Although the condensed matter theory given in the previous paragraph is valid for the condensed matter theory given in the previous paragraph, the condensed matter theory given in the previous paragraph is valid for the condensed matter theory given in the previous paragraph. The condensed matter theory given in the previous paragraph is valid for the condensed matter theory given in the previous paragraph. The condensed matter theory given in the previous paragraph is valid for the condensed matter theory given in the previous paragraph. The condensed matter theory given in the previous paragraph is valid for the condensed matter theory given in the previous paragraph. The condensed matter theory given in the previous paragraph is valid for the condensed matter theory given in the previous paragraph.
For the problem of multiple classes of neural networks, we note that $\langle \beta \cdot \phi, \delta \rangle$.

\[(\beta \cdot \phi, \delta) \equiv (\beta \cdot \phi, \delta) \]
In the normal state where the field is quenched sufficiently far from the critical temperature, the formula becomes:

\[
\left\{ \left[\frac{\partial}{\partial y} \right] \varphi, \varphi \right\}_d = \int [\varphi(\varphi')_d y] dy
\]

The fluctuations in the normal state are described by the effective action, which is given by the formula:

\[
\int [\varphi(\varphi')_d y] dy = \int [\varphi(\varphi')_d y] dy
\]

The fluctuation-dissipation theorem states that the fluctuations are described by the effective action, which is given by the formula:

\[
\int [\varphi(\varphi')_d y] dy = \int [\varphi(\varphi')_d y] dy
\]

In the normal state, the fluctuation-dissipation theorem is given by [\(\varphi(\varphi')_d y] dy = \int [\varphi(\varphi')_d y] dy
\]

Notice that in fluctuation-dissipation theory, the above equations imply that

\[
\left\{ \left[\frac{\partial}{\partial y} \right] \varphi, \varphi \right\}_d = \int [\varphi(\varphi')_d y] dy
\]

as also expected from the Fermi's golden rule calculation of the current. Moreover, in the same approximation

\[
\left\{ \left[\frac{\partial}{\partial y} \right] \varphi, \varphi \right\}_d = \int [\varphi(\varphi')_d y] dy
\]

Applying the fluctuation-dissipation theorem, we obtain the following expression for the current:

\[
\int [\varphi(\varphi')_d y] dy = \int [\varphi(\varphi')_d y] dy
\]

The fluctuation-dissipation theorem is given by the formula:

\[
\int [\varphi(\varphi')_d y] dy = \int [\varphi(\varphi')_d y] dy
\]

In the normal state, the fluctuation-dissipation theorem is given by the formula:

\[
\int [\varphi(\varphi')_d y] dy = \int [\varphi(\varphi')_d y] dy
\]

Therefore, the fluctuation-dissipation theorem is given by the formula:

\[
\int [\varphi(\varphi')_d y] dy = \int [\varphi(\varphi')_d y] dy
\]

In the normal state, the fluctuation-dissipation theorem is given by the formula:

\[
\int [\varphi(\varphi')_d y] dy = \int [\varphi(\varphi')_d y] dy
\]

Therefore, the fluctuation-dissipation theorem is given by the formula:

\[
\int [\varphi(\varphi')_d y] dy = \int [\varphi(\varphi')_d y] dy
\]
Plank with this approximate solution to the semi-classical theory of the coherent stage. It is interesting to note that in contrast to the classical theory of the coherent stage, the solution of the nonlinear Schrödinger equation is obtained in this case. The probability distribution after the initial condition $\phi(0, x) = \phi_0(x)$ is

$$P[\phi(x, t) | \phi_0(x)] = \int d\phi' \delta(\phi(0, x) - \phi') \int d\phi'' \delta(\phi_0(x) - \phi'') P(\phi'' | \phi') P(\phi | \phi'')$$

where $P(\phi'' | \phi')$ is the probability distribution after the initial condition $\phi''(x) = \phi'(x)$.

Clearly, with this approximate solution to the semi-classical theory of the coherent stage and $\phi_0(x)$, the required solution for the problem of a gas is found in the form of a Gaussian probability distribution.

It is a pleasure to thank Keith Burnett for many stimulating discussions and for making possible the visit to Oxford. I also thank C. D. Crow and Steve Girvin for illuminating comments.

This completes our discussion of the quantum theory of the Bose-Einstein condensate and its applications. We hope to report on a more quantitative numerical study in the near future.