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1. Quantum gravity and the lattice

Gravity remains the only fundamental interaction which we have not yet been able to formu-
late and understand as a full quantum theory. Even basic issues remain open, for example, whether
gravity at the most fundamental level will be truly unified with the weak, strong and electromag-
netic interactions, or have more of a separate status, in thespirit of the classical theory. Research in
quantum gravity is driven by a number of simple, but profoundquestions: What are the quantum
origins of space, time and our universe? What is the microstructure of spacetime, and can itexplain
macroscopic gravitational interactions and perhaps even the universe’s observed large-scale struc-
ture? Are “space”, “time” and “causality” fundamental or emergent concepts in a setting where
spacetime geometry is allowed to undergo large quantum fluctuations?

Apart from its appeal as a white spot on the map of our understanding of fundamental high-
energy physics, the specific reason why this topic is of inherent interest to the lattice community is
the apparent need in quantum gravity for nonperturbative methods to model and understand the rel-
evant Planck-scale physics. Lattice and Monte Carlo techniques, adapted to systems of dynamical
geometry (such as gravity), provide powerful tools for addressing such issues. For low-dimensional
systems of quantum geometry the validity and usefulness of such methods has been demonstrated
long ago, and reviewed at previous lattice conferences under headings like “lattice gravity and ran-
dom surfaces” [1]. Similar techniques can be applied to fully-fledged four-dimensional quantum
gravity, but the situation here is less clear-cut, which is not surprising in view of our limited un-
derstanding of this theory. As will be described in what follows, attempts are under way todefine
quantum gravity as the scaling limit of a specific statistical system of dynamical geometry. For
the physically relevant case of four spacetime dimensions,the only way we can currently study the
existence and properties of this nonperturbative limit is via lattice methods. In other words, despite
the fact that quantum gravity is at a much earlier stage of theory building, compared with a theory
like QCD, numerical methods – in conjunction with analytical and theoretical modelling – can be
used in a profitable way to explore what this theory may be. This also implies that the more founda-
tional aspects of theory development are currently at leaston a par with purely simulation-technical
aspects, like improving efficiency or increasing the lattice size.

At this stage, the only points of reference and comparison for lattice quantum gravity are al-
ternative and (likewise incomplete) nonperturbative formulations in the continuum. In addition,
because of the requirement of covariance, there are also considerable challenges in defining and
evaluating observable quantities, which can be used to characterize the physical properties of the
theory. The specific candidate theory of quantum gravity described below arises from a confluence
of ideas from general relativity (in particular, gravity-specific properties like dynamical geom-
etry and background independence), high-energy physics (in particular, the use of path integral
and renormalization group methods), and, equally crucially, lattice field theory. This approach of
“Quantum Gravity from Causal Dynamical Triangulations (CDT)” was last reported on during ple-
nary talks at Lattice 2000 and 2001 [2], when the formulationwas still in its infancy, and far from
deriving results in the physically interesting case of fourdimensions. The remainder of this pre-
sentation constitutes a brief progress report on the many interesting developments that have taken
place since then, focussing on four-dimensional results. More extensive recent reviews of the field
can be found in [3].
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2. Causal Dynamical Triangulations 101

Viewed from a larger perspective, CDT quantum gravity is an outright conservative approach
in the sense of relying exclusively on standard quantum field-theoretic tools and principles, applied
to the situation where spacetime is not regarded as fixed, butitself part of the nonperturbative dy-
namics. It builds on techniques which have been well tested in the study of systems of random
surfaces and Euclidean1 models of quantum gravity, and does not invoke or presently require “ex-
otic” ingredients like strings, loops, branes, extra dimensions or new symmetries. By contrast, it
is an approach with few free parameters, whose outcomes are by construction robust. This means
that if it can be shown to lead to a viable theory of quantum gravity, the theory will be reasonably
unique. On the other hand, if in the future it produces results which are inconsistent (for example,
because its classical limit is in contradiction with Einstein’s general relativity), it will be difficult
to fix this by twiddling with the parameters of the model.

