm(A)→ S)↔ 2S1

2
(conρ(A)(A)→ S)).

Proof. The right-to-left direction of our theorem is trivial.

To go from m-provability to ρ(A)-provability we need to eliminate standard (proof-
theoretical) cuts. So we only need a multi-exponential transformation.11 Thus,
there is an S1

2-cut J , such that S1
2 ` conρ(A)(A)→ conJm(A).

Reason in S1
2. Consider any Σ1-sentence S. Suppose that 2S1

2
(conm(A) → S).

So, 2S1
2
(conm(A) → S)J , and hence 2S1

2
(conJm(A) → S). Thus, we may conclude

2S1
2
(conρ(A)(A)→ S). 2

If an arithmetic is deep, we can strengthen the implication in Σ1-veracity to a
bi-implication.

Theorem 6.3. Let A be a finitely axiomatized sequential theory. Suppose N is a
deep arithmetic in A. We have:

S1
2 ` ∀S ∈ Σ1-sent (2AS

N ↔ 2S1
2
(conρ(A)(A)→ S)).

We leave the simple proof to the reader.

11We use the work of [Ger03], [Ger05] and [Bus11] here. See Subsection A.5 of Appendix A.
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Theorem 6.4. Let A be a finitely axiomatized sequential theory. Each of the follow-
ing classes is, S1

2-verifiably downwards closed under �: the Σ1-veracious theories,
the strong theories and the deep theories.

We leave the simple proof to the reader.

Iterated inconsistencies take a simple form for Σ1-veracious arithmetics, as will be
proved in the next theorem.

Theorem 6.5. Suppose A is sequential and N is a Σ1-veracious arithmetic in A.
We have:

(†n) S1
2 ` 2A2

N,n
A ⊥ ↔ 2n

S1
2
2A⊥.

Proof. We prove then left-to-right direction by induction on n. The case n = 0 is
trivial.

Suppose we have (†n). We prove (†n+1). We have in S1
2,

2A2
N,n+1
A ⊥ → 2S1

2
(conρ(A)(A)→ 2A2

N,n
A ⊥)(5)

→ 2S1
2
(2A,ρ(A)⊥ ∨2A2

N,n
A ⊥)(6)

→ 2S1
2
2A2

N,n
A ⊥(7)

→ 2S1
2
2n

S1
2
2A⊥(8)

→ 2n+1
S1

2
2A⊥(9)

Here step (8) uses the induction hypothesis.

The right-to-left direction is proved by a trivial induction. 2

Corollary 6.6. Suppose A is a finitely axiomatized sequential theory and N is a
Σ1-veracious arithmetic in A. We have:

i. A ` 2
N,n+1
A ⊥ ↔ (2n

S1
2
2A⊥)N .

ii. I∆0 + supexp ` 2A2
N,n
A ⊥ ↔ 2A⊥.

In the next theorem, we establish the existence of lots of deep arithmetics in a
finitely axiomatized sequential theory. The proof of the theorem employs a form of
the Friedman-Goldfarb-Harrington fixed point. See [Vis05] for a discussion of this
fixed point.

Theorem 6.7. For every finitely axiomatized sequential theory A, and, for every
arithmetic N0 in A, there is a deep arithmetic N in A with N � N0. This theorem
is verifiable in S1

2.

Proof. Let A be a finitely axiomatized sequential theory and let N0 be an arithmetic
in A.

Let true be a Σ1-truth predicate. For the construction of such a truth predicate,
see [HP91, Chapter V(5)]. The two classical works on this subject are [Les78] and
[PD82]. We will use the following two properties of true: for S in Σ1,

T1. S1
2 ` true(S)→ S,
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T2. Suppose J is an S1
2-cut such that S1

2 ` x ∈ J → 22x exists. Then, we have
S1

2 ` SJ → true(S).

We remind the reader of the witness comparison ordering. We define, for any
C = ∃xC0(x) and D = ∃y D0(y):

• C ≤ D := ∃x (C0(x) ∧ ∀y < x¬D0(y)),

• C < D := ∃x (C0(x) ∧ ∀y ≤ x¬D0(y)),

• (C ≤ D)⊥ := (D < C), and (C < D)⊥ := (D ≤ C).

By the Gödel Fixed Point Lemma, we find R such that, for a suitably chosen m:

S1
2 ` R↔ true(S) ≤ 2A,mR

N0 .

We note that the complexity ρ(R) of R is not dependent on S and m, since numerals
do not change the complexity of a formula even if the numeral is given a relational
representation. Moreover, for any B and K, ρ(BK) is linear in ρ(B). Hence, we
may choose m so large that max(ρ(A), ρ(RN0)) ≤ m.

We choose N1 to be an initial segment of N0 such that:

U1. A ` 2
N1
A,mB → B, for any B with ρ(B) ≤ m.

U2. A ` (∀S ∈ Σ1-sent (true(S)→ true(S) ≤ true(S)))N1 ,
i.o.w., A proves that, in N1, if true(S) is witnessed, then true(S) has a minimal
witness.

We can always find such an N1 since (i) we have a truth predicate for formulas of
complexity ≤ m and since (ii) we can interpret I∆0 + Ω1 in S1

2.

Let J be an S1
2-cut such that S1

2 ` x ∈ J → 22x exists. We take N := N1 ◦ J .

We note that N1 is strong, and that, hence, N is strong. We show that N is
Σ1-veracious.

We reason, for the rest of the proof, in S1
2. Consider any Σ1-sentence S. Suppose

2AS
N . It follows, by (T2) that 2A(true(S))N1 . Ergo, by (U2), 2A(R ∨ R⊥)N1 .

Thus, 2A(R ∨2U,mR
N0)N1 . Hence, by (U1), 2A(RN1 ∨RN0). Since N1 is a cut of

N0, we get 2AR
N0 .

By Lemma 3.1, we may conclude (†) 2S1
2
2A,mR

N0 .

