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"Aquest moment no tornarà mai més.

I tanmateix, aquest moment què importa,

si encara hi ha l'eternitat després 

i del passat el record em conforta?"

Màrius Torres

Als meus pares
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I N T R O D U C T I O N

The beauty of life diversity among higher plants and animals as we know
it today is the result of over a billion years of evolution, during which multi-
cellularity evolved independently in plants and animals from different unicel-
lular ancestors. These, in turn, derived from a common ancestor, likely a
eukaryote that possessed mitochondria and aerobic metabolism. It probably
possessed also receptor proteins in its cell membrane to respond to environ-
mental signals via the regulation of intracellular signaling networks, leading
ultimately to changes in gene expression. All these characteristics were inhe-
rited by the progenitors of plant and animal kingdoms (Leyser and Day, 1998).

Sequence information suggests that most basic cellular processes are
shared by all life forms and conserved to the present; for example replication,
transcription, translation and the basic structure of proteins, nucleic acids and
membranes. Furthermore, the basic organization and functions shared by all
eukaryotic cells, but not prokaryotes, must have been present at least 2 billion
years ago, before single-celled eukaryotes diverged. This conservation would
include their larger size, their dynamic membranes capable of endocytosis and
exocytosis, their membrane-bounded organelles (most prominently the nucle-
us), mitosis and meiosis, sexual reproduction by cell fusion, actin and tubulin
based cytoskeletons, a cdk/cyclin-based cell cycle and histone/DNA chromatin
complexes (Gerhart, 1999). However, before multicellularity emerged some
divergence already occurred: plants acquired chloroplasts and autotrophic
metabolism, making them able to produce their own organic compounds using
energy from the sun by the process of photosynthesis, and had a cell wall, while
the progenitor of multicellular animals was heterotrophic and wall-less (Leyser
and Day, 1998).

An important consequence of multicellularity is the need of the cells in
an organism to communicate among each other to achieve coordinated deve-
lopment. Already in prokaryotes, in a process called quorum sensing, groups of
bacteria communicate with one another to coordinate their behavior and func-
tion like a multicellular organism. Quorum sensing regulates bioluminiscence,
virulence factor expression, biofilm formation, sporulation and mating through
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the production, release and subsequent detection of and response to threshold
concentrations of signal molecules (Bassler, 2002). Since multicellularity
evolved independently in each kingdom, plants, animals and fungi use different
mechanisms for cell-cell signaling, which have however some similarities and
share some common components. For example, innate immunity in higher
eukaryotes involve a highly conserved regulatory pathway mediated by a set of
interacting homologous domains present in proteins found in all eukaryotes
(Cao et al., 2001). In plants, like in animals, a core set of signaling pathways is
used repeatedly in many different developmental contexts. The reiteration of
core pathways in both plants and animals suggests that development evolved
through duplication and innovation on basic pathways that were recruited early
in evolution of the respective lineages (McCarty and Chory et al, 2000).

In this chapter, I will first address how animals have solved the need for
communication among cells during development, considering particular cases
where receptor kinases act as signaling molecules in Drosophila stem cell
maintenance and axis formation. Secondly, I will discuss the signaling pathways
involved in innate immunity, which are homologous in animals and plants, and
its evolutionary implications. Finally, I will address how plants have solved
their need for cell-cell communication during development and which com-
mon and different features exist in comparison to the animal kingdom.

C E L L - C E L L  S I G N A L I N G  I N  A N I M A L  D E V E L O P M E N T

The elaboration of the basic body plan in animals occurs mainly during
embryogenesis. An almost complete but smaller version of the adult is present
when embryonic development is nearly completed, and post-embryonic 
development consists mainly of further growth and completion of the existing
organ systems.

The crucial role of cell-cell signaling in early development was revealed
in 1924 when the vertebrate organizer was discovered by Spemann and
Mangold.They surgically removed the cells from an early gastrula and grafted
it into the opposite side of another embryo of the same age which then 
developed two body axes (Spemann and Mangold, 1924). Molecular 
characterization of the signaling components within these organizing cells that
were able to organize a body axis had to await several decades.

When molecular tools became available, information about the nature of
the signals started to emerge, and it became clear that receptor kinases play a
major role in transducing those signals. In animal development there are two
major pathways involving receptor kinases to relay the signal to downstream
components: the receptor serine/threonine kinase (TGF-β) pathway and the
receptor tyrosine kinase (RTK) pathway.
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In the TGF-β pathway, the transmembrane receptor consists of two pro-
teins (receptor type I and II), and the cytoplasmic tails of both are serine/threo-
nine kinases. Upon ligand binding, they form a heterodimer in which type II
kinase phosphorylates the type I tail, which then phophorylates a receptor-
regulated Smad protein (R-Smad), which associates then with a common-
mediator Smad protein (co-Smad).This complex translocates to the nucleus to
activate the transcription of target genes, some of which encode inhibitory
Smad proteins that antagonize the R/Co-Smad complex. In Drosophila early
development this pathway is used in the establishment of dorsoventral com-
partments and later on in the development of appendages, eyes, wings and the
gut (Raftery and Sutherland, 1999).

In the RTK pathway, the receptor dimerizes upon ligand binding and
each member cross-phosphorylates its partner. This phosphorylation can lead
to the interaction with the initial components of at least four major transduc-
tion series. One of these components is the RAS protein, a small G-protein
which in turn activates a series of intermediates, including many MAP 
kinases. The other components are PI3 kinase, the phospholipase PLCγ and a
phosphotyrosine phosphatase. An immense variety of ligands and RTK 
receptors feed into this complex pathway, which is involved in a wide variety
of processes such as anteroposterior and dorsoventral polarity specification in
the oocyte, eye development, and tracheogenesis in Drosophila (for review
Gerhart, 1999).

Besides these developmental signaling pathways, the Toll-Dorsal pathway,
involving a leucine rich repeat (LRR) receptor coupled via other connector
proteins to a Ser/Thr cytoplasmatic kinase plays a crucial role in development
but also in innate immunity. Interestingly, this pathway is conserved among
animals and plants, which suggests it might have been already used by the 
common eukaryotic ancestor for defense against pathogens, which has been
recruited at later stage for developmental processes.

The molecular genetic analysis of Drosophila development has been
essential in the identification of components of the above signaling pathways
and in the elucidation of their roles. I will discuss three examples in which
receptor kinases are involved in key developmental processes in Drosophila:
germ stem cell maintenance and axis specification.

T h e  T G F - ββ p a t h w a y  i n  D r o s o p h i l a G e r m  S t e m  

C e l l  M a i n t e n a n c e

Early separation into generative and somatic cells is typical of animal
development. Germ cells retain their developmental competence and differen-
tiate in the gonads to form the gametes. The germ cells arise from stem cells,
which are defined by their ability to self-renew and to generate differentiated
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progeny. Post-embryonically, animals use stem cells to build and replenish par-
ticular organ systems, such as their hematopoietic, nervous systems and gonads.
The Drosophila ovary is a good example in which stem cells remain active 
during much of adult life, and it can be studied at the cellular and molecular
level (Fig 1).

Near the beginning of each developing egg string (or ovariole), about two
germ line stem cells (GSCs) reside within the ovary whose progeny differen-
tiates into cystoblasts. These stem cells are surrounded by three differentiated
somatic cell types -terminal filament, cap and inner sheath cells- which help
make up the anatomically simple tubular structure known as the germarium
(Fig 1a). The TGF-β homologue DECAPENTAPLEGIC (DPP) is specifically
required to maintain female germline stem cells and promote their division.
It has been shown that overexpression of DPP blocks germline stem cell 
differentiation and produces ovarian stem cell tumors, while reduction of DPP
promotes stem cell differentiation (Xie and Spradling, 1998). DPP is expressed
in both the cap cells and the inner sheath cells, from which it could signal to
the contacting GSC (Xie and Spradling, 2000; Fig 1b).

Major components of the DPP signaling pathway include SAXO-
PHONE (SAX) and THICK VEINS (TKV) which encode type I
serine/threonine kinase transmembrane receptors, whereas PUNT encodes a
type II serine/threonine transmembrane receptor. DPP binds both type I and
type II receptors to allow the constitutively active PUNT kinase to phospho-
rylate and activate type I kinases, which phosphorylate the R-Smad protein
MOTHERS AGAINST DPP (MAD). Association of Phospho-MAD with the
co-mediator Smad protein MEDEA (MED) leads to the translocation of the
heteromeric MAD-MED complex into the nucleus where it can bind to cis-
acting elements in target genes and activate or repress transcription (Affolter et
al, 2001 for review of DPP signal transduction).
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F igure  1 .  Germarium structure  and stem cel l s .  