Since dynamically triangulated models of quantum gravity are amenable to numerical meth-
ods, which can and do produce numbers and results, the above considerations are not merely of a
theoretical nature, as is illustrated by the fate of the Euclidean precursor of CDT. This candidate
theory of four-dimensional quantum gravity generated considerable excitement in the early 1990s
before it was understood gradually that it suffers from fatal degeneracies, which prevent the emer-
gence of macroscopic, classical spacetimes of dimension four. Numerical simulations were crucial
in bringing about this result (for a summary of these developments, as well as a complete bibli-
ography, see [4]). This illustrates that the presence of explicit computational consistency checks,
combined with a small number of free parameters and a high degree of universality (independence
of the continuum theory of the details of the lattice discretization) means that in practice quan-
tum gravity theories from dynamical triangulations can be falsified. Despite being a hallmark of
any good physical theory, falsifiability has become somewhat of a rarity in more speculative ar-
eas of high-energy theory, including quantum gravity. Whatwe would like to emphasize here is
the importance – in the absence of any direct probes of Planck-scale physics – of “computational
experiments” in providing criteria for the viability of candidate theories for quantum gravity.

In technical terms, quantum gravity from causal dynamical triangulations is a nonperturbative
implementation of the gravitational path integral. It has already passed several nontrivial tests
and has produced unprecedented results, as will be described below. In the process, it also has
highlighted a number of unexpected features (and pitfalls)due to the nonperturbative nature of the
construction, which permits large quantum fluctuations on small scales.

The idea of constructing a nonperturbative gravitational path integral which captures Lorentzian,
causal properties of the spacetimes to be summed over goes back to a paper from 1998 [5], where it
was also demonstrated by explicit, analytic computation that the idea works in two dimensions and
produces a result distinct from previous Euclidean models of 2d quantum gravity. The first results
for the physical, four-dimensional theory were published in 2004 [6].

As a warm-up, consider the path integral for a nonrelativistic particle of massm in one dimen-

1Instead of spacetimeswith Lorentzian signature, Euclidean gravity works with purely spatial geometries, which do
not have a notion of time or causality. Euclidean gravity wasa popular starting point for cosmological path integrals back
in the 1970s and ’80s and (usually for reasons of simplification) continues to be used in some path integral formulations
of full gravity.

3



Lattice Quantum Gravity Renate Loll

τi τ f

xi

xf

τ

x a

Figure 1: Sample paths or “histories”x(τ) from a regularized version of the path integral of the nonrela-
tivistic particle in imaginary timeτ := −it , generated by a Monte Carlo simulation. The total time interval
T = τ f − τi has been subdivided into time steps of lengtha, and the trajectories are piecewise linear. The
average path〈x(τ)〉 is indicated by the central fat line.

sion, moving in a harmonic oscillator potential, and subject to fixed boundary conditionsxi = x(ti)
andxf = x(t f ) at some initial and final timesti andt f . The corresponding path integral describes
the transition amplitude fromxi to xf as a superposition of amplitudes expiS[x(t)] of all possi-
ble particle trajectories with the given boundary conditions, whereS[x(t)] is the classical action
of the entire pathx(t). The superposition gives rise to an “average path”, the expectation value
〈x(t)〉 in the given ensemble (c.f. Fig. 1, which shows a sample of paths in Euclidean, imaginary
time τ := −it , generated by a Monte Carlo simulation). The typical size ofthe deviationδx(τ)
of a general historyx(τ) = 〈x(τ)〉+δx(τ) from this expectation value can be computed explicitly,
yielding

〈δx(τ)2〉= h̄
2mω

coshωT −coshω(T −2τ)
sinhωT

, (2.1)

whereω is the oscillator’s frequency,T = τ f −τi is the total length of the time interval considered,
and the timeτ runs fromτi = 0 to T. Anticipating a similar quantum superposition in gravity,
where each “path” will represent a curved spacetime, we willbe interested both in the “average
universe” and deviations from it. In this case, the scale of quantum fluctuations of some linear
distancex is expected to be〈|δx|〉 ∝

√
h̄G instead of the〈|δx|〉 ∝

√

h̄/mω of the particle case, with
G denoting Newton’s constant.