We can find an S1
2-cut J?, on which we have T1

2, so that if something is A-provable
with a proof in J?, then there is a minimal proof. We can arrange that J? is so
small that S1

2 ` x ∈ J? → 22x exists. We find from (†): 2S1
2
(2A,mR

N0)J
?

. Hence,
2S1

2
(R ∨R⊥)J

?

. We may conclude:

2S1
2
(true(S) ∨ (R⊥ ∧2A,mR

N0))J
?

.

Since we have Σ1-completeness in the presence of double exponentiation, it follows
that:

2S1
2
(true(S) ∨2A,m(R⊥ ∧R)N0).

Hence, 2S1
2
(S ∨2A,m⊥), or, in a different formulation: 2S1

2
(conm(A)→ S).

By Theorem 6.2, we may conclude that 2S1
2
(conρ(A)(A)→ S).
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We have proved that, for every finitely axiomatized sequential theory A, and, for
every arithmetic N0 in A, there is a deep arithmetic N in A with N � N0. To see
that this argument is verifiable in S1

2, we have to see that the construction of N
from N0 is feasible. We note that m in our argument remains standard even if S is
non-standard. As a consequence e.g., δN = φ(δN0 ,ZN0 ,SN0 , . . .), where φ is a fixed
standard context. Thus N will be p-time in N0. 2

Discussion 6.8. Clearly, the Second Incompleteness Theorem implies that adding
con(U) to a consistent theory U that contains an arithmetic, gives us a stronger
theory, a theory that is, so to say, one gödel stronger. However, it is clear that we
have to ask: to what arithmetic in U are we adding the consistency statement?

Consider GB and let neumann be the interpretation of S1
2 in the finite von Neumann

ordinals. Clearly,

PA 0 con(GB)→ con(GB + conneumann(GB)).

In fact, by the Second Incompleteness Theorem, GB cannot prove this statement
w.r.t. the neuman-interpretation. However, for a Σ1-veracious arithmetic N in GB,
we have:

I∆0 + supexp ` con(GB)→ con(GB + conN (GB)).

Thus, in which theories the relative consistency of a theory plus its consistency
statement w.r.t. that theory can be verified is dependent on the chosen arithmetic.
Adding conN (GB) adds less strength to GB than adding conneumann(GB) does.

So the gödel is not such a good unit when we define it as how much stronger a
theory becomes when we add its consistency statement. My proposal would be to
take as the theory that is one gödel stronger: S1

2 + con(U). Note that the strength
of S1

2 + con(U) still depends on the chosen axiomatization of U .

In the case of a finitely axiomatized sequential theory A and a Σ1-veracious arith-
metic N in A, we have:

S1
2 ` con(A+ conN (A))↔ con(S1

2 + con(A)).

So, by the measure of S1
2-verifiable relative consistency, adding the consistency

statement for a Σ1-veracious arithmetic in A, is adding one gödel. Note that there
are no arithmetics in, say, PA with the same property.

The next theorem shows that under a verifiability condition, Theorem 6.7 can be
strengthened to theories that are mutually interpretable with a finitely axiomatized
sequential theory.

Theorem 6.9. Suppose A is a consistent finitely axiomatized sequential theory and
U is any theory. Suppose K : A� U and M : U �A. Then, there is an arithmetic
N in U , such that:

S1
2 ` K : A�thm U → ∀S ∈ Σ1-sent (2US

N → 2S1
2
(conρ(A)(A)→ S)).

Here �thm stands for theorems-interpretability, where we demand that the interpret-
ing theory proves the translations of the theorems of the interpreted theory. In the
context of arithmetics without Σ1-collection this notion is not provably equivalent
to the usual notion of axioms-interpretability.
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Proof. Suppose K : A � U and M : U � A. We find 2S1
2
(M : U � A). Consider

any arithmetic N0 in A. We note that N1 := N0MK is also an arithmetic in A.12

Let N2 be an arithmetic in A such that N2 � N0 and N2 � N1. We may assume
that in N2 we have I∆0 + Ω1, or a sufficiently large, finitely axiomatized part of
I∆0 + Ω1.

Let k be the complexity of (true(x))N0 , where true is the Σ1-truth predicate. By
Theorem 3.7, we can choose m so large that, S1

2-verifiably,

(10) ∀B ∈ Γk (2A(2N2
A,mB → B)→ 2A,mB).

Let N3 ≤ N0 be an arithmetic in A such that, verifiably in S1
2,

(11) ∀B ∈ Γm 2A(2N3
A,mB → B).

Let N4 be a cut of N3 such that

(12) 2A∀x ∈ N4 ∃y ∈ N3 22x = y.

Finally, we take N := N4M . So N is an arithmetic in U .

By the Gödel Fixed Point Lemma, we find R such that:

(13) 2S1
2
(R↔ true(S) ≤ 2A,mR

N0).

We reason in S1
2.

We have, for all Σ1-sentences S,

2A (SN4 → (true(S))N3(14)

→ (R ∨R⊥)N3(15)

→ (RN0 ∨2
N3
A,mR

N0)(16)

→ RN0 )(17)

Suppose K : A �thm U . We also have: M : U � A. Consider any S and sup-
pose 2US

N . It follows that 2AS
N4MK . By the previous result, we may conclude

2AR
N0MK , i.e., 2AR

N1 . From this, we have:

2A (2N2
A,mR

N0 → RN1 ∧2
N2
A,mR

N0(18)

→ RN2(19)

→ RN0 )(20)

So, by Equation 10, we have: 2AR
N0 . It follows that 2S1

2
2A,mR

N0 . We now may
repeat the reasoning of the proof of Theorem 6.7. So we get

2S1
2
(conρ(A)(A)→ S).

And we are done. 2

12We remind the reader that N0MK stands for K ◦M ◦N0.
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7. An Example

In this section, we provide an example of a sequential theory W , such that the
degrees of the arithmetics in W are finite and cofinal in ω. So, for every n there is
an arithmetic in W with degree k ≥ n, but there is no arithmetic in W with degree
∞.

