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Abstract. We calculate the spin-drag relaxation rate for a two-component
ultracold atomic Fermi gas with positive scattering length between the two-spin
components. In one dimension, we find that it vanishes linearly with
temperature. In three dimensions, the spin-drag relaxation rate vanishes
quadratically with temperature for sufficiently weak interactions. This quadratic
temperature dependence is present, up to logarithmic corrections, in the two-
dimensional (2D) case as well. For stronger interaction, the system exhibits a
Stoner ferromagnetic phase transition in two and three dimensions. We show that
the spin-drag relaxation rate is enhanced by spin fluctuations as the temperature
approaches the critical temperature of this transition from above.
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1. Introduction

Interest in electronic transport ranges from everyday applications to fundamental physics.
One of the most interesting phenomena that span this entire range is the influence of a
thermodynamic phase transition on the electrical conductivity. The most direct example is the
phase transition from a normal conductor to a superconductor characterized by a vanishing
resistance. The applications of this phenomenon are ubiquitous and the basic physics that
underlies the transition in superconductors, the Bose–Einstein condensation of fermionic pairs,
has emerged in research fields from astroparticle physics [1] to cold-atom systems [2, 3].

A system in between the latter two temperature extremes, in which analogies of
superconductivity have been predicted, is that of a two-dimensional (2D) electron–hole
bilayer [4, 5]. In this case, the pairs that condense are excitons formed by electrons from one
layer with holes in the other. The relevant transport probe is in this case the Coulomb drag
measurement [6]: a current I is driven through one layer, known as the ‘active’ layer, causing
a voltage drop VD in the other. As the layers are separated by an essentially impenetrable
tunnel barrier, the voltage drop is predominantly caused by Coulomb scattering, and the drag
resistivity ρD = VD/I has, up to logarithmic corrections, the characteristic quadratic Fermi-
liquid-like low-temperature dependence ρD ∝ T 2. When the excitons undergo Bose–Einstein
condensation, however, the drag resistivity is predicted to jump from the relatively small value
proportional to T 2 to a value equal to the ordinary resistivity of the active layer [7]. Although
conclusive evidence of exciton condensation is still lacking, two experimental groups [8, 9]
have recently reported the observation of an upturn in the drag resistivity as the temperature
is lowered. This upturn is interpreted as being due to strong pairing fluctuations that precede
exciton condensation [10], and thus serves as a precursor signal for the transition, similar to the
enhancement of conductivity in superconductors due to superconducting fluctuations above but
close to the critical temperature [11].

A closely related situation arises when the two layers of a 2D electron–electron bilayer
placed in a strong perpendicular magnetic field are close enough to allow the establishment of
interlayer coherence [12]. In this case, the two layers in the system can be labelled ‘up’ and
‘down’ along a ‘z’-axis, so that the which-layer degree of freedom becomes a spin one-half
pseudospin. Interlayer coherence in this language corresponds to pseudospin ferromagnetism
with an easy x–y-plane, since this orientation of the pseudospin describes a particle that is
neither in the left nor in the right layer, but in a coherent superposition of the two. Furthermore,
Coulomb drag becomes pseudospin drag, the mutual friction between two pseudospin states due
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to Coulomb scattering. This analogy prompted studies of spin drag, the frictional drag between
electrons with opposite spin projection, in a single semiconductor [13]. While the realization of
separate electric contacts to the two spin states remains an experimentally challenging problem,
the spin drag is observed indirectly, by measuring different diffusion constants for charge and
spin [14].

Because of the presence of other relaxation mechanisms, spin-drag effects are usually not
very large in semiconductors, and are even smaller in metals. This is completely different in
cold atomic gases, where scattering between different hyperfine spins is the only mechanism
to relax spin currents, and was considered both for fermionic atoms [15, 16] and for bosonic
ones [17]. In this paper, we consider spin drag in a two-component Fermi gas, in one, two and
three dimensions. We point out that a particularly interesting situation occurs when spin drag is
considered in a two-component Fermi gas that is close to a ferromagnetic instability [18]–[22],
as can occur for sufficiently strong and repulsive interactions in two and three dimensions. We
show that the spin drag is strongly enhanced as the ferromagnetic state is approached from the
normal side [23], as expected from the analogy between electron–hole bilayers and pseudospin
ferromagnets. In one dimension, however, where the ferromagnetic phase transition is absent,
the effects of spin drag vanish linearly with temperature. One of our motivations for considering
this effect is the recent observation of ferromagnetic correlations in a two-component Fermi gas
with strong repulsive interactions [24]. The fact that spin-polarized domains were not directly
observed adds to the theoretical interest [25] in this experiment. Because atoms are neutral, the
relevant experimental quantity is the spin-drag relaxation rate, which, for instance, determines
the damping rate of the spin-dipole mode in trapped cold-atom systems [16] and is thus
accessible experimentally. Interestingly, an electronic analogue of the spin-dipole mode also
exists [26].

