
Polydispersity Stabilizes Biaxial Nematic Liquid Crystals

S. Belli,1 A. Patti,2 M. Dijkstra,3 and R. van Roij1

1Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
2Institute of Advanced Chemistry of Catalonia, CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain

3Soft Condensed Matter Group, Debye Institute for NanoMaterials Science, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, The Netherlands

(Received 23 June 2011; published 30 September 2011)

Inspired by the observations of a remarkably stable biaxial nematic phase [van den Pol et al., Phys. Rev.

Lett. 103, 258301 (2009)], we investigate the effect of size polydispersity on the phase behavior of a

suspension of boardlike particles. By means of Onsager theory within the restricted orientation (Zwanzig)

model we show that polydispersity induces a novel topology in the phase diagram, with two Landau

tetracritical points in between which oblate uniaxial nematic order is favored over the expected prolate

order. Additionally, this phenomenon causes the opening of a huge stable biaxiality regime in between

uniaxial nematic and smectic states.
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Since its first prediction back in the early 1970s [1–3],
the biaxial nematic (NB) phase has strongly attracted the
interest of the liquid crystal (LC) community [4]. In con-
trast to the more common uniaxial nematic (NU) phase,
where cylindrical symmetry with respect to the nematic
director determines optical uniaxiality, the NB phase is
characterized by an orientational order along three direc-
tors and consequently by the existence of two distinct
optical axes. The prospect of inducing orientational order-
ing along three directions, while maintaining a nematic
fluidlike mechanical behavior [5], renders biaxial nematics
preeminent candidates for next generation LC-based dis-
plays [6]. Although experimental evidence of stable NB

phases was reported already 30 years ago in lyotropic LCs
[7], in thermotropics this result was achieved in systems of
bent-core molecules only a few years ago [8]. Actually,
when trying to experimentally reproduce an NB phase, one
often encounters practical problems related to its unambig-
uous identification [4] and to the presence of competing
thermodynamic structures [9–11]. Stabilizing NB states is
therefore an open, challenging scientific problem with
huge potential applications. Motivated by the exciting
results of a recent experiment on a colloidal suspension
[12], we use here a mean-field theory to investigate the role
played by size polydispersity on the stability of biaxial
nematics in systems of boardlike particles. We show that a
difference in the particle volume of a binary mixture can
favor oblate uniaxial orientational ordering over prolate, in
sharp contrast with the behavior of the pure systems. This
phenomenon gives rise to a new phase-diagram topology
due to the appearance of two Landau tetracritical points,
leading to a wider region of NB stability. This feature is
shown to hold also for a larger number of components, thus
offering an explanation to the results of Ref. [12]. Finally,
we argue that our findings could furnish a new way to look
for biaxiality in thermotropic LCs.

At low density in lyotropics, and at high temperature in
thermotropics, the NB phase appears as a crossover regime
in between ‘‘rodlike’’ and ‘‘platelike’’ behavior [2]. In fact,
one can distinguish between the NU phase developed by
rods, in which particles align the longest axis along a
common direction (uniaxial nematic prolate, Nþ), and
that developed by plates, in which particles align the short-
est axis (uniaxial nematic oblate, N�). A natural candidate
system for developing an NB phase is a binary mixture of
rods and plates [13]; however, in most cases a demixing
transition into two uniaxial nematic phases, i.e., Nþ and
N�, prevents its stabilization [10,11]. Alternatively, a stable
NB state is expected in a system of particles with cuboid
(i.e., rectangular parallelepiped) shape defined by the
lengths of the principal axes L � W � T, as depicted in
Fig. 1(a) [3]. In this case, it is convenient to introduce a
shape parameter �, defined by � ¼ L

W � W
T . By increasing

the packing fraction and disregarding the possible stability
of inhomogeneous phases, a system of cuboids undergoes
an I ! Nþ ! NB sequence of phases if � > 0, whereas an

FIG. 1. (a) Cuboidal particle with dimensions L�W � T.
(b) Schematic representation of a system of freely rotating
cuboids in the biaxial nematic phase NB, (c) the uniaxial nematic
prolate Nþ, and (d) the uniaxial nematic oblate N�. In this Letter
the rotational degrees of freedom are discretized according to the
Zwanzig model [18].
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I ! N� ! NB sequence is found if � < 0 (I stands for the
isotropic phase) [14]. A schematic representation of these
nematic phases is given in Figs. 1(b)–1(d). The case � ¼ 0
describes the optimal ‘‘brick’’ shape exactly in between
‘‘rodlike’’ and ‘‘platelike.’’ In this case the NU phase is
suppressed and substituted by a second-order INB transition
[14].