Quantum gravity from causal dynamical triangulations is a nonperturbative and background-
independent realization of the formalgravitational path integral(a.k.a. the “sum over histories”)
on a differential manifoldM,

Z(G,Λ) =
∫

G (M)= Lor(M)
Diff (M)

D [gµν ] eiSEH[gµν ], (2.2)

whereSEH is the four-dimensional Einstein-Hilbert action,Λ the cosmological constant, and the
path integral is to be taken over all spacetimes[gµν ] ∈ G (M) (Lorentzian metricsgµν modulo
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diffeomorphisms), with specified boundary conditions. In other words, each path is now a four-
dimensional, curved spacetime geometry[gµν ], which can be thought of as a three-dimensional,
spatial geometry developing in time. The weight associatedwith each[g] ∈ G (M) is given by the
Einstein-Hilbert action

SEH[g] =
1

16πG

∫

d4x
√

−detg(R[g,∂g,∂ 2g]−2Λ). (2.3)

To evaluate this quantum field-theoretic path integral, oneproceeds in close analogy with the path-
integral quantization of the nonrelativistic particle described above. The latter is defined as the
continuum limit of a regularized sum over paths, where the contributing “virtual” paths are taken
from an ensemble of piecewise straight paths, with the time intervala for each step going to zero in
the limit. The method of CDT turns the corresponding gravitational path integral (2.2) into a well-
defined regularized and finite expression, which can be evaluated and whose continuum limit can
be studied systematically [7]. The CDT prescription consists in representing the spaceG (M) of all
Lorentzian spacetimes in terms of a set of triangulated, piecewise flat (ie. piecewise Minkowskian)
manifolds2.

The idea of approximating curved spacetimes by much simpler, triangulated objects was intro-
duced in the classical theory of General Relativity by Regge[8], and first applied in the quantum
context in a seminal paper by Roček and Williams [9]. Note that the objectives of the classical
and quantum theories differ significantly: in the former, one usually wants to approximate a given,
classical solution to the Einstein equation locally as wellas possible. By contrast, when using such
geometries in the path integral, one wants to approximate the space ofall geometries. It should
be pointed out that just like in the particle case, where the path integral in the continuum limit
is dominated by nowhere differentiable paths, typical geometries contributing to the gravitational
path integral also turn out to be highly nonclassical.

The geometry of the triangulated manifolds is almost everwhere flat and therefore trivial, and
can carry curvature in a delta function-like manner only at its two-dimensional subsimplices (the
triangles), where three or more four-simplices meet. This regularization in terms of dynamical
lattices implies a vast truncation of the number of degrees of freedom, from the local field tensor
gµν(x) to a discrete set of edge lengths for the four-simplices, plus the information of which pairs
of simplices are glued together pairwise.

For the purposes of causal dynamical triangulations, the simplicial approximationGa,N of G

contains all simplicial manifoldsT obtained from gluing together at mostN four-dimensional,
triangular building blocks of typical edge lengtha, with a again playing the role of a UV cut-off
(see Fig. 2). What makes the constructioncausalis the fact that the gluing of the Minkowskian four-
simplices respects a global notion of (proper) time, akin tothe requirement of global hyperbolicity
usually imposed in classical gravity. The regularized gravitational path integral in CDT is then
given by

ZCDT
a,N = ∑

triangulated causal
spacetimesT∈Ga,N

1
CT

eiSRegge[T], (2.4)

2Unlike in the particle case, there is no embedding space; allgeometric spacetime data are defined intrinsically, just
like in the classical theory.
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t

t+1

(4,1)                                        (3,2)

Figure 2: The two fundamental building blocks of CDT are four-simplices with flat, Minkowskian interior.
They are spanned by spacelike edges, which lie entirely within spatial slices of constant proper timet, and
timelike edges, which interpolate between adjacent slicesof integer time. A building block of type(m,n)
hasm of its vertices in slicet, andn in slicet +1.

whereSRegge is the Regge version of the Einstein-Hilbert action associated with the simplicial
spacetimeT, andCT denotes the order of its automorphism group (see [10, 11] or the recent reviews
[12] for an explicit expression ofSReggeas well as other construction details). The discrete volume
N acts as an infrared cutoff. We still need to consider a suitable continuum or scaling limit