We start with a consistent finitely axiomatized sequential theory A. Pick any
arithmetic N in A. Let Σ be the signature of A and let Θ be the signature of
arithmetic.

Let τ : Θ → Σ be a translation. We define τ̃ := 〈S1
2, τ〈(S1

2)τ 〉τN , A〉. Here we
assume that the axioms of identity are an explicit part of the axiomatization of
S1

2. It is easily seen that τ̃ is an arithmetic in A. We assign to any translation
τ : Θ→ Σ a Gödel number gn(τ). We define:

W := A+ {(2gn(τ)

S1
2

2A⊥)eτ | τ : Θ→ Σ}.13

We note that there is a p-time algorithm to decide whether a sentence is of the
form (2gn(τ)

S1
2

2A⊥)eτ . So, W is ∆b
1-axiomatized.14

Consider any arithmetic K in W . We have W ` (2gn(τK)

S1
2

2A⊥)eτK . Clearly, in
W , the interpretations K and τ̃K ↑ W coincide, hence, by an easy induction,
W ` 2

K,gn(τK)+1
W ⊥. So, each arithmetic K in W has a finite degree.

We show that, for any n, the theory W contains an arithmetic with degree ≥ n.
Consider any number n.

Let N? be a strong arithmetic in A that has an initial embedding in all arithmetics
τ̃ in A with gn(τ) ≤ n. Let N◦ � (N? ↑ (A + 2N?

A ⊥)) be a deep arithmetic in
A+ 2N?

A ⊥. Let N◦ := τ̃N◦ . We note that N◦ is an arithmetic in A.

We want to show that W 0 2
N◦↑W,n
W ⊥. This will be a direct consequence of the

following claim.

Claim: We have, S1
2 ` 2W2

N◦↑W,n
W ⊥ → 2n

S1
2
2A⊥.

We first show how our desired result follows from the claim. SupposeW ` 2
N◦↑W,n
W ⊥.

Since, S1
2 is a true theory, the claim gives us, by applying reflection a number of

times, 2A⊥. Quod non. Note that this argument can be formalized in I∆0+supexp.

Proof of the claim: By our conventions, we may write 2
N◦↑W,n
W ⊥ as 2

N◦,n
W ⊥. We

will apply this convention to increase readability. We prove by induction that, for
each j ≤ n,

($j) S1
2 ` 2W2

N◦,j
W ⊥ → 2

j
S1

2
2A⊥.

13In stead of (2
gn(τ)

S1
2

2A⊥)eτ , we could also have used 2
eτ,gn(τ)+1
A ⊥, but it seems to me that the

argument is a bit shorter under the present choice.
14Alternatively, we could have constructed W using a version of Craig’s trick, taking as axioms

(p = p) ∧ (2
gn(N)

S1
2

2A⊥)N , where p is an A-proof that N is an arithmetic.
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For the case j = 0, we have to prove: S1
2 ` 2W⊥ → 2A⊥. We reason in S1

2.
Suppose 2W⊥. Consider any W -proof p of ⊥. If p only employs the axiom A, we
are done. Suppose p employs at least one axiom of the form (2gn(τ)

S1
2

2A⊥)eτ . Let X
be the set of such axioms employed in p. By our assumption X is not empty.

We construct an arithmetic M in A, such that M � τ̃ , for all τ ∈ X. Suppose
τ0 ∈ X. For each τ we construct an initial embedding Fτ of an initial segment Jτ
of τ̃0 in τ̃ . This construction is uniform in τ and |Fτ | is linear in |τ |. We take M
to be the intersection of the Jτ .

The definition of M involves e.g. a conjunction δM (x) :↔
∧
τ∈X Jτ (x). Why is this

conjunction not too big? Under reasonable assumptions, we have:

gn(τ) ≤ gn((2gn(τ)

S1
2

2A⊥)eτ ) ≤ p.

Moreover, |Jτ | of is linear in |gn(τ)| and, hence, linear in |p|. Moreover the size of
X is < |p|. Hence |M | is bounded by L(|p|)×|p|, where L is a standard linear term.
So M is below a · (ω1(p))b, for some standard a and b.

Clearly, each axiom in X is implied by 2M
A ⊥. So, we have 2A+2MA ⊥⊥, and, hence

2A⊥, by the Second Incompleteness Theorem.

An alternative way, to prove this, is to adapt the proof of the second incompleteness
theorem as follows. We still reason inside S1

2. By the Gödel Fixed Point Lemma,
we construct G such that:

2S2
1
(G↔ ¬2A

∨
τ∈X

Geτ ).

Note that the big disjunction exists inside S1
2, since the set X is derived from p.

We have:

2S1
2
( ¬G → 2A

∨
τ∈X

Geτ(21)

→ (2A

∨
τ∈X

Geτ ∧2A

∧
ν∈X

2eν
A

∨
τ∈X

Geτ )(22)

→ (2A

∨
τ∈X

Geτ ∧2A

∧
ν∈X
¬Geν)(23)

→ 2A⊥ )(24)

Step (22), uses the fact that we have ∃Σb
1-completeness for every τ̃ .

From our assumption on X, it clearly follows that 2A+
V
τ∈X 2eτ

A⊥
⊥. Hence, we find

2A

∨
τ∈X coneτ (A), and, so, by (24), 2A

∨
τ∈X G

eτ . We may conclude 2A⊥.

The nice feature of this second argument is that it does not use sequentiality.

We stop reasoning in S1
2.

We now prove ($j+1), for j + 1 ≤ n, where use the induction hypothesis ($j).

We reason again in S1
2.

Suppose 2W2
N◦,j+1
W ⊥. Our induction hypothesis, $j , gives us: 2W (2j

S1
2
2A⊥)N◦ .
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Let p be a proof witnessing 2W (2j
S1

2
2A⊥)N◦ . Let X be the set of all τ such that

(2gn(τ)

S1
2

2A⊥)eτ occurs as an axiom in p. We clearly have:

(25) proof
A+{(2gn(τ)

S12
2A⊥)eτ |τ∈X} (p, (2j

S1
2
2A⊥)N◦).

