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Abstract:
A general formulation of the buoyancy budget in a horizontal slice, in the middle of a conditionally unstable
atmosphere, permits a comparison of various convection patterns, and provides a natural extension of
BJERKNES' (1938) theory. Here we consider centre-up, centre-down, and roll patterns. Lateral entrainment
between up- and downdraught region is assumed to consist of two parts: background mixing and mixing in-
duced by the convective motions themselves. Due to the latter nonlinearity, finite-amplitude convection is
possible.
Linear stability analysis of the state of rest shows that the centre-up pattern is the most unstable configura-
tion. Non-zero steady states are also compared. It turns out that the centre-down pattern has the smallest
amplitude, while the centre-up pattern 'performs best'. The results suggest that a centre-down pattern can
only persist when background mixing is small. This agrees with the fact that open cells, qualitatively similar
to the centre-down pattern analysed here, are normally found over homogeneous water surfaces when wind
shear is not too large.
Several authors have suggested that maximizing the upward heat flux can be used to determine a preferred
horizontal length scale for convection. The results presented here cast some doubt on the applicability of
such an extremal principle, because open cells, so frequently observed in reality, have the smallest upward
heat flux.

\

Zusammenfassung: Konvektion in einer bedingt labilen Atmosphäre: eine erneute Untersuchung der
BJERKNES'schen „slice" Methode
Eine allgemeine Formulierung der Haushaltsgleichungen bei thermischer Konvektion in einer horizontalen
Schicht inmitten einer bedingt labilen Atmosphäre erlaubt einen Vergleich verschiedener Konvektions-An-
ordnungen und führt zu einer natürlichen Erweiterung der Theorie von BJERKNES (1938). Wir betrachten
hier Anordnungen zentrierter Aufwärts- und Abwärtsbewegungen und Rollen-Strukturen. Das seitliche
Entrainment zwischen den Gebieten mit positiver und negativer Vertikalbewegung bestehe aus zwei An-
teilen: den überlagerten Mischungsprozessen und dem Austausch, der durch die konvektiven Bewegungen
selber hervorgerufen wird. Der damit verbundenen Nichtlinearität entspricht die Konvektion mit endlicher
Amplitude.
Eine lineare Stabilitätsanalyse im Ruhezustand zeigt, daß die zentrierte Aufwärtsbewegung die labilste
Konfiguration darstellt. In den von Null verschiedenen stationären Zuständen zeigt die Anordnung mit Ab-
wärtsbewegung die kleinste Amplitude, während die mit Aufwärtsbewegung „sich am besten verhält". Die
Ergebnisse zeigen Persistenz 4er Abwärtsbewegung wenn die überlagerten Mischungsprozesse klein sind.
Dies stimmt damit überein, daß offene Zellen normalerweise über homogenen Wasseroberflächen bei nicht
zu starker Windscherung beobachtet werden.
Verschiedene Autoren haben vermutet, daß die Maximierung des nach oben gerichteten Wärmestromes dazu
benutzt werden kann, eine bevorzugte horizontale Längenskala für die Konvektion zu bestimmen. Die hier
vorliegenden Ergebnisse lassen Zweifel an einem derartigen Extremalprinzip aufkommen, weil offene Zellen
(die so häufig in der Natur beobachtet werden) den kleinsten nach oben gerichteten Wärmefluß besitzen.

Beitr. Phys. Atmosph. Vol. 59, No. I, February 1986 41

0005-8173/86/01 0041-13 $03.00/0 © 1986 Friedrich Vieweg & Sohn Verlagsgesellschaft mbH



Résumé: Convection dans une atmosphère conditionellement instable. Réanalyse de la méthode en couche
de Bjerknes
Une formulation générale du bilan de poussée dans une couche horizontale, au centre d'une atmosphère
conditionnellement instable, permet une comparaison de diverses configurations convectives et procure
une extension naturelle de la théorie de BJERKNES (1938). On considère des configurations avec mouve-
ments ascendants, descendants et en rouleaux. On admet que l'entraînement latérale entre les régions
d'ascendance et de subsidence comporte deux contributions: un mélange avec l'environnement et un mélange
induit par les mouvements convectifs eux-mêmes. En raison de la non linéarité de ces derniers, un mouvement
convectif d'amplitude finie est possible.