The first experimental realization of the hard-cuboid
model was found only recently in a colloidal suspension
of boardlike mineral goethite particles [12]. By producing
particles with shape parameter � ’ 0:1 close to zero (hLi �
hWi � hTi ¼ 254� 83� 28 nm3 and size polydispersity
of 20%–25%), the authorswere able to produce anNB phase
stable over a pressure range surprisinglymuchwider than to
be expected from theory [9,15] and simulations [16] for
particleswhose shape parameter deviates even slightly from
zero. Even more interestingly, the authors affirm that noNU

phase was observed, contrasting Ref. [14]. They suggest
that a possible reason for this disagreement should be found
in ingredients whose effects have never been studied so far
because of their complexity, i.e., fractionation, sedimenta-
tion, and polydispersity. These unexpected results motivate
our interest in analyzing the effect of the above mentioned
ingredients, in particular, polydispersity, on the stability of
the NB phase in a fluid of hard cuboids.

We consider an M-component suspension of N� colloi-
dal cuboidal particles of species � ¼ 1; . . . ;M with dimen-
sions L� �W� � T� (L� >W� > T�) in a volume V at
temperature T. The total number density of colloids is n ¼P

�N�=V, the mole fraction of species� is x� ¼ N�=ðnVÞ,
and the packing fraction is � ¼ n

P
�x�L�W�T�. The

theoretical framework used in this Letter consists of
Onsager theory of LCs [17], which is a density functional
theory truncated at second-virial order. In order to facilitate
the calculations we follow Zwanzig by restricting the
orientations of the particles to the six in which their prin-
cipal axes are aligned along a fixed Cartesian frame [18].
Although quantitative agreement with real systems is not
expected because of the simplifications introduced in the
model, the same model was shown to successfully predict
nontrivial phenomena such as demixing in rod-plate mix-
tures [10], orientational wetting due to confinement, and
capillary nematization [19]. Moreover, we expect that
transitions between different nematic phases and smectic
phases are better described by this model than transitions
from isotropic to nematics. In density functional theory the
free energy of the system is expressed as a functional of the
local density ��

i ðrÞ of particles of species � ¼ 1; . . . ;M
with orientation i ¼ 1; . . . ; 6 as [20]

F ½��
kBT

¼
Z
dr
X

�;i

��
i ðrÞfln½��

i ðrÞ�3
���1gþF ex½��

kBT
; (1)

where kB is the Boltzmann constant and �3
� the thermal

volume of species �. At second-virial order the excess free
energy F ex reads

F ex½��
kBT

¼ � 1

2

Z
drdr0

X

�;�0;i;i0
f��

0
ii0 ðr� r0Þ��

i ðrÞ��0
i0 ðr0Þ;

(2)

where f��
0

ii0 ðrÞ ¼ exp½�u��
0

ii0 ðrÞ=ðkBTÞ� � 1 is the Mayer

function, defined in terms of the pairwise potential

u��
0

ii0 ðrÞ. By neglecting spatial modulations, i.e., by impos-

ing ��
i ðrÞ ¼ ��

i , the free energy Eq. (1) reduces to an
Onsager-type functional whose minimization (under the
constraints that

P
i�

�
i ¼ nx� for all � ¼ 1; . . . ;M) allows

us to identify the spatially homogeneous equilibrium phase
[21]. Since at sufficiently high density one expects spa-
tially inhomogeneous phases to be thermodynamically
favored, we apply bifurcation theory [14] to determine
the limit of stability of the homogeneous equilibrium
phases with respect to smectic fluctuations. By considering
spatial density modulations only along the z axis, i.e.,
��
i ðrÞ ¼ ��

i ðzÞ in Eq. (1), the smectic bifurcation density
is the minimum density at which the Hessian second-
derivative matrix of the free energy has an eigenvalue equal
to zero [21].
Our analysis starts by considering the simplest case of

polydispersity, i.e., a mixture of M ¼ 2 components with
mole fractions x1 and x2 ¼ 1� x1, respectively. Among
the different ways one can parametrize polydispersity, our
preliminary analysis suggests to consider volume polydis-
persity (i.e., same particle shape but different volume).
Therefore, we study the phase behavior of a binary mixture
of hard cuboids whose dimensions are