The remainder of this paper is organized as follows. We first derive an expression for
the damping of the spin-dipole mode from the Boltzmann equation. As mentioned before, this
damping is determined by the spin-drag relaxation rate, which is subsequently evaluated in one,
two and three dimensions. We end the paper with our conclusions and a short discussion.

2. The spin-dipole mode and spin-drag relaxation rate

We consider a mixture of fermionic atoms of mass m in d dimensions, with two hyperfine states
denoted by |↑〉 and |↓〉. The grand-canonical Hamiltonian with external trapping potential V (x)
and chemical potential µ is given by

Ĥ =

∫
dd x

∑
σ∈{↑,↓}

ψ̂
†

σ (x)
(
−

h̄2
∇

2
x

2m
+ V (x)−µ

)
ψ̂σ (x)+ U

∫
dd x ψ̂

†

↑
(x)ψ̂

†

↓
(x)ψ̂↓(x)ψ̂↑(x),

(1)

in terms of fermionic creation and annihilation operators ψ̂
†

α(x) and ψ̂α(x), respectively. At
low temperatures s-wave scattering, described by a pseudopotential V (x − x ′)= Uδ(x − x ′),
dominates, and we have therefore omitted other interaction terms from this Hamiltonian. We
consider here only the balanced case in which there is an equal number of atoms N in each
hyperfine state.

Following the discussion in [27], we now derive an expression for the damping of the
spin-dipole mode from the Boltzmann equation for the distribution function fσ (x, k, t) for the

New Journal of Physics 13 (2011) 045010 (http://www.njp.org/)

http://www.njp.org/


4

atoms in spin state |σ 〉, given by

∂ f↑
∂t

−
1

h̄
∇V ·

∂ f↑
∂k

+
h̄k
m

·
∂ f↑
∂x

= 0coll[ f↑, f↓] , (2)

where we take the trapping potential to be harmonic V (x)= m
∑d

j=1 ω
2
j x

2
j/2. The equation for

f↓ is found by replacing f↑ ↔ f↓ in the above. Below we give an explicit expression for the
collision integral 0coll[ f ↑, f↓].

We solve this inhomogeneous Boltzmann equation by making the ansatz f↑(x, k, t)=

NF(εk−mv↑(t)/h̄ + V (x − x↑(t))), with a similar expression for f↓(x, k, t). Here, εk = h̄2k2/2m
is the single-particle dispersion and NF(ε)= [eβ(ε−µ) + 1]−1 is the Fermi–Dirac distribution
function with β = (kBT )−1 the inverse temperature. This ansatz is parameterized by the centre-
of-mass velocity vσ (t) and position xσ (t) of the atomic cloud of atoms in the spin state |σ 〉.
From this, we obtain the equations of motion

Nm
dv↑

dt
= −N

dV
(
x↑

)
dx↑

+ 0(v↓ − v↑, x↓ − x↑),

(3)

Nm
dv↓

dt
= −N

dV
(
x↓

)
dx↓

− 0(v↓ − v↑, x↓ − x↑),

with the function 0(v↓ − v↑, x↓ − x↑) given by

0(v↓ − v↑, x↓ − x↑)=

∫
dd x

∫
dd k
(2π)d

h̄k

×0coll

[
NF(εk−mv↓(t)/h̄ + V (x−x↓(t))), NF(εk−mv↑(t)/h̄ + V (x−x↑(t)))

]
, (4)

where

0coll[ f↓, f↑] =
(2π)d+1

h̄
U 2

∫
dd k2

(2π)d

∫
dd k3

(2π)d

∫
dd k4

(2π)d
δd(k + k2 − k3 − k4)δ(εk + εk2 − εk3 − εk4)

×
{
[1 − f↑(x, k, t)][1 − f↓(x, k2, t)] f↑(x, k3, t) f↓(x, k4, t)

− f↑(x, k, t) f↓(x, k2, t)[1 − f↑(x, k3, t)][1 − f↓(x, k4, t)]
}
.