Une analyse linéaire de la stabilité de l'état de repos montre que la configuration avec mouvement ascendant
au centre est la plus instable. Des états stationnâmes non nuls sont également analysés. Il apparaît que c'est
la configuration avec mouvement descendant au centre qui a la plus faible amplitude tandis que c'est la con-
figuration avec ascendance qui se développe le mieux. Les résultats suggèrent que le mouvement subsident
ne peut se maintenir que si le mélange avec l'environnement est faible. Ceci est en accord avec le fait que
les cellules ouvertes, qualitativement semblables aux mouvements centraux subsidents analysés ici, se ren-
contrent le plus souvent au-dessus de surfaces marines homogènes, lorsque le cisaillement du vent n'est pas
trop grand.
Plusieurs auteurs ont suggéré que l'on pouvait utiliser la méthode qui consiste à rendre le flux vertical de
chaleur maximum pour déterminer une échelle horizontale préférentielle pour la convection. Les résultats
obtenus jettent un doute sur le bien fondé de ce principe d'extremum puisque les cellules ouvertes, si souvent
observées, ont le flux de chaleur le plus faible.

1 Introduction

In the atmosphere, long-lasting convection in an absolutely unstable layer is rare. It is only in
cases of strong solar heating of very dry air over land, or just after cold continental air hits a warm sea,
that absolutely unstable conditions dominate. In most cases the atmosphere is conditionally unstable,
i. e. unstable for moist ascent and stable for dry ascent (and descent).
In a conditionally unstable atmosphere convection leads to heating in both the updraught region (through
latent heat release) and the downdraught region (adlabatic heating). It is the difference in the heating
rates that determines the buoyancy, and thus the generation of kinetic energy. One of the consequences
is that the relative size of the up- and downdraught areas has to obey certain conditions for convective
instability to occur. Such conditions were already formulated by BJERKNES (1938) and PETTERSSEN
(1939). By means of the so-called slice method they showed that on the average available potential
energy is generated only when the area with upward motion is less than the area with downward motion
times (7 - 7s)/(7»~ T)- Here 7a is the dry adiabatic, 7S the moist and 7 the actual lapse rate.
The stabilizing effect of compensating downward motions has also been studied with much more com-
plicated numerical models of convective clouds (e. g. OGURA, 1963;ASAI andKASAHARA, 1967). Such
studies have shown that downward motions are of extreme importance, even on short time scales.
At present times, in studies of atmospheric convection BJERKNES' slice method has been replaced by
numerical models. Nevertheless, some further investigation of the simple 'buoyancy budget model' is
possible. Studying convection by just looking at the buoyancy budget in a horizontal slice, somewhere
in the middle of the convective layer, has its limitations, of course. In such an approach it is hardly
possible to deal with the effects of shear of the background wind, growth of the convective layer, and,
•n particular, variations in the vertical structure of the convective disturbance. Looking at the buoyancy
budget at one level is in fact equivalent to considering a first mode in the vertical only. That a stability
analysis with an extremely simple prescribed vertical structure works was for example shown by RAY-
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LEIGH (1916): although convection naturally starts off with highly asymmetric and local thermals, a
theory based on a prescribed (wavy) vertical dependence of velocity and temperature appears to be
able to predict when thermal instability sets in (namely, at the critical RAYLEIGH number). Another
example is provided by analytic studies on linear baroclinic instability (e. g. PEDLOSKY, 1979). These
facts encouraged the author to re-investigate BJERKNES' slice method.
Two conditions are at the basis of applying the buoyancy budget in a horizontal slice to study convec-
tion, namely:

(i) the atmosphere is conditionally unstable, and shearing of the background wind is small;
(ii) the dynamics of the convection have a substantially smaller characteristic time scale than those

of the background flow.