L1 ¼ Lð1þ sÞ; W1 ¼ Wð1þ sÞ; T1 ¼ Tð1þ sÞ;
L2 ¼ Lð1� sÞ; W2 ¼ Wð1� sÞ; T2 ¼ Tð1� sÞ;

(3)

where the parameter s 2 ½0; 1Þ describes the degree of
bidispersity. Notice that Eq. (3) implies the same aspect
ratios for both species L1=T1 ¼ L2=T2 ¼ L=T and
W1=T1 ¼ W2=T2 ¼ W=T (hence �1 ¼ �2 ¼ �). Here we
set L=T ¼ 9:07 and W=T ¼ 2:96 (� ¼ 0:1) in order to
reproduce the experimental system of Ref. [12], thereby
neglecting the small effect of the ionic double layer used
by the authors to interpret the experimental data.
Figure 2 shows density-composition phase diagrams of

binary mixtures (M ¼ 2) of boardlike particles with the
experimental shape parameter � ¼ 0:1 for various bidis-
persity parameters (a) s ¼ 0:15, (b) 0.18, (c) 0.20, and
(d) 0.30, featuring isotropic (I), uniaxial nematic (Nþ
and N�), biaxial nematic (NB) and smectic (Sm) phases.
Because of the near-perfect ‘‘biaxial’’ shape of the parti-
cles, fractionation is extremely weak and invisible on the
scale of Fig. 2 [21]. At the extreme mole fractions x1 ¼ 0
and x1 ¼ 1 (pure systems) all phase diagrams feature the
phase sequence I ! Nþ ! Sm that is well known and
expected for board-shaped particles with � > 0, with the
NB phase metastable with respect to the Sm phase
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[9,14,21]. However, for all s > 0 there is an intermediate
composition regime in which the NB phase is found to be
stable, the more so for increasing s. Whereas the opening
up of a stable NB regime is only quantitative for s ¼ 0:15,
there is a qualitative change of the phase-diagram topology
beyond s ¼ 0:18, where two Landau tetracritical points
appear [open circles in Figs. 2(b)–2(d)]. In between these
critical points a region of stable N� phase, which is not
expected for the rod-shaped particles (� > 0) of interest,
opens up. Clearly, Figs. 2(c) and 2(d) show that this un-
expected N� regime enlarges with bidispersity, accompa-
nying a further increased NB stability. In other words,
excluded-volume interactions in mixtures of board-shaped
rods with the same shape and different volume tend to
favor NB stability as a consequence of an unexpected
Nþ-N� competition. At higher packing fractions the in-
creased NB stability with respect to the Sm phase is not a
surprise, given that regular packing into layers is hindered
by size differences between particles [15].

It is interesting to understand how the remarkable fea-
tures of the binary mixture described in Fig. 2 change with
the shape of the particles. Here we are mainly interested in
the following two properties of the phase diagram: (i) the
minimum threshold bidispersity sthr at which the Landau
tetracritical points appear and (ii) the tetracritical mole
fractions x�1 in terms of the bidispersity s. We change the

particle shape (� ¼ L=W �W=T) by fixing in Eq. (3) one
aspect ratio (W=T) and varying the remaining one (L=T).
Figure 3(a) shows for W=T ¼ 2:0, 2.96, 4.0, and 5.0 a
similar trend: the minimum threshold bidispersity sthr in-

creases the more the shape deviates from the optimal brick
one. At the same time, the fact that at fixed � the threshold
bidispersity decreases withW=T, indicates that the appear-
ance of the Landau tetracritical points is favored by an
increasing aspect ratio of the particles, in qualitative agree-
ment with Ref. [22]. Moreover, by fixing the aspect ratio
W=T ¼ 2:96, we can observe the tetracritical mole fraction
as a function of the bidispersity for different values of
� ¼ 0:01, 0.1, and 0.25 in Fig. 3(b). The closer the shape
is to the optimal brick, the wider is the difference in value
of the two tetracritical mole fractions x�1 and, consequently,
the stability regime of the N� phase. Finally, we note that
no critical composition is observed if the particles are
closer to the ‘‘platelike’’ shape, i.e., if �1 ¼ �2 ¼ � < 0
one finds the N� in between the I and NB phases for every
value of s and x1 (not shown); the Nþ phase does not occur
in this case.
In order to analyze proper polydispersity, and thus more