(a) Diagram of the Drosophila germarium in cross section indicating terminal filament (TF), germline

stem cells (GSC), cystoblast (CB), cap cells (CPC), inner germarium sheath cells (IGS). (b) Model of the

signalling between the CPC and IGS expressing Dpp and the GSC (see text for details; modified from

Xie and Spradling, 2000).

Eva;chapter 1  28-04-2003  09:51  Pagina 12



The BAG-OF-MARBLES (BAG) gene encoding a novel protein, is
highly expressed only in the stem cell daughter (Mc Kearin and Spradling,
1990). The loss of BAM protein in cystoblasts prevents their differentiation,
causing germ line tumors, while the forced expression of BAM in germline
stem cells causes them to differentiate (Ohlstein and McKearin, 1997). Thus
DPP signaling might negatively regulate BAM protein levels in germline stem
cells.

Together these data show that the TGF-β signaling pathway plays a key
role in stem cell maintenance in the germ line of Drosophila.

T h e  R T K  P a t h w a y  a n d D r o s o p h i l a A x i s  S p e c i f i c a t i o n

One of the first steps in the elaboration of the body plan of an organism
is the specification of axes which provide positional information. This infor-
mation will allow cells which initially have the same developmental potential
to express different sets of genes according to their coordinates.
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and nuclear migration
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folicle
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dorsal cell fates
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folicle
cells

Border
cells

(a)

(b)

F igure  2 .  Drosophila Axis  Spec i f i cat ion.  

(a) The first Grk signal induces the terminal folicle cells to adopt posterior fate, leading to the produc-

tion of a yet unidentified signal back from the posterior follicle cells that causes repolarisation of the

microtubules. The oocyte nucleus moves then along them, towards the anterior-dorsal corner of the

oocyte. (b) GRK protein associated with the nucleus signals again to induce dorsal cell fates, in part by

repressing PIPE expression in dorsal regions, thereby restricting the region in which a ventralising 

signal is produced (modified from Riechmann and Ephrussi, 2001).
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Axis specification in Drosophila is initiated through the interaction
between the egg cell and its surrounding follicle cells. GURKEN (GRK), a
TGF-α homologue, and the RTK pathway, through its receptor TORPEDO,
play a central role in the interactions of follicle cells with the oocyte, as the
oocyte develops anterior-posterior and dorso-ventral polarity (Gonzalez-
Reyes et al, 1995; Fig2).

The oocyte is polarised by two signaling events both involving GRK.The
first GRK signal specifies the anterior-posterior axis. During early oogenesis,
the oocyte nucleus localizes at the posterior side of the egg, where it localizes
GRK which is then secreted from the oocyte and signals through TORPEDO
in the folicle cells at the posterior end of the egg chamber, inducing this folli-
cle cells to adopt posterior fate. In turn, these posterior follicle cells respond by
sending an as yet unidentified signal back to the oocyte, resulting in the repo-
larisation of its microtubules (MT), which causes the oocyte nucleus to travel
along them towards an anterior corner of the egg (Fig 2a).This MT reorgani-
zation is also responsible for the localization of BICOID mRNA at the ante-
rior pole and OSKAR mRNA at the posterior pole, defining the anterior-pos-
terior axis of the embryo. BICOID mRNA is translated after fertilization to
produce a morphogen gradient that patterns the anterior region of the embryo,
while OSKAR recruits NANOS mRNA, which when translated acts also as
a morphogen forming a gradient that patterns the posterior regions
(Riechmann and Ephrussi, 2001).

The second GRK signaling event specifies the dorsal-ventral axis.
Following the arrival of the oocyte nucleus at an anterior region of the egg,
GRK signaling occurs in the neighboring follicle cells, which defines the dor-
sal pole (Fig 2b), controlling dorsal-ventral patterning mainly by restricting the
expression of the protease PIPE to the ventral follicle cells and more locally by
specifying the fate of the dorsal follicle cells (Peri et al, 2002). PIPE then
induces ventral cell fates in the embryo via activation of the Toll signaling path-
way (for review Riechmann and Ephrussi, 2001).

T h e  To l l - D o r s a l  P a t h w a y  i n  D o r s o - Ve n t r a l  

P a t t e r n i n g  i n  t h e  E m b r y o  

In Drosophila embryos, ventral patterning depends on the Toll-Dorsal
pathway. Activation of the TOLL receptor leads to the formation of a broad
nuclear gradient of the transcription factor DORSAL, that specifies different
thresholds of gene expression (Reviewed by Belvin and Anderson, 1996).

TOLL is a large transmembrane receptor protein with an extracellular
domain containing LRRs, and an intracytoplasmic region containing an inter-
leukin-1 receptor homologous domain (TIR domain; Hashimoto et al, 1988).
LRRs are a common signal transduction motif thought to be involved in pro-
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tein-protein interaction. Each repeat is composed of an α-helix and a β-sheet,
with the β-sheet creating a surface that mediates protein-protein interaction
(Kobe and Deisenhofer, 1995).

TOLL is evenly distributed throughout the membrane of the precellular
embryo, and its restricted activation results from the localized processing of its
ligand, SPÄTZLE (SPZ) in ventral regions. SPZ cleavage is achived by the
sequential activation of three serine proteases, among them PIPE which is
repressed in dorsal follicle cells by GRK signaling (see above).

DORSAL is initially present throughout the cytoplasm, where it is
retained by an inhibitory protein, CACTUS. Binding of extracellular SPZ 
ligand to TOLL, activates the Ser/Thr cytoplasmatic kinase PELLE (Towb et
al, 1998) which is connected to the TOLL receptor through the adaptor
proteins MYD88 and TUBE (Fig 3; Sun et al, 2002). Activated PELLE 
phosphorylates multiple substrates, eventually resulting in CACTUS phospho-
rylation and degradation, and translocation of DORSAL into the nucleus,
where it directs expression of ventral specific genes and repression of 
dorsal-specific genes (Fig 3; Belvin et al, 1995; Bergman et al, 1996; Reach et
al, 1996; Shen and Manley, 1998; Belvin and Anderson, 1996 for review).
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Degradation

Dorsal

Nucleus

F igure  3 .  Model  for  the  s ignal  t ransduct ion of  the  Tol l  pathway.  

Upon SPZ binding to the TOLL receptor, the PELLE Ser/Thr kinase, connected to the receptor through

MYD88 and TUBE, gets activated. This results ultimately in CACTUS degradation and translocation of

DORSAL in to the nucleus where it activates target genes (Modified from Sun et al, 2002).
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I n n a t e  i m m u n i t y  i n  a n i m a l s  a n d  p l a n t s

In addition of its central role in dorsoventral patterning, the Toll-Dorsal
pathway is involved in innate immunity, which is an ancient form of defense
against microbial infection. Interestingly, the innate immune system is media-
ted through similar signaling cascades in insects (TOLL-PELLE), mammals
(TOLL likes) and plants (PELLE related; Fig 4b), suggesting an early evolu-
tionary origin of eukaryotic pathogen defense systems, which were possibly
then recruited for development. In Drosophila and mammals the innate
immune response to pathogens activates the Toll-like LRR receptors, which in
turn activate intracellular Ser/Thr kinase, PELLE and IRAK.This leads to the
inactivation of a repressor, CACTUS and IκB, which allows the translocation
of the transcription factors DIF and NF-κB into the nucleus, to activate the
transcription of genes involved in the defense response (Fig 4b). Specificity of
the immune response in Drosophila seem to be achieved by the use of diffe-
rent kind of proteases for SPZ activation than the ones used for dorsal-ventral
patterning (Lygoxygakis et at, 2002).
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F igure  4 .  Innate  immunity  s ignal  t ransduct ion pathways .

(a) Classes of R proteins involved in plant disease resistance (modified from Staskawitcz, 2001). 