ZCDT := lim
N→∞
a→0

ZCDT
a,N (2.5)

of (2.4), while renormalizing the original bare coupling constants of the model, in order to arrive
at a theory of quantum gravity.3 The two limits in (2.5) are usually tied together by nominally
keeping fixed a physical four-volumeV4 := a4N. In order to make the evaluation ofZ amenable
to Monte Carlo simulations, one still needs to convert the sum over complex amplitudes to a sum
over real Boltzmann weights. Despite the fact that no suitable Wick rotation is known for arbitrary
curved metrics, such a prescription fortunately does existfor the causal triangulations under con-
sideration [7]. As is familiar from lattice field theory, onethen takesa→ 0, such that the individual
discrete building blocks shrink to zero. This should be contrasted with some other approaches to
quantum gravity, which postulate the existence of fundamental discreteness at the Planck scale, and
consequently identify the lattice spacinga with the Planck lengthℓPl. In this case one never takes
a continuum limita → 0, which has the disadvantage that the quantum dynamics at the Planck
scale isnot universal and has a large degree of arbitrariness. In CDT applications, since the limit
a→ 0 can in practice never be reached on a finite lattice, one mustmake sure thata is always much
smaller than the scale at which one is trying to extract physical results.

Let us summarize the key features of the construction schemethus introduced. Unlike what
is possible in the continuum theory, the path integral (2.4)is defined directly on the physical con-
figuration space ofgeometries. It is nonperturbative in the sense of including geometrieswhich
are “far away” from any classical solutions, and it is background-independent in the sense of per-
forming the sum “democratically”, without distinguishingany given geometry (say, as a preferred
background). However, these attractive properties of the regularized path integral are only useful
becausewe are able to evaluate ZCDT quantitatively, with an essential role being played by Monte

3Note that the existence of a physically meaningful limit is not automatic, but something that needs to be shown.
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Figure 3: The phase diagram of Lorentzian quantum gravity from CDT, with κ0 andκ4 denoting the bare
inverse Newton’s constant and (up to an additive shift) the bare cosmological constant. After fine-tuning
to the subspace where the cosmological constant is critical(tantamount to performing the infinite-volume
limit), there are three phases: A and B (the Lorentzian analogues of the degenerate branched-polymer and
crumpled phases of the Euclidean approach), and anew phase C, where an extended, four-dimensional
universe emerges. The parameter∆ in CDT parametrizes a finite relative scaling between space-and time-
like distances which is naturally present in the Lorentziancase.

Carlo simulations. These, together with the associated finite-size scaling techniques [13], have en-
abled us to extract information about the nonperturbative,strongly coupled quantum dynamics of
the system, which is currently not accessible by analyticalmethods, neither in this nor any other
approach to quantum gravity. This mirrors the role played bylattice simulations in determining the
nonperturbative behaviour of QCD (although one should keepin mind that the latter is a theory we
already knowmuchmore about than quantum gravity).

As far as we are aware, CDT is the only nonperturbative approach to quantum gravity which
has been able to dynamically generate its own, physically realistic background from nothing but
quantum fluctuations. More than that, because of the minimalist set-up and the methodology used
(quantum field theory and critical phenomena), the results obtained are robust in the sense of being
largely independent of the details of the chosen regularization procedure and containing few free
parameters. As we already pointed out in Sec. 2 above, it is therefore one of the rare instances
of a candidate theory of quantum gravity which can potentially be falsified. Our investigations
of both the quantum properties and the classical limit of this candidate theory are at this stage
not sufficiently complete to provide conclusive evidence that we have foundthecorrect theory of
quantum gravity. However, results until now have been unprecedented and very encouraging, and
have thrown up a number of nonperturbative surprises, some of which we will summarize next.

3. Key findings of CDT – the phase diagram

One important lesson learned for nonperturbative gravitational path integrals from CDT quan-
tum gravity is that the ad-hoc prescription of integrating over curved Euclideanspacesof metric
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signature (++++) instead of the physically correct curved Lorentzian spacetimesof metric signa-
ture (−+++) generally leads to inequivalent and (ind=4) incorrect results. Euclidean quantum
gravity, as advocated by Hawking and others [14], adopts theEuclidean version of the path integral
mainly for the technical reason of being able to use real weights exp(−Seu) instead of the complex
amplitudes exp(iSlor) in its evaluation. The same is done in perturbative quantum field theory on
flat Minkowski space, where one can rely on the existence of a well-defined Wick rotation to relate
correlation functions in either signature, an option that isnotavailable in continuum gravity beyond
perturbation theory on a Minkowski background.