realistically model the experimental system of Ref. [12],
we extend our phase-diagram calculations to a system with
M ¼ 21 components of cuboids. Inspired by our analysis
of the binary mixture and by the experiments [12], we fix
the aspect ratios of all species to L�=T� ¼ L=T ¼ 9:07
and W�=T� ¼ W=T ¼ 2:96, such that (i) all species have
the same shape �� ¼ � ¼ 0:1 and (ii) the size of each
species is completely determined by T�. We consider T�

to be distributed according to a discretized Gaussian func-
tion with average hTi ¼ 28 nm and standard deviation
�hTi, where � is the size polydispersity. In general the
calculation of a (high-dimensional) phase diagram of a
multicomponent system is a daunting task [23]. In this
case, however, it is justified to ignore fractionation [21],
which reduces the problem to minimizing the functional
with respect to ��

i at fixed nx�. The resulting phase dia-
gram in the density-polydispersity representation is shown
in Fig. 4(a), featuring again I, Nþ, N�, NB, and Sm
equilibrium states and a tetracritical point at � ’ 24%,
which is surprisingly close to the size polydispersity in
the experiments [12]. The strikingly large stability regime
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FIG. 2 (color online). Phase diagram of a binary mixture of
hard cuboids in terms of packing fraction � vs mole fraction of
the larger component x1 showing isotropic (I), uniaxial (Nþ and
N�) and biaxial (NB) nematic and smectic (Sm) phases. The size
of the particles is defined by Eq. (3) with L=T ¼ 9:07, W=T ¼
2:96 (� ¼ 0:1) and bidispersities (a) s ¼ 0:15, (b) s ¼ 0:18,
(c) s ¼ 0:20, (d) s ¼ 0:30. The solid lines separate different
homogeneous phases, the dashed lines indicate the limit of
stability of the homogeneous phases with respect to smectic
fluctuations, whereas the open circles represent the Landau
tetracritical points.
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binary mixture of hard cuboids for different shape of the parti-
cles [cf. Eq. (3)].
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of the NB is caused by the reduced stability of Sm and Nþ
[cf. Fig. 4(b)], not unlike in the binary case. However, a
direct INB transition similar to that observed in Ref. [12] is
not expected in this model due to the reentrant character of
the NþNB phase transition [cf. Fig. 4(c)].

In conclusion, by means of a mean-field theoretical
approach with discrete orientations we have shown that
size polydispersity strongly affects the phase behavior of
boardlike particles, driving the emergence of a novel to-
pology of the phase diagram. This topology change is due
to the appearance of Landau tetracritical points, which
in turn is related to a competition between the prolate
‘‘rodlike’’ ordering typical of the pure components and
the oblate ‘‘platelike’’ purely induced by the mixing. In
combination with the destabilization of the Sm phase, we
can conclude that polydispersity dramatically increases the
stability regime of the NB phase. The usual stability limi-
tations ofNB phases, such asNþ-N� demixing of rod-plate
mixtures and ordering into smectics, are therefore over-
come in the present system. Although this work focuses on
a particular value of the particles’ dimensions, its predic-
tions hold for a more general choice of the relevant pa-
rameters, as reported in Fig. 3. Moreover, we do not expect
the homogeneous phase behavior to be crucially dependent
on the form of the interaction (cuboidal), on the contrary it
should be qualitatively similar to other excluded-volume
interactions with the same symmetry (e.g., spheroid,
spheroplatelet).

Finally, it is tempting to consider this work in the
perspective of stabilizing NB thermotropic liquid crystals.
In this case, the soft-core character of the intermolecular
interactions does not allow for a univocal definition of
‘‘shape,’’ and van der Waals forces can significantly influ-

ence the phase diagram. Nonetheless, it is widely accepted
that hard-core models contain the essential physical ingre-
dients for a first-approximation description of the structure
of a molecular or colloidal fluid [24]. Following this inter-
pretation scheme, it is intriguing to wonder whether it is
possible to enhance the NB stability by considering two- or
multicomponent mixtures of molecules with biaxial sym-
metry and different size. We hope our findings will stimu-
late further research in this direction.
This work is financed by a NWO-VICI grant and is part

of the research program of FOM, which is financially
supported by NWO.
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FIG. 4 (color online). (a) Phase diagram of M ¼ 21 compo-
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