(b) Homology in innate immune signalling in plants, mammals and Drosophila. Upon ligand binding a

LRR receptor signals through a Ser/Thr kinase which ultimately leads to the translocation of 

a transcription factor(s) in to the nucleus and activation of transcription of target genes. A putative

repressor (R) could control WRKY22 and WRKY29 activity because their overexpression bypasses the

requirement of elicitors (modified from Asai et al, 2002).
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The genetic bases of plant resistance is often controlled by single resis-
tance (R) genes evolved to recognize organisms expressing specific avirulence
(avr) genes. Several classes of R genes have been identified in plants (Fig 4a),
and as in animals, LRR proteins constitute the predominant structural bases for
pathogen perception.The R genes include transmembrane proteins containing
extracellular LRRs, e.g. Cf2, 4, 5 and 9, Ve1 and 2; transmembrane proteins
containing extracellular LRRs and a cytoplasmic serine-threonine kinase e.g.
Xa21 and FLS2; and cytoplasmic serine-threonine kinases, e.g. Pto; where the
kinases show homology to the animal IRAK/Pelle kinase (Staskawicz et al,
2001). It has recently been shown that plant receptor kinases form a mono-
phyletic group with the Pelle family (Shiu and Bleecker, 2001).

The NB/LRR (nucleotide binding site/LRR) class of proteins is the most
prevalent, and it can be subdivided into two subclasses based on conserved N-
terminal motifs: one class contains a coiled-coiled (CC) domain containing a
putative leucine zipper domain (such as RPS2 and RPM1), whereas the other
class contains significant homology with the TIR domain present in Toll and
TLR (such as N, L6 and RPR5). NB/LRR proteins appear to be cytosolic
receptors that sometimes associate with the plasma membrane, where they may
be capable of directly or indirectly perceiving pathogen effectors as these enter
the plant cell (Fig 4a; Staskawicz et al, 2001).

Taking the FLS2 receptor as an example, there are also some common fea-
tures in the downstream signaling events in plants and animals. In plants one of
the elicitors of the innate immune response is flagellin, a highly conserved
component of bacterial flagella. Flagellin leads to the activation of the FLS2
receptor, a RLK containing an extracellular domain with LRRs and an intra-
cellular Ser/Thr kinase (Gómez- Gómez and Boller, 2000). Activated FLS2
induces a MAPK signaling cascade leading to the activation of the WRKY 22
and WRKY 29 transcription factors that activate their own transcription as
well as the transcription of genes involved in the immune response (Fig 4b;Asai
et al, 2002). In addition of the MAPK signaling cascade, flagellin signaling also
induces a MAPK-independent pathway which remains to be unraveled.

In summary, host defenses in higher eukaryotes involve a highly conserved
LRR kinase-mediated signaling pathway with a set of homologous proteins
found in all eukaryotes. Unlike in animals where TGF-β and RTK are the
major developmental signaling pathways, plants have adapted the ancient LRR-
kinase signaling pathway as the predominant form for a vast variety of 
developmental processes as I will discuss in the next section.
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C E L L - C E L L  S I G N A L I N G  I N  P L A N T  D E V E L O P M E N T

Multicellularity in plants developed from ancestral cells independently
with different properties. Among the more obvious are photoautotrophic
growth, absence of mobility, and the presence of a semirigid cell wall (McCarty
and Chory, 2000).

Since plants are sessile and so they have little choice over their immediate
growth environment they need the ability to modify development to cope with
an environment of enormous variability. Numerous environmental factors such
as temperature, light, touch, nutrients, water and gravity serve as signals for the
activation of endogenous developmental programs. There is substantial evi-
dence that key elements of pathways related to stress, defense, sugar and osmo-
tic responses are at least partially conserved in plants, animals, and fungi.These
conserved pathways regulate processes that are basic to unicellular as well as
multicellular organisms (McCarty and Chory et al, 2000). In contrast, the sig-
naling pathways that underlie much of multicellular development use novel
combinations of conserved domains.

P l a n t  R e c e p t o r  K i n a s e s

Plant receptor-like kinases (RLK) belong to a large gene family with
more than 400 members in Arabidopsis (compared with only 25 in Drosophila
or 70 in humans; Becraft, 2002), probably as a consequence of the plants need
to modify its development according to their immediate environment.

In Arabidopsis, there are over 21 different classes of extracellular domains.
Since plant RLKs form a monophyletic group with the animal Pelle family, this
suggests that most likely kinase domains from this group were recruited multi-
ple times by fusion with different extracellular domains (Shiu and Bleecker,
2001). In addition, the distribution pattern of RLKs on Arabidopsis chromo-
somes indicates that the expansion of this gene family is partly a consequence
of tandem duplication events and large-scale duplications of chromosomes.
Overall, this indicates that plant RLKs evolved by sequential recruitment and
fusion of various domains to an ancestral kinase and further expansion of cer-
tain classes through duplication events (Shiu and Bleecker, 2001).

Of the 21 different classes, the most common extracellular motif is the
leucine-rich repeat (LRR), present in more than half of the RLKs. All known
plant RLKs contain a serine/threonine kinase consensus sequence, but at least
two: PRK1 (pollen receptor-like kinase1) and SERK (somatic embryogenesis
receptor-like kinase) have dual specificity, PRK1 being able to phosphorylate
on serines and tyrosines, while SERK phosphorylates serines, threonines and
tyrosines (Becraft, 2002).
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Although for the majority of plant RLKs no functional information is
available, different members of this family are known to function in a wide
variety of developmental processes and in innate immunity. RLKs have been
implicated in a plethora of processes such as pollen-pistil interactions in the
self-incompatibility response in Brassicaceae (Kachroo et al, 2002), gameto-
phyte development (Zhao et al, 2002; Lee et al, 1996), somatic embryogenesis
(Schmidt et al, 1997), hormone signaling (Bishop and Koncz, 2002), cell mor-
phogenesis (Kohorn, 2001), organ shape (Torii et al, 1996) and meristem main-
tenance (Clark et al, 2001).

I will next consider two well-studied signaling pathways in which LRR-
RLKs have a prominent role: first the brassinosteroid signal transduction path-
way controling multiple processes involved in plant growth and development
e.g. cell expansion and xylem differentiation, and second the CLAVATA path-
way controlling stem cell maintenance in the shoot apical meristem.

B r a s s i n o s t e r o i d  s i g n a l i n g  p a t h w a y

Steroid hormones play essential roles in plants as well as in animals. In
plants, many steroids have been identified, brassinolide (BL) being the most
bioactive form of the growth-promoting plant steroids termed brassinosteroids
(BRs). Like their animal counterparts, BRs have been shown to regulate gene
expression, stimulate cell division and differentiation and modulate reproduc-
tive biology. But BRs are also able to mediate some plant specific responses
including promotion of cell elongation in the presence of a cell wall and coor-
dination of multiple developmental responses to darkness and light (Clouse and
Sasse, 1998).

In animals, steroid hormones generally pass freely across the plasma mem-
brane into the cells, where they bind members of the nuclear receptor super-
family of ligand-dependent transcription factors in the cytoplasm, and the
active complex is then translocated into the nucleus to promote or repress 
transcription of hormone-responsive genes (Beato et al, 1995). Plants lack close
homologues of animal nuclear steroid receptors indicating that steroid 
signaling in plants is mediated by alternative mechanisms (Wehling, 1997).

To find genes involved in the BR signal transduction pathway, several
genetic screens have been performed looking for BR insensitive mutants,
which display a characteristic dark green dwarf phenotype. The first such
mutant to be identified was br i1 in Arabidopsis, from which multiple alleles
were isolated. BRI1 was cloned and shown to encode a protein with homolo-
gy to LRR-RLKs (Li and Chory, 1997). BRI1 is ubiquitously expressed, with
high levels of expression in meristems, root, shoot and hypocotyl of seedlings
and lower levels later in development (Friedrichsen et al, 2000). BR-insensitive
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mutants encoding for BRI1 orthologs (Bishop and Koncz, 2002) have been
identified in rice (Yamamuro et al, 2000), pea (lka; Nomura et al,1999) and
tomato (cu-3; Koka et al, 2000) highlighting the conservation of BRI1 func-
tion in BR perception in higher plants.

To test whether the extracellular LRR region of BRI1 was essential for
BL sensing, a chimeric receptor was constructed containing the extracellular
LRR and transmembrane domains of BRI1 and the serine/threonine kinase
domain of XA21, a rice disease resistance receptor (He et al, 2000). The
chimeric receptor initiated plant defense responses upon treatment with BL
suggesting that the extracellular domain of BRI1 plays a direct role in brassi-
nosteroid perception. In addition, the number of BL binding sites depends on
the level of BRI1 protein, the BL binding activity co-immunoprecipitates with
BRI1 and requires a functional BRI1 extracellular domain, and treatment of
Arabidopsis seedlings with BL induces autophosphorylation of BRI1, all sug-
gesting that BRI1 acts as a BL receptor (Wang et al, 2001).