Condition (i) implies that the convective motions have to draw the major part of their energy from
latent heat release, whereas condition (ii) makes it possible that the convective system can be in internal
balance (generation of kinetic energy on the convective scale by buoyancy forces equals dissipation by
mixing, while the statistical properties of the convection are determined by the large-scale variables).
The conditions described above are frequently met over the tropical oceans, but can sometimes also been
found in 'older' polar outbreaks when thermal forcing from below becomes smaller and wind shear
weakens. For an example see BAKAN (1982), who discusses a case of persistent open-cell convection
over the North Sea with only a l K air-sea temperature difference and little shear.
In this paper, the basic equations for the slice method are formulated in a more general way, making
it possible to study the effect of the geometry of the convective elements. The influence of horizontal
entrainment of momentum and heat on the stability of various convection patterns can then be studied.
We will consider centre-up, centre-down, and roll patterns.
A number of authors have used an extremal principle (maximizing the net upward heat flux) to derive
a preferred spatial scale of the convective disturbance (e.g. KUO, 1961; ASAI and KASAHARA, 1967).
Numerical experimentation on two-dimensional convection lends some support to the applicability of
an extremal principle of this kind (for a discussion on this matter, see ASAI, 1983). If maximizing the
upward heat flux would determine the scale of convective elements, it should also be possible to obtain
information about the geometry: when the principle is of real physical significance, the convection
pattern with the largest heat flux should be the preferred mode. The approach taken in this paper offers
the possibility to study this point in a simple way.
This paper proceeds as follows. In Section 2 the model equations are derived, starting from the in-
compressible Boussinesq approximation. The essential step is averaging of the momentum and thermo-
dynamic equations over the up- and downdraught regions (for axial symmetry, this procedure has been
described by ASAI and KASAHARA, 1967). Special care is taken in formulating the horizontal entrain-
ment. The mixing coefficient is split into a background part, to deal with the degree of turbulence in
the air mass of consideration, and a part determined by the intensity of the convection. The stability
of the state of rest is discussed in Section 3, while non-zero steady states are investigated in Section 4.
A summary of the results of the model, together with some examples (satellite pictures and soundings)
illustrating its applicability, are found in the last section.

2 Basic Equations

The slice method of studying atmospheric convection is essentially based on the assumption
that a 'level of symmetry' exists, i.e. that vertical gradients in mean (that is, non-turbulent) quantities
vanish at some height. In the absence of shear of the horizontal wind, the equations for the slice, which
is assumed to be advected with the horizontal wind, take a simple form.

Beitr. Phys. Atmosph. Vol. 59, No. 1, February 1986 43



It is assumed that for the present schematic model the equations for shallow, incompressible flow can be
used. They read (e.g. DUTTON, 1976):

a
—at

-+ v • 8, (1)

J_ ds_

Cn dt
(2)

V - v = 0 (3)

Here v" is air velocity, Tm an overall reference temperature, 0' perturbation temperature, g gravitational
acceleration, w upward velocity, 0p(z) reference potential temperature, cp specific heat and s entropy.
Note that a pressure perturbation term does not occur because the convective layer is assumed to be
shallow.
It is common practice in studies of moist convection to replace the diabatic heating term by a procedure
in which prescribed lapse rates are applied for ascending and descending motion. To obtain convenient
equations the followings steps/assumptions have to be applied:

- neglect the divergence of vertical fluxes (the symmetry condition), i. e. apply the equations to the
'middle' of the convective layer.

- decompose the wind and temperature field in a mean and fluctuating part (v = "v + v'; 0 = 0+0 ' )
— average the resulting equations over the updraught area U and the downdraught area D (see Figure 1)
— neglect the shear in the horizontal background wind and advect the system with the mean horizontal

wind

The equations then read:

3 Wtl I
(4)

(5)

(6)

90n i

U + WD D = 0.

(7)

(8)

• Figure 1

Geometry for the slice model. The slice is considered as a
level of symmetry (zero divergence of vertical fluxes)
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Equation (8) follows from the assumption that the horizontally-averaged vertical wind vanishes. The
indices U and D refer to up- and downdraught, the index 2 to horizontal flow (i. e. in the slice). The
overbar indicates a mean value over the relevant area, e. g.:

Lapse rates for moist and dry vertical motion are indicated by 7S and ya, respectively. The environ-
mental temperature, relevant to the buoyancy forces, is denoted by 00.
The second terms in (4) and (5) represent the lateral eddy fluxes, as can be seen by applying Gauss'
theorem:

I f I f /
— J V2 ' vz w' dU = —J vin w' d/ = ^J< van w'>, where (9)u

u

dl (10)

In (9), v^n is the perturbation velocity perpendicular to the boundary / of the updraught/downdraught
system, which has length L. We assume that the lateral eddy fluxes, or entrainment, can be handled by
K-theory, so we write :

(11)