Let X0 be the set of elements τ of X with gn(τ) ≤ j, and let X1 be the set of
elements of X with gn(τ) > j. Since j + 1 ≤ n, we find that N? � τ̃ , for any τ

with gn(τ) ≤ j. It follows that, inside 2S1
2
, 2N?

A ⊥ implies (2gn(τ)

S1
2

2A⊥)eτ , for each
τ in X0.

Reasoning as in the case j = 0, we can find an arithmetic M? in A, such that
M? � τ̃ , for all τ ∈ X1. Moreover, we can choose M? in such a way that it is deep.

We have to move in a careful way, at this point, to compensate for our lack of
induction. Clearly, we can find a standard cut J , such that:

(26) 2S1
2
∀z ∈ J (2j

S1
2
2A⊥ → 2

j+z
S1

2
2A⊥).

If follows that for p-time computable f with standard code:

(27) ∀τ ∈ X1 ∃q < f(gn(τ)) proofS1
2
(q, (2j

S1
2
2A⊥ → 2

gn(τ)

S1
2

2A⊥)).

We note that, we can find a p-time computable g with standard code such that:

(28) ∀τ ∈ X1 ∃ r < g(gn(τ)) proofA(r, (2M?,gn(τ)

S1
2

2A⊥ → 2
eτ,gn(τ)

S1
2

2A⊥)).

Using Equations (27) and (28), we can transform the proof p of Equation (25), to
a proof s witnessing the following provability:

(29) 2A+2N
?

A ⊥+(2j+1
S12

2A⊥)M? (2j
S1

2
2A⊥)N◦ .

Hence, using �B for B ∧2B:

(30) � S1
2
(2A(2j+1

S1
2

2A⊥)M
?

→ 2A+2N
?

A ⊥
(2j

S1
2
2A⊥)N◦).

Since, N◦ ↑ (A+ 2N?

A ⊥) = N◦, we have:

(31) � S1
2
(2A(2j+1

S1
2

2A⊥)M
?

→ 2A+2N
?

A ⊥
(2j

S1
2
2A⊥)N

◦
).

Since M? is deep, we find:

(32) � S1
2
(2S1

2
(conρ(A)(A)→ 2

j+1
S1

2
2A⊥)→ 2A+2N

?
A ⊥

(2j
S1

2
2A⊥)N

◦
).

Hence,

(33) � S1
2
(2j+2

S1
2

2A⊥ → 2A+2N
?

A ⊥
(2j

S1
2
2A⊥)N

◦
).

Since N◦ is deep, we get:

(34) � S1
2
(2j+2

S1
2

2A⊥ → 2S1
2
(conρ(A+2N

?
A ⊥)(A+ 2N?

A ⊥)→ 2
j
S1

2
2A⊥)).

It follows that:

(35) � S1
2
(2j+2

S1
2

2A⊥ → 2S1
2
(2A¬2N?

A ⊥ ∨2
j
S1

2
2A⊥)).

By the Second Incompleteness Theorem, we have:

(36) � S1
2
(2j+2

S1
2

2A⊥ → 2S1
2
(2A⊥ ∨2

j
S1

2
2A⊥)).
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Ergo:

(37) � S1
2
(2j+2

S1
2

2A⊥ → 2
j+1
S1

2
2A⊥).

So, by Löb’s Theorem,

(38) (2j+2
S1

2
2A⊥ → 2

j+1
S1

2
2A⊥) ∧2

j+2
S1

2
2A⊥

We may conclude:

(39) 2
j+1
S1

2
2A⊥

This is what we wanted to prove. 2

We end this section by providing a bit of information on the relationship between
A and W . By Theorem 6.9, it follows that W is not interpretable in A. On the
other hand, it turns out that W is model-interpretable in A. Consider any model
M of A. In case for all arithmetics N in M we have 2N

A⊥, we find that M |= W .
So we can take the identity translation to provide an inner model of M . Suppose,
for some N , we have M |= conN (A). We note that the proof of ($0) works for an
arbitrary arithmetic. So we haveM |= conN (W ). We use the Henkin interpretation
to provide an inner model of W .
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Appendix A. More Details on the Basics

In this appendix we explain some basic notions in somewhat more detail.

A.1. Translations and Interpretations. The notion of interpretation that we
will employ in this paper will be m-dimensional interpretation without parameters.
There are two extensions of this notion: we can consider piecewise interpretations
and we can add parameters. We refrain from considering piecewise interpretations.
We explain why in Subsection A.3. We sketch a few basic ingredients of adding
parameters in Subsection A.4. We explain why, in the sequential case, addition of
parameters makes no difference for the provability logic of all arithmetics of a given
theory in Remark 3.9.

Consider two signatures Σ and Θ. An m-dimensional translation τ : Σ → Θ is a
quadruple 〈Σ, δ,F ,Θ〉, where δ(v0, . . . , vm−1) is a Θ-formula and where for any n-
ary predicate P of Σ, F(P ) is a formula A(~v0, . . . , ~vn−1) in the language of signature
Θ, where ~vi = vi0, . . . , vi(m−1). Both in the case of δ and A all free variables are
among the variables shown. Moreover, if i 6= j and k 6= `, then vik is syntactically
different from vj`.

We demand that we have ` F(P )(~v0, . . . , ~vn−1)→
∧
i<n δ(~vi). Here ` is provability

in predicate logic. This demand is inessential, but it is convenient to have.

We define Bτ as follows:

• (P (x0, . . . , xn−1))τ := F(P )(~x0, . . . , ~xn−1).

• (·)τ commutes with the propositional connectives.15

• (∀xA)τ := ∀~x (δ(~x)→ Aτ ).

• (∃xA)τ := ∃~x (δ(~x) ∧Aτ ).