Recently a second LRR-RLK involved in BL signaling, BAK1 (BRI1
Associated receptor Kinase 1), has been identified by yeast-two hybrid screens
as an interactor of BRI1 (Nam and Li, 2002) and in an activation tagging
screen for suppressors of br i1 (Li et al, 2002). Overexpression of BAK1 results
in elongated organ phenotypes (reminiscent of BRI1-overexpressors) and res-
cues a weak br i1 mutant, while a bak1 null allele displays a semidwarf pheno-
type and has reduced sensitivity to BR. Expression of a dominant negative
bak1 mutant allele causes a severe dwarf phenotype, resembling the phenotype
of null br i1 alleles. BAK1 and BRI1 share similar gene expression and subcel-
lular localization patterns and interact in vitro and in vivo, suggesting that
BRI1 and BAK function together, most likely through heterodimerization, to
mediate plant steroid signaling (Fig 5). BRS1 (br i1 suppressor dominant 1), an
upstream component in BL signaling, was identified in a gain-of-function
screen for suppressors of a weak br i1 allele. BRS1 encodes for a presumed
secreted type II carboxypeptidase, which when overexpressed could suppress
extracellular br i1 mutations but not the intracellular ones, suggesting that
BRS1 processes a protein involved in an early event in BRI1 signaling (Fig 5;
Li et al, 2001a).

Downstream components of the signaling pathway are also being unra-
veled. BIN2, a GSK3/SHAGGY like kinase, has been shown to be a negative
regulator of BL signaling (Li et al, 2001b; Li and Nam, 2002). Interestingly,
GSK3/SHAGGY like kinases belong to a class of cytoplasmic serine/threonine
kinases highly conserved and widely found among eukaryotes, often acting as
negative regulators of signal transduction pathways controlling metabolism and
developmental events (Fig 5). Two novel homologous proteins that are poten-
tial targets for BIN2 are  BES-1D (bri1 EMS-suppressor 1-D) and BZR 1-D
(brassinazole resistant 1-D), containing nuclear localization signals and consen-
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sus sites for phosphorylation by GSK-3 kinases. They are found in the cyto-
plasm and their nuclear localization is rapidly induced by brassinosteroids (Yin
et al, 2002;Wang et al, 2002). But while BES1 appears to promote mainly the
activation of genes involved in cell expansion, BZR1 seems to inhibit prima-
rily the activation of genes coding for enzymes involved in BR biosynthesis.
The Kinase-Associated Protein Phosphatase (KAPP) and the Rho-like GTPase
ROP2 have also been found to act downstream of BRI (Schumacher and
Chory, 2000). KAPP has been previously observed to negatively regulate the
CLAVATA signaling pathway by dephosphorylating a pressumably active
receptor (Williams et al, 1997), suggesting that KAPP might function as a 
negative regulator of the BL signaling pathway. ROP2 has been suggested to act
as a signal transducer in the BL signal transduction pathway, maybe by 
transducing signals to MAPK, as biochemical analysis of BRI1 antisense rice
plants showed that MAPK activity was induced by BL treatment (Li et al,
2001c; Sharma et al, 2001).
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F igure  5 .  Models  for  BL  s ignal  t ransduct ion.  

BL ligand binding to the cell surface receptors BRI1 and BAK1 initiates a signaling cascade that inacti-

vates BIN2, and allows accumulation and nuclear localization of BES1 and BZR1. BES1 mainly induces

activation of genes involved in cell expansion, while BZR1 is involved in repression of genes involved

in BR biosynthesis. The BRS1 carboxypeptidase might be involved in the processing of proteins which

act as helpers in ligand binding. KAPP would be responsible for dephosphorylation of the active recep-

tor, while ROP2 transduces signals to downstream components like MAPK. Steps that have a positive

effect on the signaling are with open arrows, while those with a negative effect are shown with black

arrows.
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In addition to signaling components, some target genes of the BL signa-
ling pathway have been identified. BR biosynthesis genes and transcription fac-
tors have been shown to be repressed upon BL treatment and acumulate in br i1
mutants (Choe et al, 2001; Müssig et al, 2002). Others, like xyloglucan endo-
transferases (XET) have been found to be up-regulated (Xu et al, 1996; Klahre
et al, 1998) demonstrating that the induction of XETs correlates with cell wall
loosening during BL-induced growth responses. Recently, three highly redun-
dant bHLH transcription factors, BEE1, 2 and 3 have also been identified as
early response genes required for full BR response (Friedrichsen et al, 2002).

Taken together, one possible model would be that BL binds to the BRI1-
BAK1 receptors, may be with the help of proteins processed by BRS1. This
lead to the repression of the BIN2, which would allow for the accumulation of
BES1/BZR1 and its translocation into the nucleus.There, BES1 would main-
ly activate genes involved in cell expansion, while BZR1 would repress genes
involved in BR biosynthesis. In the absence of ligand, BIN2 would be active,
and phosphorylate BES1 and possibly BZR1, may be marking them for degra-
dation. Other components of the activated pathway include KAPP, possibly
involved in dephosphorylation of the active receptor(s), and ROP2 which
could transduce signals to downstream components like MAPK (Fig 5; Becraft,
2002; Bishop and Koncz, 2002; Clouse and Sasse, 2002 for reviews).

S h o o t  M e r i s t e m  M a i n t e n a n c e :  t h e  C L A VATA  p a t h w a y

One of the main differences between plant and animal development is
that in plants organogenesis goes on after embryogenesis through the entire life
span of the plant, thanks to the activity of the meristems where a constant 
population of stem cells is maintained.The shoot meristem will generate all the
aboveground organs and the root meristem will give rise to all the under-
ground parts.

In the shoot apical meristem (SAM), cells are organized into the outer
tunica layers and the inner corpus layers. In many species, including
Arabidopsis, the tunica consist of two clonally distinct cell layers, named L1
and L2 where cell divisions are exclusively anticlinal while below the tunica,
in the corpus or L3 layer, cell divisions are not strictly oriented. Even though
this separation into clonally distinct cell layers may suggest cell-lineage depen-
dant cell fate specification, studies using genetic mosaics have shown that the
position of a cell and not its clonal origin, determines its fate (Irish and Sussex,
1992). A second level of organization divides the SAM into the central zone
(CZ), which contains the stem cell population of slowly dividing cells, and the
peripheral zone (PZ), where cells divide more frequently and are incorporated
into lateral organs.
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Arabidopsis mutants that either lack stem cells or accumulate ectopic stem
cells have uncovered a signaling pathway involved in stem cell maintenance in
the shoot meristem. Loss-of-function mutations at the CLAVATA (CLV1,
CLV2 and CLV3) loci cause the progressive accumulation of undifferentiated
stem cells as development proceeds (Clark et al, 1993; Clark et al, 1995; Kayes
and Clark, 1998). Genetic analysis has shown that CLV1, CLV2 and CLV3
function together to restrict the size of the stem cell population in shoot and
floral meristems, although CLV2 also functions more broadly to regulate other
aspects of development.

The three CLV genes have been cloned and shown to encode a LRR-
RLK (Clark et al, 1997), a LRR receptor-like protein with a short cytoplasmic
tail (Jeong et al, 1999), and a small secreted protein (Fletcher et al, 1999),
respectively. CLV3 is expressed in the stem cell population at the central zone
of the meristem, primarily in the L1 and L2 layers, while CLV1 is found most-
ly in an underlying domain in the L3. Expression of CLV2 can be found in
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F igure  6 .  Models  for  s tem cel l  maintenance .  

(a) CLV3, may be as a multimer or with the help of another protein, binds to the extracellular domain

of CLV1/CLV2 heterodimer. Ligand binding leads to autophosphorylation of CLV1, which then recruits

downstream components as KAPP and ROP. The signaling cascade ultimately leads to repression of

WUS expression. POL acts as a negative regulator of the pathway, downstream of CLV1 (modified from

Clark, 2001). (b) In the shoot meristem the organizing center, where WUS is expressed, acts to promote

stem cell fate in the cells above it. In turn, the stem cells, through the action of CLV3, act via the CLV1

signaling pathway to inhibit the domain of WUS expression. In analogy, in the root meristem the QC

has also been shown to promote the stem cell activity of the cells surrounding it (modified from

Lenhard and Laux, 1999).
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whole meristems and also in other tissues, consistent with the broader domain
of action of this gene.