The factor of proportionality K needs some further discussion. It should in fact include a mixing length
squared, divided by a horizontal length scale typical for the updraught/downdraught system. However,
the problem we face here is that in convection in a conditionally unstable atmosphere quantities like
vertical motion do not change smoothly when going from the centre of the updraught to the centre
of the downdraught area. Instead, gradients are generally large and concentrated at the cloud edges.
This implies that it makes little sense to relate either the mixing length or the characteristic horizontal
length scale to the areas of updraught and downdraught regions. We therefore assume the existence of
an intrinsic length scale, independent of U and D, that determines K. We will allow K to depend only
on the difference in vertical motion in the up- and downdraught regions.
In this approach, (4) and (5) take the form.

•w = j (ou ~ 0 o ) ~ K m (WTJ - WD) — , (12)

9wr> e I
Wu) (13)

Similar equations are easily written down for ou and 0D , where the entrainment coefficient K'm for
momentum has to be replaced by the entrainment coefficient K^ for heat. They read

9 On I
-g^ =(7-T s )W u -K^(O u -0 D ) - (14)

90n [
— - = (7 -7a )w D -Kh(ö D -Öu) - (15)
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Together withjhe continuity Equation (8), (12)-(15) form a set of 5 equations in the unkowns 00 »
wu, W0, #u, 0D. ÔG can be obtained directly by multiplying (12) by U and multiplying (13) by D
and adding the resulting equations. With (8) it then follows that

0 0 = ( U 0 u + D 0 D ) / ( U + D) (16)

This is a consistent result. It should be stressed at this point that we consider U and D as parameters
to be specified. Further manipulation of the equations leads to two equations in Wu and 6V - 0D :

( 1 + U/D) ̂  = ̂ - A - K^ ( 1 + U/D) (L/U + L/D) w, (17)
Ql 1 m

. (18)

where
w = wu, A=0~u -0D.

It should be noted that lateral fluxes through the outer boundary of the downdraught region have been
set to zero. The reason for this will become clear later, when the choice of convection patterns implies
symmetry conditions at this boundary.
According to the discussion above, the exchange coefficient depends on the up- and downdraught
velocities. However, it should also include a constant part, so we write

Kj = K, (1 + a |wu - WD I) = Kj [ 1 + a(l + U/D) w] , (19)

where the index i is either m (momentum) or h (heat). K; reflects the 'background mixing', and there-
fore characterizes the air mass in which the convection occurs. The parameter a determines how the ex-
change coefficient increases when convection develops. Note that this increase is necessary to allow
finite-amplitude solutions of the present model ! Furthermore, it is assumed that the dependence of
KJ on |wu - WD | is the same for heat and momentum.
Inserting (19) in (17) and (18) finally leads to the set of equations to be analyzed. They read

dT = A - K m [ l + a ( l + U / D ) w ] ( L / U + L/D)w, (20)

^ = [ 7 - 7 s + ( 7 - 7 a ) 5 ] w - K h [ l + a ( l + U / D ) w ] ( L / U + L / D ) A . (21)

It is obvious that to this set of equations the constraint w > 0 should be added. So, in summary, we
have derived two equations for the updraught velocity w and the temperature difference A, with 7,
Km , Kh and a as model constant. How L is related to U and D depends on the geometry, i. e. on the
convection pattern.

3 Stability Analysis

We first introduce the parameters q i , q2, q3, pi , P2, PS to allow a shorter notation when
desired:

g/Tm

(22)
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So (20) and (21) can be rewritten as

-^- = q 1 ) A - q 2 w-q 3 w2 , (23)

dA
•47= P> w - p 2 A - p 3 A w . (24)

Note that all parameters except pi are always positive. Although in principle the set (23)-(24) can have
periodic solutions, this in fact prohibited a priori by the constraint w > 0.
The following steady states are now found:

(i) w = 0, A = 0 (25)

f-\ i /P2 q2\ i r /p2 q2\2 , p2g2 , PI gi]
(ii) w = - r — + — ±ö — + — ~ 4 - ~ + 4 -

2 \ p 3 q3/ 2 L\P3 qs/ PS qs PS qsJ

Since w should be positive, only the + sign in (ii) applies. So the system has at most two real solutions
with physical meaning, one of which is the state of rest. We will now examine under what conditions
this state is unstable.
Linearizing around the state of rest, the amplification matrix is found to be

Pi ~ P 2 ,

from which it follows that at least one eigenvalue is positive when

(26)

Generally speaking, a larger scale of the convective elements, i. e. larger values of U and D, favours in-
stability of the state of rest. So, as expected, large U and D allows the convection to overcome the
destructive force of entrainment. Condition (26) also shows that linear growth rates will be larger if
the eddy Prandtl number Pr (= Km/Kh) deviates from unity.
Before investigating the neutral stability curves for various convection patterns, we note that with
Km = Kh = 0 (26) reduces to

U 7-7.