CDT quantum gravity has given us the first explicit example ofa nonperturbative gravitational
path integral (in a toy model of two-dimensional gravity [5]) which is exactly soluble and leads
to distinct and inequivalent results, depending on whetherthe sum over histories is taken over
Euclidean spaces or Lorentzian spacetimes. (More precisely, the latter are Euclidean spaces which
are obtained by Wick rotation – whichdoesexist for the class of simplicial spacetimes under
consideration – from Lorentzian spacetimes). Only those histories are summed over which possess
a global time slicing with respect to which no spatial topology changes are allowed to occur. After
Wick rotation, this set constitutes a strict subset of all Euclidean (triangulated) spaces. Note that
general Euclidean spaces possess no natural notion of time or causality and in this sense branching
in all directions is always present.

A crucial insight of CDT quantum gravity is that a similar result holds also in four dimensions.
The geometric degeneracy of the phases (in the sense of statistical systems) found in Euclidean
dynamical triangulations and the resulting absence of a good classical limit [15, 16] can again in
part be traced to the proliferation of branching “baby universes”. As demonstrated by the CDT
results in [6, 10], the requirement of microcausality (absence of causality-violating points) of the
individual path integral histories leads to a different phase structure, compared with the previous
Euclidean approach. The breakthrough result of LorentzianCDT is that its phase diagram now
possesses a third andqualitatively newphase, in which the universe on large scales is extended and
four-dimensional (Fig. 3), exactly as required by classical General Relativity! As indicated on the
figure, to obtain an infinite-volume limit the bare cosmological constantκ4 has to be fine-tuned
to the critical surface fromabove, sinceκ4 > κcrit

4 characterizes the region where the (Euclidean)
partition functionZCDT exists and is finite.

On the critical surface, phases A and B can be understood as Lorentzian analogues of the two
degenerate phases of the Euclidean models, and do not appearinteresting from a continuum point
of view [10]. The new and physically interesting phase – moreon which below – is phase C. What
is curious about the phase structure of four-dimensional CDT quantum gravity is its resemblance
with that of Hǒrava-Lifshitz gravity [17], which has been spelled out further in [18, 19]. It gives
rise to the intriguing conjecture that there may be a universal phase diagram governing systems of
higher-dimensional, dynamical geometry, and accomodating a variety of gravity theories, some of
which may be anisotropic in space and time. Another questionthat arises is that of the order of the
phase transitions between the three phases, indicated by the red lines in Fig. 3. Their determination
is numerically challenging, and a preliminary investigation of the A-C transition in [20] turned out
inconclusive. Some of these problems have now been overcomeand new results on both the A-C
and the B-C transition will appear in due course [21].

8
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Figure 4: The volume profiles of typical path integral configurations in phases A, B and C (no averaging
over histories involved). Phase C (bottom figure) is the one where extended four-dimensional geometries
emerge. The figures showonly the curvesV3(τ) – made into bodies of revolution about the horizontal time
axis – and no local fluctuations of geometry.

4. Key findings of CDT – the dynamical emergence of spacetime as we know it

What is the nature of the extended spacetime found in phase C of CDT quantum gravity,
and what quantitative criteria do we apply to distinguish between the three phases? Examining
individual path integral histories will only be of limited use, since in the limita→ 0 their geometry
will become highly singular, similar to that of the nowhere differentiable paths which constitute
the carrier space of the path integral of the nonrelativistic particle in the continuum limit [22].
What we must do instead is to define and measure geometricquantum observables, evaluate their
expectation values on the ensemble of geometries and draw conclusions about the behaviour of the
“quantum geometry” generated by the computer simulations (that is, the ground state of minimal
Euclidean action).

One such observable is given by the overall shape of the universe, more precisely, the three-
volumeV3(τ) as a function of proper timeτ . Already by comparing Monte Carlo “snapshots” of
typical shapes, one observes completely different qualitative behaviours in the three phases (Fig.
4). Remarkably, inside phase C the microscopic building blocks superposed in the nonperturbative
path integral arrange themselves into an extended quantum spacetime whose macroscopic shape
is that of the well-knownde Sitter universe[23, 11]. This amounts to a highly nontrivial test of
the classical limit, about which it is notoriously difficultto make any definite statements in most
models of nonperturbative quantum gravity. The dynamical mechanism by which this happens is
not understood in detail, however, it is clear that “entropy” (in other words, the measure of the path
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Figure 5: The average shape〈V3(τ)〉 of the CDT quantum universe in phase C, fitted to that of Euclidean
de Sitter space (the “round four-sphere”) with rescaled proper time,〈V3(τ)〉 = acos3(τ/b). Measurements
taken for a universe of four-volumeV4 = 160.000 and time extensionT = 80. The fit of the Monte Carlo
data to the theoretical curve for the given values ofa andb is impressive. The vertical boxes quantify the
typical scale of quantum fluctuations scale around〈V3(τ)〉.