CLV3 has been shown by biochemical and genetic approaches to act as
the ligand for CLV1 as part of a multimeric complex (Trotochaud et al, 1999
and 2000; Rojo et al, 2002). In wild type, the CLV1 protein can be found as
part of two protein complexes. As a 450 kDa protein complex, assumed to be
the active complex, which requires the presence of functional CLV3 and CLV2
protein for its stability. Or as a part of a 185 kDa complex, supposed to be the
inactive form, which possibly contains CLV1 and CLV2. Two other proteins
have been identified as components of the 450 kDa complex: KAPP, a phos-
phatase which was previously shown to be a negative regulator of the CLV
pathway (Williams et al, 1997; Stone et al, 1998), and a Rho/Rac-GTPase-
related protein (ROP) which on the basis of the role of such proteins in ani-
mal signal transduction, it has been suggested it may respond to the CLV1 acti-
vation by activating a MAPK signaling cascade (Fig 6a;Trotochaud et al, 1999).

Another key component involved in shoot meristem maintenance is
WUSCHEL (WUS), which encodes a putative homeodomain transcription
factor (Mayer et al, 1998). WUS seems to be involved in promoting stem cell
activity throughout development, as wus mutant shoot and floral meristems
terminate prematurely after the formation of few organs (Laux et al, 1996).
After embryogenesis, WUS is expressed in a small group of cells that lie
beneath the CLV3 expression domain and partially overlap with the CLV1
domain in the central L3 cells, forming what has been named the organizing
center.

wus c lv double mutants have the same phenotype as wus single mutants,
indicating that WUS might act downstream of CLV (Schoof et al, 2000). In
addition, in c lv3 mutants, the WUS expression domain expands upwards and
laterally, while in CLV3 overexpressing plants, that form arrested meristems
and phenocopy the wus loss-of -function mutation, WUS mRNA is not
detected (Brand et al, 2000). This suggests that the CLV pathway represses
WUS in vivo. WUS expression under the CLV1 promoter recreates the WUS
expression domain seen in c lv1 mutants, and mimics a c lv phenotype, suggest-
ing that the accumulation of stem cells in c lv1 mutants is a consequence of
WUS misexpression. When WUS was expressed in the AINTEGUMENTA
(ANT) expression domain (in nascent organ primordia) it prevented differen-
tiation of incipient organs, forming a large mass of stem cells instead (Schoof,
2000).Together these results point to the existence of a negative feedback loop,
where CLV3 acts (non-cell autonomously) from the stem cell population to
negatively regulate WUS expression, while WUS from the organizing center
activates CLV3 expression in the center of the meristem. In such system, the
balance between WUS and CLV3 controls the size of the stem cell population
in the SAM (Fig 6b).
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In a genetic screen for suppressors of c lv3 and c lv1 intermediate alleles,
the poltergeist (pol) mutant was identified as another downstream component
of the CLV pathway (Fig 6a;Yu et al, 2000). The single pol mutant does not
have any phenotype, but in the double mutant combination with c lv the plants
have fewer stem cells in the shoot and floral meristem than the c lv single
mutants. On the other hand, pol mutations enhance wus phenotypes in a
dosage dependent fashion. POL have been recently shown to encode a protein
phosphatase 2C (PP2C) broadly expressed throughout the plant (Yu et al,
2003). Interestingly, analysis of pol c lv wus triple mutants and pol wus double
mutants revealed that in a pol background CLV1 can function in the absence
of WUS. Thus, POL functions in both a WUS-dependent and a WUS-inde-
pendent CLV pathway promoting stem cell identity (Yu et al, 2003).

Recent evidence suggest that the CLV pathway controlling meristem
maintenance is conserved in other species. A mutant of maize, fasciated ear2
(fea2), causes shoot and floral meristem enlargement and massive over-
proliferation of the ear inflorescence meristem. FEA2 protein is closely related
to the Arabidopsis CLV2 LRR receptor-like protein, and localizes to the 
plasma membrane (Taguchi-Shiobara et al, 2001). OsLRK1, a CLV1- related
gene from rice has also recently been isolated, and rice plants expressing 
antisense copies of this gene have extra floral organs but are not affected in the
SAM (Kim et al, 2000).This suggests that the components of the CLV pathway
are also present in monocots, which might mean that this may be the conserved
pathway in angiosperms to regulate meristem size, at least in flowers. (Sharma
and Fletcher, 2002 for review on CLV pathway).

A i m  o f  t h i s  t h e s i s

The earliest vascular plants were rootless with leafless shoot axes.The first
roots evolved among an extinct group, the Lycopsids, and they were modified
lateral appendages possessing a single leaf trace.The Trimerophytes is the group
from which the remainder of vascular plants originated, and they were also
rootless. Consequently roots evolved first among the Lycopsids and on at least
one further occassion during the evolution of vascular land plants (Dolan and
Scheres, 1998).

Some common mechanisms are known to act in both shoots and roots. In
roots as in shoots, despite regular cell lineages, cell fates are regulated by posi-
tional signaling (van den Berg et al , 1995). In addition, cell fate in root epi-
dermal cells is regulated by genes also used in leaf epidermis specification.
Furthermore, the quiescent center is involved in the control of stem cell main-
tenance, in analogy with the role of the WUS-expressing organizing center in
the SAM. All these three processes are mechanistically reminiscent of corre-
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sponding processes in the shoot (Dolan and Scheres, 1998). One obvious pos-
sibility would be that roots might be derived from ancestral shoot structures.

In the root meristem the processes of cell proliferation and specification
take place in their most simple form. In the centre of the root meristem a pool
of stem cells or initials surround four mitotically less active cells, the quiescent
center (QC). Within the meristem, cell files are extended in such a way that
they are continuous with pre-existing tissues, leading to the propagation of a
simple radial cellular pattern that is initially laid down in the embryo (Dolan
and Scheres, 1998). By laser ablation experiments it was shown that the QC
inhibits the differentiation of the stem cells surrounding it in a contact-
dependent manner, and that progression to differentiation depends on signals
from more mature cells (van den Berg, 1995 and 1997).This scenario is analo-
gous to the situation in the SAM, where an organizing center also controls the
differentiation status of the stem cell population (Fig 6b).

We addressed which molecular mechanisms control root meristem main-
tenance, and whether a CLV-like pathway is involved in controlling the balance
between cell division and cell differentiation.Whether or not a CLV-like path-
way is responsible for both shoot and root meristem maintenance in higher
plants may help us understand the process of organ evolution in seed plants.

Two approaches have been taken to address these questions. First, we per-
formed a suppressor screen on transgenic plants ectopically expressing a
CLV3-like gene in the root meristem, which causes progressive root mersitem
differentiation. Mutations in two genes were isolated, and phenotypic analysis
undertaken. One of the genes was cloned and shown to encode a Zn2+-car-
boxypeptidase. Second, we used a reverse genetic approach to isolate and study
CLV1-like receptors which are expressed in the root meristem. Initially, two
LRR-RLKs were isolated, RCH1 and RCH2 (ROOT CLAVATA HOMO-
LOGUE 1 and 2). Functional loss-of-function analysis revealed no obvious
phenotypes neither in the single mutants nor in the double, possibly due to
genetic redundancy. We extended our study to the next 3 closest members,
which altogether form a clade, and further functional and expression analysis
was performed.
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S O L 1  a n d  S O L 2  i m p l i c a t e  a  n o v e l  C LV- l i k e  p a t h w a y  
i n  t h e  c o n t r o l  o f  A r a b i d o p s i s  r o o t  m e r i s t e m  
d i f f e r e n t i a t i o n .

A B S T R A C T

The balance of cell division and cell differentiation in the Arabidopsis
shoot apical meristem is controlled by a negative feedback loop between the
cells expressing the WUSCHEL gene and the overlaying stem cells expressing
the CLAVATA3 (CLV3) ligand of the CLV1-CLV2 receptor complex. Here we
show that ectopic expression of LIGAND LIKE PROTEIN 1 (LLP1)
encoding a CLV3 homologue in roots, promotes differentiation or restricts cell
division in the root meristem, without primarily affecting quiescent center
specification or stem cell maintenance. From a screen aimed to identify com-
ponents of a root CLV-like pathway, we isolated mutations in two loci, SOL1
and SOL2, that suppress the ectopic LLP1 expression phenotype. sol2 plants
display floral phenotypes reminiscent of c lv weak alleles, suggesting that com-
ponents of the pathway are shared in roots and shoots. SOL1 was cloned and
found to encode a putative Zn2+- carboxypeptidase which may be involved in
ligand processing.