This condition was already discussed by BJERKNES (1938), and simply implies that convection develops
when heating in the updraught exceeds heating in the downdraught.
We now consider three 'modes', as shown in Figure 2. Shading corresponds to upward motion. As basic
area we take a square, which, according to the definitions of U and D, has sides of length (U + D)1'2.
The convective patterns associated with these modes are such that there exists symmetry with respect
to the sides of the square. This also justifies the assumption made earlier, namely that fluxes through
the outer boundary of the slice (see Figure 1) are zero.
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ROLL CENTRE-UP CENTRE-DOWN

Figure 2
The three configurations of convection considered
in this study. The area of the basic square is U+D.
The regions of upward motion are shaded.

For the modes shown in Figure 2 the values of L are immediately found:

for the roll pattern: L

for the centre-up pattern: L

for the centre-down pattern: L

Using these expressions for L in (26), it is now possible to construct the neutral stability curves.

Some examples are shcwn in Figure 3. Updraught area U and downdraught area D are plotted on
logarithmic scales. Curves are given for rather stable conditions (7=7 K/km) and rather unstable con-
ditions (7 = 9.6 K/km). Generally, a centre-up pattern is the most unstable structure, followed by the
roll pattern and centre-down pattern. It is only for large values of the lapse rates (close to 7a), that
regions in the U, D-plane exist where the roll and centre-down patterns are the only unstable structures.
These regions are small, however.

The structure of the stability diagram hardly depends on the entrainment coefficients Km and Kj,,
that is, the relative location of the neutral curves of the various modes is not sensitive to these para-
meters. Of course, for instability to occur larger values of U and D are required when Km and/or Kj,
are increased.
KRISHNAMURTI (1975), in a completely different analysis of convection, discusses the importance of
the eddy PRANDTL number Pr, and what values of Pr are actually found in the atmosphere. The result-
ing suggestion is that Pr is in the 1 to 50 range, with a tendency for small values to occur near the
earth's surface, and larger values higher up in the atmosphere. An example of neutral curves for Pr = 25
is shown in Figure 3c. The values of 7 and Km were not changed, so Figure 3c is comparable to Figure 3b.
Because Kh is thus reduced by a factor 25, instability of the state of rest now occurs for smaller values

10'

10'

105

Lapse rate: 7 K/KM

P r = 1

10' 10«

10'

10'

Lapse rate; 9.6 K/KM

Pr=1
10'

10' 10s lin? 103

D

f

Lapse rate: 9.6 K/KM

U

-in?10'

Figure 3 Neutral stability curves for the roll ( ), the centre-down ( ) and the centre-up pattern ( ), as a
function of updraught area U and downdraught area D. Parameter values: Km = 1 m/s, ja = 10 K/km, 7S = 6 K/km.
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of U and D. However, the relative position of the neutral curves for the three convection patterns is
virtually unchanged.
A similar stability analysis can be carried out for the nonzero steady state in (25), but it is not necessary
to perform this. The equilibria were obtained by solving the cubic equation in w, which resulted from
eliminating A between (23) and (24). This cubic equation has the structure of the elementary cusp
catastrophe, and w = 0 is either the only or the intermediate solution (when three equilibria exist).
Exchange of stability is therefore granted (e. g. GILMORE, 1981). So when w = 0 becomes unstable, the
other solutions (we are only interested in the positive one, in fact) become stable, and vice versa. The
nonzero steady states of relevance are thus stable within the neutral curves displayed in Figure 3. In the
next section we have a closer look at these steady states.