integral, or the number of times a given Boltzmann factor exp(−S) is realized) plays a crucial role in
producing the outcome. It means that the nature of this semiclassical limit istruly nonperturbative,
in the sense that the tentative continuum limit of the path integral is found in a region of the bare
coupling constant space where the entropy of the various geometric configurations contributes at
the same order of magnitude as the exponential of the action.As we have pointed out in [20],
this is reminiscent of certain phenomena in condensed matter physics, like the Kosterlitz-Thouless
transition in the XY model.

The manner in which we have identified (Euclidean) de Sitter space from the computer data is
by looking at the expectation value of the volume profileV3(t). From the line element of Lorentzian
de Sitter space in proper-time coordinates,

ds2 =−dt2+c2cosh2
( t

c

)

dΩ2
(3), (4.1)

with dΩ2
(3) denoting the line element of the unit three-sphere, one can immediately read off the

classical volume profile

V3(t) = 2π2(ccosh
t
c
)3, c= const, (4.2)

which for t > 0 gives rise to the familiar, exponentially expanding universe, thought to give an
accurate description of our own universe at late times, whenmatter can be neglected compared
with the repulsive force due to the positive cosmological constant. Because the CDT simulations for
technical reasons have to be performed in the Euclidean regime, we must compare the expectation
value of the shape with those of the analytically continued expression of (4.2), with respect to the
Euclidean timeτ :=−it . After normalizing the overall four-volume and adjusting computer proper
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Figure 6: The spectral dimensionDS(σ) of the CDT-generated quantum universe (lower curve, error bars
not included), contrasted with the corresponding curve fora classical spacetime, which for sufficiently short
distances is simply given by the constant functionDS(σ) = 4.

time by a constant to match continuum proper time, the average volume profile obtained is depicted
in Fig. 5.

A few more things are noteworthy about this result. First, despite the fact that the discrete
CDT construction treats space and time differently, at least on large scales the full isotropy is
restored by the ground state of the theory for precisely one choice of identifying proper time in the
continuum. Second, the computer simulations necessarily have to be performed for finite, compact
spacetimes, which also means that a specific choice has to be made for the spacetime topology.
For simplicity, to avoid having to specify boundary conditions, it is usually chosen to beS1×S3,
with time compactified4 and spatial slices which are topological three-spheres. What is reassuring
is the fact that the bias this choice could in principle have introduced is “corrected” by the system,
which clearly is driven dynamically to the topology of a four-sphere (or as close to it as is permitted
by the kinematical constraint imposed on the three-volume,which is not allowed to vanish at any
time). Lastly, we have also analyzed the quantum fluctuations around the de Sitter background;
they match to good accuracy a continuum saddlepoint calculation in minisuperspace [11], which is
one more indication that we are indeed on the right track.

5. Key findings of CDT – getting a handle on Planckian physics

Having presented some of the evidence that CDT quantum gravity does possess the correct
classical limit, let us now turn to thenewphysics we are ultimately after, namely, what happens
to gravity and the structure of spacetime at or near the Planck scale. One way of probing the
short-scale quantum structure of the universe is by settingup adiffusion processon the ensemble
of spacetimes, and studying an associated quantum observable. For a classical manifold, it is well
known that the speed with which an initially localized diffusion process spreads depends on the
dimension of the space. Conversely, given a spaceM of unknown properties, it can be assigned
a so-calledspectral dimension DS by studying the leading-order behaviour of the average return
probability RV(σ) (of random diffusion paths onM starting and ending at the same pointx) as a

4the period is chosen much larger than the time extension of the universe and does no influence the result
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function of the diffusion timeσ ,

RV(σ) :=
1

V(M)

∫

M
ddx P(x,x;σ) ∝

1

σDS/2
, σ ≤V2/DS, (5.1)

whereV(M) is the volume ofM, andP(x,y;σ) the solution to the heat equation onM. Diffusion
processes can be defined on very general spaces, for example,on fractals, which are partially char-
acterized by their spectral dimension (usually not an integer, see [24]). Relevant for the application
to quantum gravity is that the expectation value〈RV(σ)〉 can be measured on the ensemble of CDT
geometries, giving us the spectral dimension of the dynamically generated quantum universe, with
the astonishing result thatDS(σ) depends on the linear scale