We linearize the above equations using that 0(v, x)' 0′v due to the isotropy of the collision
integral. The linearized equations then yield a collective-mode spectrum with 2d modes,
corresponding to two types of oscillation in the d-dimensional trap. One set of modes is
undamped and has frequencies ω j , j ∈ {1, . . . , d}, and corresponds to an in-phase oscillation
of the two clouds in the harmonic trap. The other mode corresponds to the out-of-phase
spin-dipole oscillation of the two-spin states. This mode is damped as a result of the friction, i.e.
the spin drag between the two spin states during the oscillation. This friction is due to collisions
between particles of opposite spin and results in the transfer of momentum between the two
clouds, leading to spin drag and damping of these modes. These modes have the frequencies

ω
dip
j = −iγsd +

√
ω2

j − γ 2
sd. (5)

The imaginary part of the above frequencies gives the damping rate of the modes, and is given
by γsd ≡ (2τsd)

−1
= 0′/Nm with τsd being the spin-drag relaxation time. We conclude that the

spin-drag relaxation time determines the damping of the spin-dipole mode of the atomic clouds.
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Instead of performing the appropriate trap average shown in equation (4), we proceed by
giving an expression for τsd for a homogeneous system with density n per spin state for which
we, in the first approximation, take the central density in the trap to make a connection with
the inhomogeneous case. Since the density is highest in the centre of the trap, this somewhat
underestimates the spin-drag relaxation rate in one and two dimensions. (This is because in
this case the spin-drag relaxation rate becomes larger for smaller densities, cf equations (8)
and (12), at low temperatures.) In three dimensions, the spin-drag relaxation rate turns out to
be approximately independent of density (see equation (14)) in the low temperature limit and
so the results for the homogeneous and trapped case should be comparable. In terms of the
noninteracting (Lindhard) response function at nonzero temperature,

χ0(q, ω)= 2
∫

dd k
(2π)d

NF(εq+k)− NF(εk)

εq+k − εk − h̄ω− i0
, (6)

the expression for 0′ can be worked out to yield

1

τsd(T )
=

h̄2

4 mnkBT

∫
dd q
(2π)d

q2

d

∫ +∞

−∞

dω

π
U 2 [=m χ0(q, ω)]2

sinh2[h̄ω/(2kBT )]
. (7)

In the next section, we present the results obtained by evaluating this expression. We end
this section by noting that the above expression for the spin-drag relaxation rate is similar
to the expression for the drag resistivity in electron–hole bilayers [6]. This also implies that
the spin-drag relaxation rate defines a genuine dissipative transport coefficient for an impurity-
free cold-atom system and thus represents a natural starting point for studying transport
phenomena in these systems.

3. Results for the spin-drag relaxation rate

In this section, we present results for the spin-drag relaxation rate 1/τsd. These results are,
among other parameters, characterized by the Fermi wave number kF = [d0(d/2)n/4πd/2]1/d ,
where 0(x) is the Euler 0 function. We also introduce the Fermi energy εF = kBTF = h̄2k2

F/2m.
The results for the 1D (3D) case are also discussed in [15] ([23]).

3.1. One dimension

A 1D trapped gas can be experimentally realized by tightly confining two directions in the
harmonic trap. We therefore take ω1 = ω2 ≡ ω⊥ to be much larger than ω3. In the limit
a � a⊥, where a⊥ =

√
h̄2/mω⊥ and a is the 3D s-wave scattering length, one has for the

effective 1D coupling constant that U1D = 2h̄2a/ma2
⊥

[28]. It is also customary to introduce
the dimensionless Yang parameter γ = mU 1D/h̄

2n.
In figure 1, we show the results that follow from equation (7) by taking d = 1 and U = U1D.