I N T R O D U C T I O N

Stem cells have the ability to renew themselves and to give rise to daugh-
ter cells which differentiate. In seedlings there are two main populations of
stem cells, one within the shoot apical meristem (SAM) which gives rise to all
above-ground organs, and one in the root meristem which forms all the under-
ground parts (Nakajima and Benfey, 2002; Clark, 2001).

Post-embryonic plant development depends on strict regulation of stem
cell maintenance, cell division and cell differentiation at the meristems. In the
SAM the current view is that stem cell maintenance depends on cell-cell com-
munication between an organizing center and the stem cells above it. The
organizing center, specified by the putative homeodomain transcription factor
WUSCHEL (WUS), signals in a non-cell-autonomous manner to overlying
cells to specify them as stem cells (Mayer et al, 1998), which express the small
secreted protein CLAVATA 3 (CLV3; Fletcher et al, 1999). CLV3 likely inter-
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acts and activates the heterodimer receptor complex formed by the leucine rich
repeat (LRR)-receptor kinase CLAVATA1 (CLV1), and the LRR-receptor
CLAVATA 2 (CLV2) resulting in transcriptional repression of WUS
(Trotochaud et al, 1999; Rojo et al, 2002; Brand et al, 2000; Schoof et al, 2000).
Thus, the available data support a model where the size of the stem cell popu-
lation in the SAM depends on a negative feedback loop.WUS promotes stem
cell fate by activating CLV3 expression, and CLV3 acts via the CLV1/CLV2
receptor complex to limit the domain of WUS expression.

In the Arabidopsis root meristem the stem cells or initials surround a
group of mitotically less active cells, the quiescent center (QC), and they can
be unequivocally identified by anatomical features (Dolan et al, 1993). Laser
ablation experiments suggested that the QC inhibits the differentiation of the
surrounding stem cells by short-range non-cell-autonomous signals (van den
Berg et al, 1997). Recently Sabatini et al (2003) have shown that the putative
transcription factors SCR and SHR are required for distal specification of the
QC, which in turn regulates stem cell fate of the immediately surrounding
cells. Daughter cells that become disconnected from the QC differentiate
according to positional cues (van den Berg et al, 1995).

Since the role of the QC in roots seems to be functionally equivalent to
the role of the WUS-organizing center in the SAM, we wondered whether a
CLV-like pathway might operate in roots to control root meristem mainte-
nance.We ectopically expressed LLP1, a CLV3 homologous gene, in the root
meristem and we observed root meristem differentiation in analogy to the
effect in shoots upon CLV3 overexpression. Our data suggest that a novel
CLV-like pathway is involved in root meristem maintenance.To isolate the sig-
naling components involved in this pathway, we performed a suppressor muta-
genesis screen.We report on two new loci involved in this signal transduction
pathway, one of them encoding a putative Zn2+-carboxypeptidase of the type
implicated in ligand processing events in animals.

R E S U LT S

E c t o p i c  e x p r e s s i o n  o f  L L P 1 i n  r o o t  m e r i s t e m s  c a u s e s  

m e r i s t e m  d i f f e r e n t i a t i o n

LLP1 is a small potentially secreted protein belonging to the CLE family
of which also CLV3 is a member. LLP1 corresponds to CLE19 from the Cock
and McCormick classification (2001). Overexpression of the Brassica napus
BrLLP1 in Arabidopsis under the 35S CaMV promoter causes root meristem
differentiation among other phenotypes (Chun-Ming Liu, unpublished results).
In analogy, when CLV3 was overexpressed under the 35S promoter, the shoot
meristem ceased organ initiation after emergence of the first leaves (Brand et
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al, 2000). This similar effect suggested that a CLV-like pathway might also act
in roots to maintain the balance between cell division and cell differentiation
in the meristem. However, the effect on root meristem maintenance by over-
expressing LLP1 in the whole plant could be indirect, for example as a conse-
quence of long-range shoot-to-root signaling.

To address whether LLP1 expression in the root meristem only is suffi-
cient to cause a root meristem differentiation phenotype, we expressed the
Arabidopsis AtLLP1 transgene under the control of the RCH1 promoter,
which is highly expressed specifically in the root meristem (Patent number
PCT/EP01/14154; Fig 1d). We used the UAS-GAL4VP16 transactivation
system, whereby the RCH1 promoter is fused to GAL4VP16 which in turn
promotes the transcription of ER-GFP by binding to upstream UAS elements,
resulting in the RCH1-ERGFP root specific binary vector (Fig 1a). AtLLP1
under the control of the UAS promoter was then cloned into this vector crea-
ting the RCH1-LLP1 binary vector (Fig 1a). Arabidopsis plants were trans-
formed with the RCH1-LLP1 vector and transgenic plants were selected for
root GFP expression.
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F igure  1 .  Ectopic  express ion of  AtLLP1 in  the  root  mer istem causes  root  mer istem

different iat ion.  

(a) RCH1-ERGFP and RCH1-LLP1 constructs (promoters in green, coding regions in orange) (b-c) Root

meristem boundary (arrowhead) of four-day-old roots from WT and RCH1-LLP1. (d-e) Confocal image

of a one- week-old WT and RCH1-LLP1 root (meristem boundary marked with an arrowhead).  (f) Image

of one-week-old seedling roots as viewed under a GFP binocular, from left to right WT, heterozygous

RCH1-LLP1 and homozygous RCH1-LLP1.
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23 independent lines carrying the transgene showed similar phenotypes as
the homozygote single insertion line described below. In this single insertion
line, which we will call RCH1-LLP1 hereafter, we observed that the ectopic
expression of LLP1 in the root meristem caused a progressive differentiation
of the meristem in a dose dependent manner. Heterozygous plants, which were
distinguished by lower GFP expression in the root meristem, behave as wild
type roots, while homozygous RCH1-LLP1 plants have short roots with high
GFP expression (Fig 1e, f), indicating that two doses of RCH1-LLP1 are
required to affect root growth in this line and that the RCH1-LLP1 construct
is inherited as a recessive trait. We decided to use this single insertion line for
detailed analysis. Homozygous RCH1-LLP1 roots progressively lose cells in
the meristematic zone (Fig 1c and e), indicated also by the formation of root
hairs closer to the root tip, and eventually in some seedlings the root meristem
is fully consumed while this never happens in control roots (Fig 1b, d).

To assess whether this phenotype is due to ectopic expression of the
AtLLP1 protein, we mutated codon 3 of AtLLP1 in the RCH1-LLP1
construct into a stop codon, creating the RCH1-LLP1stop vector (see 
matetial and methods).The roots of plants transformed with this vector have a
wild type appearance, indicating that the defective root growth phenotype in
RCH1-LLP1 plants is caused by ectopic expression of the LLP1 protein (data
not shown). We concluded that the CLV3 homologue LLP1 induces 
differentiation phenotypes when ectopically expressed in roots (like overex-
pression of CLV3 does in shoots), consistent with the hypothesis that LLP1
may overactivate an endogenous CLV like pathway in the root meristem
involved in root meristem maintenance.

E c t o p i c  L L P 1  i n d u c e s  m e r i s t e m  d i f f e r e n t i a t i o n  r a t h e r  

t h a n  f a i l u r e  i n  s t e m  c e l l  m a i n t e n a n c e  

Two causes for enhanced root meristem differentiation can be envisioned:
loss of stem cell maintenance by lack of QC activity or specification (van den
Berg et al, 1997; Sabatini et al, 2003) and loss of division potential or more
rapid differentiation of stem cell daughters. In the first case, primary defects in
the QC region would be expected, while in the second case meristem size
would decrease before QC and stem cells would show defects.

To asses whether QC specification is rapidly affected in RCH1-LLP1
plants, we introduced the QC markers QC25 and QC184 in RCH1-LLP1
(Sabatini et al, 1999; Fig 2a, b, data not shown). RCH1-LLP1 roots still express
these markers one week after germination when root meristem size is already
significantly reduced compared to WT (Fig 2a, b; Fig 1e), suggesting that QC
specification is not primarily affected.
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To analyze whether stem cells are maintained in RCH1-LLP1 roots, we
stained for starch granules that mark differentiated columella cells, to check if
the columella initials remain devoided of starch granules and hence retain their
stem cell status. One week after germination, no starch granules could be
detected in the columella stem cells of 73% (n=26) of the RCH1-LLP1
seedlings analyzed (Fig 2a, b arrow), suggesting that stem cell status is main-
tained for a prolonged period.