√
σ probed [25]! The measurements

from CDT quantum gravity, extrapolated to all values ofσ , lead to the lower curve in Fig. 6, with
asymptotic valuesDS(0) = 1.82±0.25, signalling highly nonclassical behaviour near the Planck
scale, andDS(∞) = 4.02± 0.1, which is compatible with the expected classical behaviour. We
conclude that the quantum geometry dynamically generated by CDT is definitely not a classical
manifold on short scales.

What is even more remarkable is the fact that the same kind of short-scale “dynamical di-
mensional reduction” has been found recently in a couple of different quantum field-theoretic
approaches to quantum gravity, namely, a nonperturbative renormalization group flow analysis
of gravity [26] and the novel Hǒrava-Lifshitz quantum gravity already mentioned earlier [27].
Whether there is a common underlying reason for this remarkable coincidence – which might tell
us something deeper about the nature of quantum gravity – remains to be understood. Within the
CDT framework, further indications for nonclassicality atPlanckian distances come from measure-
ments of geometric structures in spatial slicesτ = const. [10], including a measurement of their
Hausdorff and spectral dimensions, and of shell decompositions of both space and spacetime [28].

6. Quantum gravity - quo vadis?

For a long time now, there has been plenty of abstract reasoning on the nature of nonperturba-
tive quantum gravity, that is, what the theory should look like and what kind of properties it should
have if only we knew what it was. On the one hand, it is of course natural to appeal to general
principles in the absence of any experimental or observational guidance on how to construct the
theory. On the other hand, our so-called intuition – mostly coming from studying classical gravity
and quantum fields on a fixed background – may seriously mislead us when speculating about the
nature of spacetime at the Planck scale. What lattice quantum gravity (in the form of dynamical
triangulations or causal dynamical triangulations) provides us with is an “experimental lab”, a cal-
culational framework to study systems of fluctuating geometry quantitativelyin a nonperturbative
regime. In dimension two, where comparisons with analytical models are available, this leads to
sensible results. In dimension four, it is currently the only way to extract nonperturbative infor-
mation about these systems. In particular, it has uncoveredseveral completely unexpected, but
presumably generic features, for example, the fact that thesignature of the geometry can make
a crucial difference, the fact that a superposition ofd-dimensional geometries is not necessarily
d-dimensional, indeed, that such superpositions are usually so degenerate that they possess no
classical limit at all, and the fact that the conformal divergence of the Euclidean path integral can
be cured by “entropic contributions”.
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CDT’s toolbox has enabled us to uncover these nonperturbative properties and at the same
time make quantitative statements about covariant properties of quantum geometry, including its
dimension and volume profile. In principle the framework is also able to test nonperturbative
predictions from other fundamental theories containing gravity, if and when they will be made,
subject only to the usual numerical limitations of the lattice. Clearly, much remains to be done, but
the results already obtained underline the power and utility of lattice methods, also in situations
where spacetime itself is dynamical.
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[19] P. Hǒrava,General covariance in gravity at a Lifshitz point[1101.1081, hep-th].

[20] J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, J. Gizbert-Studnicki, T. Trzesniewski,The
semiclassical limit of causal dynamical triangulations, Nucl. Phys. B849(2011) 144-165
[1102.3929, hep-th].

[21] J. Ambjørn, S. Jordan and R. Loll, to be published.

[22] M. Reed and B. Simon,Methods of modern mathematical physics, vol. 2, Academic Press (1975).

[23] J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll,Planckian birth of the quantum de Sitter universe,
Phys. Rev. Lett.100(2008) 091304 [0712.2485, hep-th].

[24] D. ben-Avraham and S. Havlin,Diffusion and reactions in fractals and disordered systems,
Cambridge University Press (2000).

[25] J. Ambjørn, J. Jurkiewicz and R. Loll,Spectral dimension of the universe, Phys. Rev. Lett.95 (2005)
171301 [hep-th/0505113].

[26] O. Lauscher and M. Reuter,Fractal spacetime structure in asymptotically safe gravity, JHEP0510
(2005) 050 [hep-th/0508202].
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