There are two worries about this definition. First, what variables ~xi on the side of
the translation Aτ correspond with xi in the original formula A? The second worry
is that substitution of variables in δ and F(P ) may cause variable clashes. These
worries are never important in practice: we choose ‘suitable’ sequences ~x to corre-
spond to variables x, and we avoid clashes by α-conversions. However, if we want
to give precise definitions of translations and e.g. of composition of translations
these problems come into play. We will address these problems elsewhere.

We allow identity to be translated to a formula that is not identity. There is some
tension between this choice and the treatment of identity as a logical constant. The
reason is that the notion of logical constant can do several kinds of work. It may be
obligatory in the language and it may be preserved under translation. For identity
we only ask that it is obligatory.

15If we have a complex formula A, the translation Aτ could be satisfied in a model even if
the sequences of values of the variables corresponding to the free variables in A are not in the

domain of the translation in that model. One alternative option for the definition is to add a
conjunction that stipulates that these sequences are in the domain. Thus, we would always have

` Aτ → δK(~x), where ~x is a sequence corresponding to a free variable in A. We will refrain

from doing this. The cost is that, e.g., the definition of composition of translations becomes more
complicated.
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There are several important operations on translations.

• idΣ is the identity translation. We take δidΣ(v) := v = v and F(P ) := P (~v).

• We can compose translations. Suppose τ : Σ → Θ and ν : Θ → Λ. Then
ν ◦ τ or τν is a translation from Σ to Λ. We define:

– δτν(~v0, . . . , ~vmτ−1) :=
∧
i<mτ

δν(~vi) ∧ (δτ (v0, . . . , vmτ−1))ν .

– Pτν(~v0,0, . . . , ~v0,mτ−1, . . . ~vn−1,0, . . . , ~vn−1,mτ−1) :=∧
i<n,j<mτ

δν(~vi,j) ∧ (P (v0, . . . , vn−1)τ )ν .

• Let τ, ν : Σ → Θ and let A be a sentence of signature Θ. We define
the disjunctive translation σ := τ〈A〉ν : Σ → Θ as follows. We take
mσ := max(mτ ,mν). We write ~v � n, for the restriction of ~v to the first n
variables, where n ≤ length(~v).

– δσ(~v) := (A ∧ δτ (~v � mτ )) ∨ (¬A ∧ δν(~v � mν)).

– Pσ(~v0, . . . , ~vn−1) := (A ∧ Pτ (~v0 � mτ , . . . , ~vn−1 � mτ )) ∨
(¬A ∧ Pν(~v0 � mν , . . . , ~vn−1 � mν))

Note that in the definition of τ〈A〉ν we used a padding mechanism. In case e.g.
mτ < mν , the variables vmτ , . . . , vmν−1 are used ‘vacuously’ when we have A.
If we had piecewise interpretations, where domains are built up from pieces with
possibly different dimensions, we could avoid padding by building the domain of
disjoint pieces with different dimensions.

A translation relates signatures; an interpretation relates theories. An interpreta-
tion K : U → V is a triple 〈U, τ, V 〉, where U and V are theories and τ : ΣU → ΣV .
We demand: for all axioms A of U , we have V ` Aτ .

In the context of the formalization of interpretability, we have to distinguish be-
tween axioms-interpretability, which is the notion we just introduced and theorems-
interpretability, where we demand that: for all theorems A of U , we have V ` Aτ . In
the real world these notions are equivalent, but we need a principle like Σ1-collection
to prove that, so, for example Buss’ theory S1

2 does not ‘know’ this equivalence. See
[Vis91b] for more information about this matter.

Remark A.1. The design choice to make interpretations a transition between
theories has many advantages. It allows us to build various categories of theories
and interpretations; it allows us to have a decent model-functor on categories of
theories and interpretations; in various arguments, it reminds us where we are, etc.
However, in some cases, the typing regime is somewhat stifling. E.g., if you have
an interpretation K : U → V and an extension W of V , then is would seem that
K is also an interpretation of U in W . The typing regime forces us to say that it
is a lifting K ↑ W : U → W , that is the interpretation based on τK , etc. In this
paper we will remain faithful to the typing regime, but we will alleviate it a bit by
the convention below.

• Suppose K : U → V . We often write AK for AτK , in the context of a
theory W that extends V .

Here are some further definitions.
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• We write U for the set of theorems of U . Suppose K : U → V . We write
K := {A | V ` AK}. We note that U ⊆ K. If K = U , we will say that K
is faithful.

• IDU : U → U is the interpretation 〈U, idΣU , U〉.

• Suppose U ⊆ V . Then, EUV : U → V is 〈U, idΣU , V 〉.

• Suppose K : U → V and M : V → W . Then, KM := M ◦K : U → W is
〈U, τM ◦ τK ,W 〉.

• Suppose K : W → U and U ⊆ V . We write K ↑ V for EUV ◦K.

• Suppose M : V → Z and U ⊆ V . We write U ↓M for M ◦ EUV .

• Suppose K : U → (V +A) and M : U → (V +¬A). Then K〈A〉M : U → V
is the interpretation 〈U, τK〈A〉τM , V 〉. In an appropriate category K〈A〉M
is a special case of a product.

The notation K : U → V is inspired by the idea of interpretations as arrows
in a category. There is also an intuition of interpretability as a generalization of
provability. The traditional notations and notions associated to this intuition are:

• K : U � V stands for K : U → V .

• K : V � U stands for K : U → V .

• U � V stands for ∃K K : U � V . We say: U is interpretable in V .

• V � U stands for ∃K K : V � U . We say: V interprets U .

• U �loc V means: all finitely axiomatized subtheories U0 of U are inter-
pretable in V . We say that U is locally interpretable in V .

• U �mod V means that, for every M |= V , there is a translation τ such that
τ(M) |= U . We say that U is model-interpretable in V .

A.2. i-morphisms. Consider an interpretation K : U → V . We can view this
interpretation as a uniform way of constructing internal models τK(M) of U from
modelsM of V . This construction gives us the contravariant model functor as soon
as we have defined an appropriate category of interpretations.