The expression of both QC markers together with the maintenance of
columella stem cells one week after germination in RCH1-LLP1 seedlings,
when progressive differentiation of the meristem actively occurs, indicates that
ectopic expression of LLP1 in the root meristem enhances differentiation or
reduces cell division by a mechanism different from interference with QC
specification and/or stem cell maintenance.

T h e  L L P 1  i n d u c e d  d i f f e r e n t i a t i o n  p a t h w a y  i s  

i n d e p e n d e n t  o f  S H R  a n d  S C R  

In shr and scr mutants, root growth ceases prematurely as we also observed
in RCH1-LLP1 plants (Fig 2h; Benfey et al, 1993; Scheres et al, 1995). SHR
and SCR are both members of the GRAS family of putative transcription fac-
tors, and are required for QC specification and stem cell maintenance (Di
Laurenzio et al, 1996; Helariutta et al, 2000; Sabatini et al, 2003). In scr and shr
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F igure  2 .  QC spec i f i cat ion and stem cel l  s tatus  i s  not  affected in  RCH1-LLP1 roots .

(a-b) Double labeling of QC and differentiated columella cells visualized by the QC25 marker and amy-

loplast staining in one-week-old WT and RCH1-LLP1 roots. The columella initials (arrow) do not show

signs of differentiation. (c-e) Six-day-old seedlings of homozygous RCH1-LLP1, double homozygous

RCH1-LLP1,shr-1 and homozygous shr-1, respectively. (f-h) Root meristem boundary (arrowhead) of

six-day-old roots from homozygous RCH1-LLP1, double homozygous RCH1-LLP1,shr-1 and homozygous

shr-1, respectively.
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mutants, the QC25 marker is never expressed and the columella initials diffe-
rentiate. Our observation that QC and stem cells are intact in RCH1-LLP1
roots suggests that LLP1 acts in a different pathway or downstream of SHR and
SCR.

To investigate whether LLP1 acts downstream in the same pathway as
SHR and SCR in the control of root meristem maintenance, we introduced
RCH1-LLP1 in shr-1 and scr-1 mutants. shr-1 mutants homozygous for
RCH1-LLP1 could be identified by short roots with a smaller domain of high
GFP expression (characteristic of two doses of RCH1-LLP1) and absence of
lateral roots as in shr mutants of this stage (Fig 2c, d, e). Double homozygosity
was confirmed by genotyping (see material and methods). It is of note that
RCH1-LLP1,shr-1 double homozygotes show additive phenotypes, the root
meristem differentiates faster than in either single homozygote as seen by the
decreased number of meristematic cells (Table 1; Fig 2f, g, h arrowhead) and
the closer proximity of root hairs to the tip. Similar results were observed in
RCH1-LLP1,scr-1 double homozygotes (data not shown).

Our results suggest that control of the differentiation of meristematic cells
by ectopic LLP1 expression in the root meristem is independent of the
SHR/SCR pathway that specifies the QC and thereby stem cell identity.

M u t a g e n e s i s  s c r e e n  f o r  s u p p r e s s o r s  o f  R C H 1 - L L P 1

To find molecular components involved in the root meristem differentia-
tion phenotype caused by ectopic expression of AtLLP1 in the root meristem,
an ethylmethane sulfonate (EMS) mutagenesis was performed in the RCH1-
LLP1 background to identify suppressors. 8100 mutagenized RCH1-LLP1 M0
seeds were divided in 10 pools, and a minimum of 11000 M2 seedlings were
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Table  1  . Meristem size measurements.

Average number of cortex cells per

file in the meristem*

RCH1-LLP1/RCH1-LLP1 shr-1/shr-1 1.8 ± 1.5

RCH1-LLP1/RCH1-LLP1 +/+ 6.8 ± 0.4

+/+ shr-1/shr-1 6.3 ± 0.4

*Values represent the average number of cortex cells per file in the meristem showing no signs of

rapid  elongation ± standard  deviation. Measurements  were performed 6 days after germination,

using 9 roots from RCH1-LLP1/RCH1-LLP1 shr-1/shr-1 plants, 5 from +/+ shr-1/shr-1 and 4 from RCH1-

LLP1/RCH1-LLP1 +/+. Per root one cortex cell file was analyzed.

Eva;chapter 2  28-04-2003  11:12  Pagina 34



screened per pool for recovery of root length with high GFP (indicating full
activity of the transgene; Fig 3a arrow). Putative mutants were checked in the
M3 generation for re-segregation of the suppressor phenotype and put in com-
plementation groups by pairwise crossing. Mutations at two novel loci sup-
pressed RCH1-LLP1, and were  named suppressor of RCH-LLP1 1 and 2
(sol1 and sol2). Hereafter, sol1 and sol2 refer to the mutants in the RCH1-
LLP1 homozygous background unless stated otherwise. Four alleles from sol1
were isolated from 4 independent families, while 2 alleles coming from 2 dif-
ferent families were recovered for sol2.

Both sol1 and sol2 are able to fully suppress both the root length and
meristem differentiation defect seen in the RCH1-LLP1 plants up to one week
after germination (Fig 3b-g, Fig 4a-b). At this stage the meristem size of sol1
and sol2 resembles the wild type (Fig 3d, f, g arrowheads, Fig 4b), even though
sol2 meristems tend to be slightly smaller (Fig 3d, g arrowhead, Fig 4b). After

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

C h a p t e r  2 • 3 5

F igure  3 .  The  sol1 and sol2 mutants  suppress  RCH1-LLP1 induced root  mer istem dif -

ferent iat ion.

(a) Screening for suppressors. A suppressor mutant (arrow) has a long root with high GFP expression,

among other RCH1-LLP1 seedlings which posse's short roots with high GFP. (b-c) One-week-old sol1

and sol2 seedlings have a root length comparable to WT and much longer than RCH1-LLP1 of the same

stage. (d-g) Root meristem boundary (arrowhead) of one-week-old WT, RCH1-LLP1, sol1 and sol2 roots,

respectively.
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one week sol2 seedlings slow their root growth while sol1 root growth 
accelerates (Fig 4a). This difference in growth becomes more clear 15 dpg
when all 4 sol1 alleles have longer roots and all roots of the 2 different sol2
alleles are shorter than controls of the same age without the RCH1-LLP1
construct (Fig 4a). However, roots of all sol1 and sol2 alleles grow longer than
RCH1-LLP1 roots (Fig 4a). As a measure for meristem size, we counted the
number of cortex cells in a single file extending from the QC up to the first
rapidly elonga-ting cell, and we observed that while all sol1 alleles contain
more meristematic cells in the 15 dpg meristem, all sol2 alleles contain less (Fig
4b).These results suggest that the differences in root growth rate between these
alleles correlate with the amount of cells in the root meristem.

s o l 2  f l o w e r s  h a v e  e x t r a  c a r p e l s ,  r e m i n i s c e n t  o f  c l v

m u t a n t  d e f e c t s

We noticed that 45 % of sol2-2 flowers and 15 % of sol2-1 flowers con-
tain extra carpels in the last whorl (Fig 5e). In addition, terminal flowers occa-
sionally contain less whorl 1 to 3 floral organs and accumulate a central mass
of carpels (Fig 5a). In some cases when this extreme accumulation of carpels
occurs, fasciation of the main stem was also observed (data not shown). Both
the floral and suppression phenotypes of sol2 co-segregated (see Material and
Methods).
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F igure  4 .  Root  growth and mer istem s ize  in  sol1 and sol2 roots  in  the  RCH1-LLP1

background.

Root length (a) and root meristem cell number (b) of seedlings grown on 1/2 GM  of RCH1-LLP1, WT,

and the different sol1 and sol2 alleles.
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When the sol2-1 allele was crossed to the Landsberg-er ecotype, and
selected for the presence of both the suppressor mutation and the RCH1-
LLP1 construct in homozygosity in the F2 generation (named sol2-1L here-
after), the penetrance of the floral phenotype was higher. We found extra
carpels in the last whorl in up to 80 % of sol2-1L flowers, while only 5 % of
the RCH1-LLP1 crossed to L-er (RCH1-LLP1L) showed this phenotype (Fig
5c-e). On average sol2-1L has 3.4 (±0.8) carpels per flower, while 2.1 (±0.4)
is the average carpel number for RCH1-LLP1L (Fig 5f). In addition, we again
observed extreme accumulation of carpels in some terminal flowers (Fig 5b).