4 Steady States

The nonzero steady states can be calculated directly from (25). Although the stability pro-
perties of the solutions do not depend on a (q3 and p3 do not appear in the amplification matrix), the
amplitude does, of course. Here we chose a = 10 s/m, giving realistic amplitudes.
Because we want to compare geometric patterns, U + D (the total area of the basic square) is now
prescribed. The natural quantity to vary then is R = D/U (note that this is not the aspect ratio in its
normal definition). An example is shown in Figure 4a. The updraught velocity is shown as a function
of R, for U + D = 100 km2 and 7 = 8 K/km. It is quite obvious that centre-up patterns have the largest
amplitude. Centre-down patterns have the smallest amplitude and rolls are found in between. This
picture is typical: using other values of a, 7, U + D, etc. effects the amplitude (for example, for more
stable conditions amplitudes are smaller), but not in an essential way the ranking of the modes.
As discussed in the Introduction, maximizing the upward heat flux has been used as an extremal principle
to determine the horizontal length scale or aspect ratio (horizontal extent of a convective element
divided by its vertical extent). ASAI (1983) provides an overview on this matter. This principle has only
been used for two-dimensional (vertical plane) convection. The present analysis allows to investigate
whether such a principle can also be used to select the geometric pattern in plan view.

The upward heat flux through the slice is

F = U + D U + D
(28)

Values of F corresponding to the w-amplitudes discussed above are shown in Figure 4b. The curves
show a much more pronounced maximum, and the centre-up pattern turns out to be the most efficient

F (m K/s)
r W (m/s)

0 10 10

* Figure 4 Steady-state values of w (a) and corresponding upward heat flux (b), as a function of R(= D/U). The different
curves are for roll ( ), centre-down ( ) en centre-up ( ) pattern. Parameter values: Km = 1 m/s, Pr = 25,
<* = 4 s/m, 7a = 10 K/km, ys = 6 K/km, 7 = 8 K/km, U+D = 108 m2.
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W (m/s)

r W (m/s) '=7.5 K/km

10 20 30 50

Figure 5 Steady-state values of w, as a function of R, for various values of 7 (lapse rate) and 7 (cloud depth). All curves are
for the centre-down pattern. In a 7 is varied and K = 1. In b K is varied while 7 = 7.5 K/km. Other parameter values are as in
Figure 4, except U+D = 9 • 10s m2.

structure. Since open cell patterns, which are qualitatively similar to the centre-down pattern, are so
common, it seems that they cannot be explained as being the most effective mode to transport heat
upwards, casting doubt on the applicability of this extremal principle. We return to this in the discussion.
Because open cell patterns occur so frequently, we investigate them in some more detail. Figure 5a
shows w as a function of R for some values of the lapse rate 7. The graphs reveal how the amplitude
decreases and R should increase (to keep the convection going) when conditions become more stable.
These graphs are for a basic square of 30 to 30km, with other parameter values as used previously.
Another way in which convection may be suppressed in an air mass is by decreasing relative humidity.
To mimic the effect of humidity on the condensation level, an effective cloud depth K is introduced,
normalized by the total depth of the convective layer. So, there is moist ascent over K and dry ascent
over (1 - K). The parameter P! in (22) should thus be replaced by

P i = K ( 7 - 7 s ) + ( l - K + U / D ) ( 7 - 7 a ) (29)
Note that now the buoyancy budget should be interpreted as a vertical mean rather than a local one.
Figure 5b shows some amplitude curves calculated with (29). The strong effect of decreasing cloud
depth is obvious, and, as expected, very similar to the effect of increasing stability of the stratification.
Some further inferences on the basis of these results will be made in the Discussion. f

5 Discussion

In this paper convection in a conditionally unstable atmosphere has been studied by extending
the well-known slice method of BJERKNES (1938). The buoyancy budget in the slice has been formulated
in more general terms, allowing a calculation of the buoyancy for any geometric pattern. Also, a more
refined treatment of entrainment was included by splitting the mixing coefficient in a background part
and a 'convectively induced' part. The resulting system of equations appeared to have two equilibria:
the state of rest and finite-amplitude convection, one state being stable when the other one is unstable.
Starting from a state of rest and increasing the size of the convective elements, it turned out that the
centre-up pattern is the first mode to grow. The centre-down pattern requires the largest forcing to be
ab'e to grow. An analysis of the steady states revealed that the centre-up pattern is the first mode to
grow The centre-down pattern requires the largest forcing to be able to grow. An analysis of the steady
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states revealed that the centre-up pattern is the most effective structure in transporting heat upwards,
while the centre-down pattern performs least and the roll pattern is in between.