From this plot it is seen that the spin-drag relaxation rate vanishes linearly with temperature.
It can be shown [15] from equation (7) that

1

τsd(T )
T →0
→

[
8

9π
γ 2 kBT

2εF
+

8

3π
γ 2

(
kBT

2εF

)2
]
εF

h̄
(one dimension), (8)

in agreement with the numerical results for T/TF � 1 (see the inset of figure 1). This leading
order behaviour is in agreement with results from bosonization [29]. A quantitative comparison
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Figure 1. Spin-drag relaxation rate τ−1
sd (in units of εF/h̄) as a function of the

temperature for a one-dimensional (1D) Fermi gas. The inset shows a zoom of
the low temperature region 06 kBT/2εF 6 1, with the filled circles representing
the analytical result in equation (8).

is not possible as the results presented in [29] have an undetermined numerical prefactor. The
linear-in-T term in square brackets in equation (8) originates from contributions to the spin-drag
relaxation rate that are controlled by momenta q of the order of 2kF, while the quadratic-in-T
term comes from momenta q near 0. Calculations beyond second-order perturbation theory have
been carried out by Pustilnik et al [30] in the context of Coulomb drag between quantum wires:
these authors have considered only contributions to the drag transresistance ρD coming from
momenta q near 0 and found ρD ∝ T 2 for T → 0. Neglecting the 2kF contributions to ρD is
fully justified in their case since the inter-wire Coulomb interaction at wave vectors of the order
of 2kF is suppressed by the exponential factor exp(−2kF`), where ` is the inter-wire distance.

3.2. Two and three dimensions

In two and three dimensions, the spin one-half Fermi gas is predicted to undergo a ferromagnetic
phase transition [18]–[22], which motivated the experiments by Jo et al [24]. Assuming a
second-order phase transition (note, however, that the transition is predicted to become first
order at very low temperatures [22]), the transition is signalled by a diverging spin susceptibility
χSz Sz(q, ω) at zero wave vector (q = 0) and frequency (ω = 0). Within Stoner mean-field
theory, this spin susceptibility is calculated by summing all random-phase approximation
(RPA) bubble diagrams, which yields χSz Sz(q, ω)= χ0(q, ω)/[1 + Uχ0(q, ω)/2]. Hence, the
critical temperature, both in two and three dimensions, is determined by the condition 1 +
Uχ0(0, 0)/2 = 0. This equation gives, together with the equation n =

∫
dd q NF(εq)/(2π)d that

determines the chemical potential, the critical temperature Tc as a function of U . In two
dimensions, this yields

TF

Tc
+ log

(
1 − e−TF/Tc

)
= − log

[
Uν(εF)

2
− 1

]
, (9)
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Figure 2. Spin-drag relaxation rate in two dimensions as a function of
temperature, for various strengths of the interactions determined by ξ ≡ πa/az.
The vertical lines indicate the critical temperature for the ferromagnetic phase
transition.

with ν(εF) being the total density of states at the Fermi level. Note that only when Uν(εF)/2> 1,
the Stoner criterion, there exists a ferromagnetic phase transition.

Experimentally, the 2D situation can be achieved by tightly confining the system in
one direction by making one (say ωz) of the three trapping frequencies much larger than
the other two. The effective 2D interaction is then determined by U2D = 4πah̄2/maz, where
az =

√
h̄/mωz. This result for the effective interaction, and its counterpart for the 1D case, are

obtained by assuming that the atoms occupy the lowest-lying mode of the trap in the tightly
confined direction that is well described by a Gaussian wave function of width az.

To account for the effect of ferromagnetic fluctuations, we evaluate the effective scattering
amplitude between atoms by summing all RPA bubble diagrams. This gives

A↑↓(q, ω)= U2D +
U 2

2D

4
χnn(q, ω)−

3U 2
2D

4
χSz Sz(q, ω), (10)