Now consider two interpretations K,M : U → V . Between the inner models τK(M)
and τM (M) we have the usual structural morphisms of models. We are interested
in the case where these morphisms are V -definable and uniform over models. This
idea leads to the following definition. An i-morphism M : K → M is a triple
〈K,F (~u,~v),M〉, where F (~u,~v) is a V -formula and where ~u has length mK and ~v
has length mM . We demand:

• V ` F (~u,~v)→ (δK(~u) ∧ δM (~v)),

• V ` δK(~u)→ ∃~v (δM (~v) ∧ F (~u,~v)),

• V ` (~u0 =K ~u1 ∧ F (~u0, ~v0) ∧ F (~u1, ~v1))→ ~v0 =M ~v1,

• V ` (~u0 =K ~u1 ∧ ~v0 =M ~v1 ∧ F (~u0, ~v0))→ F (~u1, ~v1),

• V ` (PK(~u0, . . . ~un−1) ∧
∧
i<n F (~ui, ~vi))→ PM (~v0, . . . ~vn−1).
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Clearly, F : K →M is an i-morphism iff, for all models M of V , FM represents a
morphism of models from τK(M) to τM (M).

Two i-morphisms F,G : K →M are i-equal, when V ` ∀~u,~v (F (~u,~v)↔ G(~u,~v)).

In the obvious way, we can define the identity i-morphism IdK : K → K, com-
position of i-morphisms, i-isomorphisms, etc. One can show that these operations
preserve i-equality. Moreover, i-isomorphisms really are isomorphisms in the cate-
gories given by these operations.

We will say that two interpretations K,M are i-equivalent when there is an i-
isomorphism between them, i.e. they are i-isomorphic.

We will not divide out i-equivalence of interpretations. This enables us to use the
notation τM meaningfully, to speak about the dimension of an interpretation, etc.
However, we demand that operations on interpretations preserve i-equivalence. It
is easy to see that e.g. the operation K,M 7→ K〈A〉M preserves i-equivalence.
Moreover, if K and M are i-equivalent, then K = M .

One can show, by a simple compactness argument, that K and M are i-isomorphic
iff, for every M |= V , there is an F such that FM represents an isomorphism
between τK(M) and τM (M).

The category INT1 is the category of theories (as objects) and interpretations mod-
ulo i-equivalence (as arrows). One may show that we have indeed defined a category.
The relation of i-equivalence is preserved by composition, etcetera. Two theories
U and V are bi-interpretable if they are isomorphic in INT1. Wilfrid Hodges calls
this notion: homotopy. See [Hod93], p222.

Thus, U and V are bi-interpretable if there are interpretations K : U → V and
M : V → U , so that M ◦ K is i-isomorphic to IDU and K ◦ M is i-isomorphic
to IDV . We call the pair K,M a bi-interpretation between U and V . One can
show that the components of a bi-interpretation are faithful interpretations. Many
good properties of theories like finite axiomatizability, decidability, κ-categoricity
are preserved by bi-interpretations.

A.3. Piecewise Interpretations. There is a notion of piecewise interpretability
where we allow the domain of the interpretation to be built up from finitely many
pieces with possibly different dimensions. An example of this is the construction
where we add points at infinity to a points-only version of plane geometry. We
could have a piece with the original points and strict identity and a piece with
pairs of distinct points with the following equivalence relation (x, y) is equivalent
to (u, v) is there is no point w that is both collinear with x and y and with u and
v. Of course, we can replace this interpretation by a one-piece interpretation that
is isomorphic (in an appropriate sense) to it in various obvious ways. E.g. a pair
(x, y) could represent a point at infinity if x 6= y and the point x if x = y.

One can show that, if we have V ` ∃x, y x 6= y, then any piecewise interpretation
is isomorphic (in an appropriate sense) to an interpretation without pieces (but
in general with higher dimension). It follows that a theory piecewise interprets
a weak arithmetic if and only if it interprets this arithmetic non-piecewise via an
interpretation that is in a relevant sense i-equivalent to the original one.
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A.4. Parameters. In general interpretations are allowed to have parameters. We
will briefly sketch how to add parameters to our framework. We first define a
translation with parameters. The parameters of the translation are given by a
fixed sequence of variables ~w that we keep apart from all other variables. A trans-
lation is defined as before, but for the fact that now the variables ~w are allowed to
occur in the domain and in the translations of the predicate symbols in addition
to the variables that correspond to the argument places. Officially, we represent
a translation τ~w with parameters ~w as a quintuple 〈Σ, δ, ~w, F,Θ〉. The parameter
sequence may be empty: in this case our interpretation is parameter-free.

An interpretation with parameters K : U → V is a quadruple 〈U,α,E, τ~w, V 〉,
where τ~w : ΣU → ΣV is a translation and α is a V -formula containing at most
~w free. The formula α represents the parameter domain. E.g., if we interpret
the Hyperbolic Plain in the Euclidean Plain via the Poincaré interpretation, we
need two distinct points to define a circular disk. These points are parameters
of the construction, the parameter domain is α(w0, w1) = (w0 6= w1). (For this
specific example, we can also find a parameter-free interpretation.) The formula
E represents an equivalence relation on the parameter domain. In practice this is
always pointwise identity for parameter sequences, but for reasons of theory one
must admit other equivalence relations too. We demand:

• ` δτ,~w(~v)→ α(~w),

• ` Pτ,~w(~v0, . . . , ~vn−1)→ α(~w).

• V ` ∃~w α(~w);

• V ` E(~w, ~z)→ (α(~w) ∧ α(~z));

• V proves that E represents an equivalence relation on the sequences forming
the parameter domain;

• ` E(~w, ~z)→ ∀~x (δτ,~w(~x)↔ δτ,~z(~x));

• ` E(~w, ~z)→ ∀~x0, . . . , ~xn−1 (Pτ,~w(~x0, . . . , ~xn−1)↔ Pτ,~z(~x0, . . . , ~xn−1));

• for all U -axioms A, V ` ∀~w (α(~w)→ Aτ,~w).