So far, this theory is a straightforward and a natural extension of BJERKNES' approach, and demon-
strates in a relatively simple way how entrainment and the geometric pattern determine whether con-
vection in a conditionally unstable atmosphere may persist or not. In the preceding sections not much
reference has been made to observations, but of course some inferences can be made.
A first thing to note is that, when considering finite amplitude convection, the centre-up pattern is best
protected against lateral entrainment, whereas the centre-down pattern is least. So if the background
mixing (i. e. the level of turbulence in the air mass considered) is large, one cannot expect a persistent
centre-down pattern. It is not surprising then, that the centre-down pattern is preferably found over sea
in cases where shearing of the horizontal wind is small. Such situations are typically found over the
tropical oceans and in polar outbreaks in a mature stage. Although many workers consider latent heat
release to be a secondary effect in the dynamics of convection in polar outbreaks, some indication exists
that this point of view is not always correct.
An example of a polar outbreak over the North Atlantic is shown in Figure 6. As soon as the cold air
mass hits the warm sea, rolls form. Here thermal instability in RAYLEIGH'S sense (absolutely unstable
stratification) and wind shear are without doubt the most important factors. In a later stage the rolls
evolve to open cells (north of the region where strong subsidence prevents growth of the convective
layer and leads to overcast). Here cloudiness decreases and R(= D/U) increases. This picture is typical,
see e. g. WALTER (1980).
It frequently happens that in a northwesterly flow over the North Sea region air masses arrive that have
been subject to heating during one or even two days. Open cells with large cross section and large values
of U/D are then observed, while average cloudiness is in fact very small (— 0.2). In such cases wind shear
is insignificant (except close to the surface) and the lapse rate is slightly greater than the moist adiabat.

Figure 6

NOAA-7 satellite picture of a polar outbreak over the North
Atlantic Ocean (4 November 1982). Note the general transi-
tion from rolls to cells, the increase in size of the convective
elements, and the decrease in cloudiness (all in downstream
direction.
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Figure 7

NOAA infared picture of open cells over the North Sea,
28 October 1983, 18 :48 UT. The sounding at Stavanger
(Norway, indicated in the photograph) at 12 : 00 UT is
also shown. In the diagram, vertical lines are moist-adia-
bats, dashed lines adiabats, and sloping lineas isotherms
(Labelled in °C). Note the advection of cold air around
600 mb, the very small wind shear below this level, and
the fairly stable stratification.

An example is shown in Figure 7. The location of the sounding is indicated in the photograph. It is quite
obvious that in this case the convection has to be driven by latent heat release. Similar situations are
frequently seen over the western Atlantic, with ever increasing values (downstream) of D/U. In view of
the results from the model presented in this paper, this should be interpreted as an attempt of the con-
vection to survive while the stratification stabilizes and humidity goes down.
Over land, cases with rather homogeneous polar air having little wind shear and sufficient moisture are
rare, so it is not surprising that normally rolls and centre-up patterns are encountered. A few examples
exist, however, of centre-down patterns over land with a horizontal scale comparable to those observed
over the oceans. One is shown in Figure 8. Convection over central Europe has organised itself into an
open cellular pattern. Note that wind shear is really very small, and that the lapse rate is only slightly
unstable for moist ascent.
It is difficult to state in general when latent heat release becomes the primary force for driving con-
vection. In most cases convection starts by the creation of an absolutely unstable lapse rate. Thermal
instability then occurs and the upward heat flux rapidly stabilizes the stratification (shown in the
simplest fashion by LORENZ, 1963). Latent heat release then comes into play, and convection may
continue as long as moisture is available. The present theory is meant to describe this stage, where an
internal buoyancy balance exists with slowly varying external factors like lapse rate and moisture
content.
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Figure 8

NO AA infrared picture of open cells over central Europe.
The North Sea is in the upper left corner, and the snow-
covered Alps are found near the bottom.
Date: 27 March 1984, 14:23 UT. Also shown is the
sounding at Meiningen (Germany, indicated in the
photograph). See Figure 7 for explanation of the dia-
gram. Note that the wind shear is very small, and that
only a very thin layer close to the surface is superadia-
batic.
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