with χnn(q, ω)= χ0(q, ω)/[1 − Uχ0(q, ω)/2] being the RPA density response function. In
what follows, we numerically evaluate the result in equation (7) with the above effective
interaction, i.e. after making the replacement U → |A↑↓(q, ω)| in equation (7). In figure 2, we
show the results for the spin-drag relaxation rate in two dimensions, as a function of temperature
and for various values of the dimensionless parameter ξ = πa/az. Clearly, for sufficiently strong
interactions, i.e. sufficiently large ξ , this rate is enhanced upon approaching the ferromagnetic
phase transition, as discussed in the introduction. For interactions that do not fulfil the Stoner
criterion, the spin-drag relaxation rate vanishes quadratically with temperature, as expected for a
Fermi liquid. We note that, in two dimensions, there is a logarithmic correction to this quadratic
temperature dependence [31], although this is hard to discern from the numerical results in
figure 2. This logarithmic correction is due to the fact that the imaginary part of the Lindhard
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Figure 3. The spin-drag relaxation rate of a 3D Fermi gas as a function of
temperature T for various values of the interaction parameter kFa. The vertical
lines indicate the critical temperature for the ferromagnetic phase transition.

function in two dimensions at zero temperature behaves as

=m χ0(q, ω)' −
mω

h̄qkF

ν(εF)√
1 − (q/2kF)

2
, (11)

for ω/q → 0 and for qmin < q < qmax. Here, qmin = kF(1 −
√

1 − 2mω/h̄k2
F) and qmax = kF(1 +√

1 − 2mω/h̄k2
F) [31]. Using this result in equation (7), and ignoring the effects of fluctuations

on the effective interaction that are not important for the low-temperature behaviour if the Stoner
criterion is not fulfilled, ultimately gives

1

τsd(T )
T →0
→

[
−

4

3π 3
ξ 2

(
T

TF

)2

log

(
T

TF

)]
εF

h̄
. (two dimensions) (12)

The 3D results are obtained by replacing U2D with the 3D two-body T-matrix
4πah̄2/m [23]. The results for the spin-drag relaxation rate are shown in figure 3 and are
qualitatively similar to the 2D case. For weak interactions, such that there is no ferromagnetic
phase transition, the spin-drag relaxation rate vanishes quadratically with temperature. This
quadratic temperature dependence is understood by using that in three dimensions and at zero
temperature we have

=mχ0(q, ω)' −
πν(εF)mω

2h̄kFq
, (13)

for q < 2kF and ω/q → 0. This yields for the spin-drag relaxation rate

1

τsd(T )
T →0
→

[
32π

9
(kFa)2

(
T

TF

)2
]
εF

h̄
(three dimensions). (14)
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4. Discussion and conclusions

We have presented the results for the spin-drag relaxation rate for a 1D, 2D and 3D two-
component Fermi gas of ultracold atoms. In two and three dimensions and for sufficiently
strong interactions, such a system may undergo a ferromagnetic phase transition. The spin-drag
relaxation rate is strongly enhanced as this transition is approached from above, which could be
observed experimentally as an increased damping of the spin-dipole mode. This enhancement
is determined by including all bubble-diagram contributions to the effective interaction between
different spin components of the gas. This essentially treats the ferromagnetic phase transition
within Stoner mean-field theory. In three dimensions, this is most likely qualitatively correct,
although the transition occurs at strong coupling. In two dimensions, the mean-field results for
the critical temperature are an upper bound. This is because in this case, and in particular in
the experimentally relevant case that an external field is present to trap two low-field seeking
hyperfine species, the phase transition is of the Kosterlitz–Thouless type. It is known that the
Stoner mean-field theory overestimates the Kosterlitz–Thouless transition temperature.

In one dimension, the spin-drag relaxation rate vanishes linearly with temperature. In
principle, we could also have included an effective interaction that included all bubble-like
diagrams in the 1D. This would result in an enhancement, upon approaching some temperature
TSDW, of the spin-drag relaxation rate due to the divergence of the spin-density response function
at zero frequency and q = 2kF that signals the onset of spin-density wave antiferromagnetism.
This mean-field treatment, however, is not accurate in one dimension, not even qualitatively.
Instead, it is known from bosonization theory that the linear dependence at small temperatures
is the correct one. Since this behaviour is reproduced by our expression in equation (7)
without including additional contributions to the effective interactions, we do not include such
fluctuation corrections in one dimension. In principle, it would be interesting to explore further
the connection between bosonization and our Boltzmann methods; this, however, is beyond the
scope of the present paper.

In future work, we will investigate the behaviour of the spin drag in the spontaneously
spin-polarized phase, i.e. for temperatures T < Tc. Further studies will also investigate the role
of critical fluctuations close to the critical temperature, and the situation of negative scattering
length.
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