We can lift the various operations in the obvious way. Note that the parameter
domain of N := M ◦K and the corresponding equivalence relation should be:

• αN (~w, ~u0, . . . , ~uk−1) := αM (~w) ∧
∧
i<k δτM (~w, ~ui) ∧ (αK(~u))τM , ~w.

• EN (~w, ~u0, . . . , ~uk−1, ~z,~v0, . . . , ~vk−1) :=
EM (~w, ~z) ∧

∧
i<k δτM (~w, ~ui) ∧

∧
i<k δτM (~w,~vi) ∧ (EK(~u,~v))τM , ~w.

Consider interpretations K,M : U → V . An i-morphism φ : K → M is a
triple 〈K,G,F,M〉, where G(~u, ~w) and F (~u, ~w, ~x, ~y) are V -formulas.16 We write
F ~u;~w(~x, ~y) for F . We demand that:

• V proves that G is a surjective relation between αK/EK and αM/EM ;17

16In G and F we could allow extra parameters, ~z, the eigenparameters of G and F . We will
refrain from doing that here to unburden the presentation a bit.

17It seems a more logical choice to demand that G represents a function from αK/EK to
αM/EM . There are also sound theoretical reasons for that choice. However, the definition of
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• V ` F ~u;~w(~x, ~y)→ G(~u, ~w);

• V proves that, if G(~u, ~w), then F ~u;~w is a function from δK/=K to δM/=M .

• V proves that if EK(~u0, ~u1) and EM (~w0, ~w1), then F ~u0, ~w0 is the same func-
tion is F ~u1, ~w1 .

Finally, we say that two i-maps φ0 and φ1 are i-equal if V proves that Gφ0 and Gφ1

and Fφ0 and Fφ1 are the same.

The definitions of the identity i-morphism and of composition of i-morphisms are
as is to be expected. We can compute what an i-isomorphism is: G is, V -verifiably,
a bijection between αK/EK and αM/EM , and V proves that, if G(~u, ~w), then F ~u;~w

is a bijection between δK/=K and δM/=M .

A.5. Complexity Measures. Restricted provability plays an important role in
this paper. An n-proof is a proof from axioms with Gödel number smaller or equal
than n only involving formulas of complexity smaller or equal than n. To work
conveniently with this notion, a good complexity measure is needed. This should
satisfy three conditions. (i) Eliminating terms in favour of a relational formulation
should raise the complexity only by a fixed standard number. (ii) Translation of a
formula via the translation corresponding to an interpretation K should raise the
complexity of the formula by a fixed standard number depending only on K. (iii)
The tower of exponents involved in cut-elimination should be of height linear in the
complexity of the formulas involved in the proof.

Such a good measure of complexity together with a verification of desideratum (iii)
—a form of nesting degree of quantifier alternations— is supplied in the work of
Philipp Gerhardy. See [Ger03] and [Ger05]. It is also provided by Samuel Buss in
his preliminary draft [Bus11]. Buss also proves that (iii) is fulfilled.

Gerhardy’s measure corresponds to the following formula classes:

• AT is the class of atomic formulas.

• N?−1 = Σ?−1 = Π?
−1 := ∅.

• N?n ::= AT | ¬N?n | (N?n ∧ N?n) | (N?n ∨ N?n) | (N?n → N?n) | ∀Π?
n | ∃Σ?n.

• Σ?n ::= AT | ¬Π?
n | (N?n−1 ∧ N?n−1) | (Σ?n ∨ Σ?n) | (Π?

n → Σ?n) | ∀Π?
n−1 | ∃Σ?n.

• Π?
n ::= AT | ¬Σ?n | (Π?

n ∧Π?
n) | (N?n−1 ∨ N?n−1) | (N?n−1 → N?n−1) | ∀Π?

n | ∃Σ?n−1.

We may define ρ(A) as the minimal n such that A is in N?n.18

Samuel Buss gives the following formula classes.

• Σ∗
0 = Π∗

0 = the class of quantifier-free formulas.

• Σ∗
n ::= Σ∗

n−1 | Π∗
n−1 | ¬Π∗

n | (Σ∗
n ∧ Σ∗

n) | (Σ∗
n ∨ Σ∗

n) | (Π∗
n → Σ∗

n) | ∃Σ∗
n.

• Π∗
n ::= Σ∗

n−1 | Π∗
n−1 | ¬Σ∗

n | (Π∗
n ∧Π∗

n) | (Π∗
n ∨Π∗

n) | (Σ∗
n → Π∗

n) | ∀Π∗
n.

initial embedding that we need in Section 3 does not work under this second choice. So for the
purposes of at least this paper we seem to need the definition given in the main text.

18Vincent van Oostrom gave a variant of this formulation of Gerhardy’s measure in
conversation.
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We may define ρ(A) as the smallest n such that A is in Σ∗n. This is the same
measure, as was employed in [Vis93]. For our purposes it does not matter whether
we use Gerhardy’s of Buss’ definition.

Appendix B. On Faithful Interpretability

We assume that the formalization of syntax is standard, so that the code of a
subformula C of B is smaller than the code of B, etc. We also assume that the
proof-predicate is standard, so that every proof p has a single conclusion C with
C < p, etc.

Theorem B.1. Consider a theory T and suppose that N is an arithmetic in T .
Let Γ be any T -definable class of T -sentences for which T contains a definable truth
predicate, say TRUE for sentences coded in N . We only need that TRUE satisfies
Tarski’s convention. We assume that the set of codes of elements of Γ has a fixed
binumeration in T (which, par abus de langage, we call also Γ). So we assume: if
A ∈ Γ, then T ` A ∈ Γ and, if A 6∈ Γ, then T ` A 6∈ Γ. Then, there is a unary
predicate A(x), such that:

i. T ` A(x)→ x ∈ N .

ii. T ` (A(x) ∧ x =N y)→ A(y).

iii. T ` (A(x) ∧A(y))→ x =N y.

iv. For any n, T +A(n) is Γ-conservative over T .
Here n is the N -numeral of n.

Proof. We define, for p ∈ N and B an N -code of a formula with at most one
designated variable v0 free:

• =(p, x,B) :↔ p, x ∈ N ∧ ∃C ∈ Γ ( proofNT (p,B(x)→ C) ∧ ¬TRUE(C) ).

Here B(x) in the context of proof means the code of the result of substituting the
numeral of x for v0 in B. We find, using the Gödel Fixed Point Lemma, a formula
A with the following property.

T ` A(x)↔ ∃p (=(p, x,A) ∧ ∀q <N p∀y ∈ N ¬=(q, y, A)).

Clearly, we have (i) and (ii). We prove the uniqueness clause (iii).

Reason in T . Suppose that x 6=N y and A(x) and A(y). Let p be a witness for
A(x) and let q be a witness of A(y). By our assumption about the proof predicate,
it find that p 6=N q, and, hence, p <N q or q <N p. By the specification of A, this
is impossible.

We move to the metatheory again. We prove (iv). We write r : T ` E for: r is (a
code of) a T -proof of E.

We assume, to get a contradiction, that, for some n, A(n) is not Γ-conservative
over T . Let p be the smallest proof such that, for some n and some C ∈ Γ, we have
p : T ` A(n)→ C and T 0 C. It follows that, for all q < p, and all m and all D ∈ Γ,
if q : T ` A(m)→ D, then T ` D. It follows that: T ` ∀q <N p ∀y ∈ N ¬=(q, y, A).
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We also find: T ` ¬C → =(p, n,A). Ergo T +¬C ` A(n). In other words, we have
both T +A(n) ` C and T + ¬A(n) ` C. Ergo T ` C. A contradiction. 2

By the specification of the above formula A it functions as a closed partial N -
numerical term in T . For this reason we will write τ 'N x for A(x).

Theorem B.2. Let T be a theory and suppose that N is an arithmetic in T . Let
Σ be a finite signature for predicate logic. We call predicate logic of signature Σ:
FOLΣ. Let α(x) be a formula in the language of T such that T proves that all
elements of {x | α(x)} are N -codes of Σ-sentences. We write 2α for provability
from the sentences coded by the elements of {x | α(x)}. We write con(α) for ¬2α⊥.

There is an interpretation H : (T + con(α)) � FOLΣ such that, for any Σ-sentence
A, we have T + con(α) + 2αA ` AH . We say that H is a Henkin interpretation of
α.

Proof. We can see this by inspection of the usual proof of the Interpretation Exis-
tence Lemma. The basic idea is that we formalize the Henkin construction, employ-
ing definable cuts whenever we would have used induction in PA. See e.g. [Vis91b]
or [Vis92]. 2

We proceed with our upperbound result.

Theorem B.3. Let T be any theory. Suppose K : T �U . Let A be any T -sentence
and let N be an arithmetic in T + A. Then there is an interpretation M : T � U
such that, for any U -sentence B, T ` BM ⇒ T +A ` 2N

UB.

Proof. Consider T+A. We first show that we may assume without loss of generality
that we have a Σ1-truth predicate for N .

By Theorem 3.8, we may shorten N to a T + A-definable cut N ′ such that T + A
contains a truth predicate, say TRUE, for the Σ1-sentences of N ′, i.e., for every S
in Σ1, U ` SN ′ ↔ TRUE(S), where S inside the truth predicate is coded in N ′.

Note that:
T +A ` 2N ′

U B ⇒ T +A ` 2N
UB.

It follows that it is sufficient to prove our theorem for N ′ .

Thus, we may assume that T contains a truth predicate, say TRUE, for the Σ1-
sentences of N .

Let τ be the partial closed term promised by Theorem B.1 for N and Σ1. We fix
some standard enumeration Cx of the U -sentences in such a way that T verifies
its elementary properties w.r.t. N . We specify M by cases. In case we have ¬A,
we take M equal to K. Suppose we have A. We may now work in T + A. Let
U∗ := U + {Cx | τ 'N x}. Note that (i) U∗ is not ∆b

1-axiomatized, and that (ii)
in talking about U∗ we are really talking about the formula defining the axiom set
and that (iii) the definition of U∗ only makes sense in the presence of A. In case
inconN (U∗),19 we take M again equal to K. If con(U∗), we take M equal to the

19In writing (in)conN (U∗)’, we intend no relativization of the formula defining the axiom set,
only of the proofs.
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Henkin-interpretation H of U∗. In other words, we take

M := H〈A ∧ conN (U∗)〉K.20

Clearly, M : T � U . Suppose T ` BM . Let ¬B = Cn. We have:

T +A+ τ 'N n ` “(U + ¬B) = U∗”.

Here “=” stands for extensional identity. Hence,

T +A+ (τ = n) + conN (U + ¬B) ` ¬BM .
Thus, T + A ` (τ 'N n) → 2N

UB. By the Σ1-conservativity of τ 'N n, we find
T +A ` 2N

UB. 2

From Theorem B.3 we can derive basic result about interpretability. We say that
a theory U is trustworthy if, whenever U � V , then U �faith V .

Theorem B.4. The following are equivalent.

i. U is trustworthy.

ii. U faithfully interprets predicate logic with a binary predicate R.

iii. For some A, U +A contains a Σ1-sound arithmetic N .

Proof. Trivially (ii) follows from (i).

Suppose (ii). Let B be the single axiom of adjunctive set theory AS. In AS we can
provide a Σ1-sound interpretation M of S1

2. Suppose K is the promised faithful
interpretations of predicate logic with a binary relation symbol R in U . Then, as
is easily seen, A := BK and N := K ◦M satisfy the desiderata of (iii).

Finally, we assume (iii). Suppose K : U � V . Let M be the interpretations of V
provided by Theorem B.3, such that M : U�V and U ` BM implies U+A ` 2N

V B.
By the Σ1-soundness of N , we may conclude: that U ` BM implies V ` B, and we
are done. 2
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20Strictly speaking we should not have K here but K ↑ (T + (¬A ∨ incon(U∗))).