The higher penetrance of the sol2 floral phenotype in a mixed ecotype
background was not due to the erecta mutation present in L-er plants, since er
is linked to the position where RCH1-LLP1 is inserted and hence counter
selected for. This was confirmed by phenotypic analysis of the sol2-1L and
RCH1-LLP1L plants.
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F igure  5 .  sol2 mutants  are  affected in  f lower  development .

(a) Accumulation of carpels in terminal flowers in sol2-1. (b) Accumulation of carpels also occurs in

sol2L terminal flowers. (c-d) Carpels in the fourth whorl of a RCH1-LLP1L and a sol2L flower. (e)

Percentage of RCH1-LLP1 and sol2-1 flowers with extra carpels in Utr and L-er backgrounds (f) Average

number of organs in each whorl in RCH1-LLP1 and sol2-1 flowers in the L-er background.
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The presence of extra carpels in the fourth whorl of sol2 flowers suggests
that stem cells may accumulate in the flower meristem of these mutants as
observed in c lv mutants.This observation is consistent with the hypothesis that
sol2 is affected in a CLV-type signaling pathway. SOL2 was mapped to the
bottom arm of chromosome II, which does not contain neither predicted
LRR-RLK nor LRR-receptors (data not shown).

S O L 1 e n c o d e s  f o r  a  p u t a t i v e  Z n 2+- c a r b o x y p e p t i d a s e

To investigate the molecular basis of the sol1 mutations, we isolated the
affected gene by map-based cloning. sol1 mapped to a single locus on chro-
mosome 1 between markers nga128 and nga111 (Fig 6a). Fine mapping loca-
ted the gene in a region covered by 6 BACs, in between bp 92082 of BAC
F5H11 and bp 10734 of BAC F17M19 (Fig 6b).

Since our aim was to isolate components of a putative CLV like pathway
in roots, we sequenced candidate genes in this region which might be involved
in signal transduction. LRR-RLKs present on these BACs revealed no muta-
tions. In addition, a putative carboxypeptidase predicted at locus At1g71696
was chosen for analysis since an unrelated carboxypeptidase, BRS1, had been
linked to brassinolide signaling, which involves the LRR-RLK BRI1 (Li et al,
2001a).We sequenced the At1g71696 gene from the sol1 alleles with the cor-
responding wild type as control, and detected different mutations in all four
alleles (Fig 6c).

Thus, SOL1 encodes a putative Zn2+-carboxypeptidase which belongs to
the group of regulatory carboxypetidases, and shows the highest homology to
a predicted carboxypeptidase from rice and the carboxypeptidase domains of
animal carboxypeptidase D (EC 3.4.17.22; Aloy et al, 2001) and carboxypepti-
dase E (Fig 6e). SOL1 contains all the conserved residues present in these type
of proteins: the triad H, E, H involved in Zn2+ binding (Fig 6d, e asterisk), the
R and Y involved in substrate binding (Fig 6d and e squares) and the E involved

F igure  6 .  sol1 mutat ions  res ide  in  a  putat ive  Zn 2+- carboxypept idase .

(a) sol1 mutations map between markers nga128 and nga111. (b) sol1 is located within a genomic

region spanned by BACs F15H11, F23N20, F3I17, F26A9, F14O23 and F17M19. (c) Structure of SOL1:

white boxes represent exons. Nucleotide sequence change for each mutant allele is depicted. (d) SOL1

protein sequence. The predicted signal peptide cleavage site is marked with an arrowhead, and the

putative transmembrane domain is underlined. The carboxypeptidase conserved residues are depic-

ted: the triad H, E, H involved in Zn2+ binding with an asterisk, the R and Y involved in substrate bind-

ing with a square and the E responsible for the catalytic activity with a circle. (e) Alignment of the car-

boxypeptidase conserved region from SOL1, Oriza sativa, the first and second domains of Anas

platyrhynchos Carboxypeptidase D (CPD) and the Homo sapiens Carboxypeptidase E (CPE). The con-

served residues crucial for carboxypeptidase activity are depicted as in d. (f) Reverse Transcriptase (RT)

PCR reaction using RNA from roots, shoots, leaves, flowers, siliques and whole seedlings for wild type

plants, and seedlings for sol1 alleles. Specific primers for SOL1 (upper panel) and ACTIN8 (lower

panel) were used.
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chromosome 1a

nga 128 nga 111
83.3 cM 115.5 cM

F15H11

F23N20

F3I17

F26A9

F17M19

F14O23

b

10734 (1)92082 (2)

c

MSKLRFFQSLLISTVICFFLPSINARGGHSDHIHPGDGNYSFHGIVRHL
FAQEEPTPSLELTRGYMTNDDLEKAMKDFTKRCSKISRLYKGFLERAFS
IGKSVNGFPLWVIEISDRPGEIEAEPAFKYIGNVHGDEPVGRELLLRLA
NWICDNYKKDPLAQMIVENVHLHIMPSLNPDGFSIRKRNNANNVDLNRD
FPDQFFPFNDDLNLRQPETKAIMTWLRDIRFTASATLHGGALVANFPWD
GTEDKRKYYYACPDDETFRFLARIYSKSHRNMSLSKEFEEGITNGASWY
PIYGGMQDWNYIYGGCFELTLEISDNKWPKASELSTIWDYNRKSMLNLV
ASLVKTGVHGRIFSLDKGKPLPGLVVVKGINYTVKAHQTYADYHRLLVP
GQKYEVTASSPGYKSKTTTVWLGENAVTADFILIPETSSRGNQLRSSCD
CSCKSCGQPLLTQFFTETNNGITLTLFVVVVFLCFLLQRRVRFNLWKQR
QSSRRSITV.

d
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in catalytic activity (Fig 6d, e circles; Aloy et al, 2001). It is predicted to be a
secreted protein, with a transmembrane domain and a small cytoplasmatic tail
(Fig 6d).

By RACE PCR we determined the transcriptional start and stop of
SOL1 and by RT-PCR we analyzed its expression. Two different SOL1
cDNA variants were found to be expressed in WT (Fig 6f), one containing all
predicted 15 exons and 14 introns, while the second is a splicing variant in
which intron 3 is not spliced out, resulting in a stop codon which likely 
causes a translational stop after amino acid 89. In this second splicing variant,
the predicted protein would only contain the first 3 exons, an hence none of
the carboxypeptidase conserved domains. In addition, we found two 3' UTR
va-riants, a long one consisting of 210 base pairs, and a shorter version of 120
base pairs. All mutations in the different sol1 alleles are single base pair 
substitutions: sol1-1 and sol1-3 mutations are in exon-intron boundaries, the
sol1-4 substitution is predicted to yield an amino acid substitution (G to D in
amino acid 297) in a conserved residue, and in sol1-2 the mutation is predic-
ted to result in a translational stop after 148 amino acids.

We isolated RNA from roots, shoots, leaves, flowers, siliques and whole
seedlings and performed Reverse Transcriptase (RT) PCR reactions to deter-
mine the expression of SOL1 in these tissues. We detected both SOL1 spli-
cing variants described above in all these tissues (Fig 6f). RT-PCR for sol1 alle-
les showed that different splicing variants are formed in sol1-1 and sol1-3, as
predicted, since the mutations in these alleles are in exon-intron boundaries
(Fig 6f). In addition, we detected both WT splicing variants in sol1-4 and sol1-
2 alleles, however in sol1-2 the unspliced variant appears to be more abundant
than in WT (Fig 6f). Sequencing of the different RNA's formed in each mutant
should reveal whether a true null allele is among these. Or that alternatively
splicing can still lead to formation of a mature protein with minor deviations
from the WT sequence.

D I S C U S S I O N

Two lines of evidence suggest that a CLV like pathway is involved in root
meristem maintenance. First, ectopic expression of AtLLP1 in the root meris-
tem causes the meristem to differentiate, in analogy to the induction of shoot
meristem termination by overexpression of CLV3 (Brand et al, 2000). Second,
sol2 contains extra carpels in the fourth whorl, reminiscent of the phenoypes
of weak c lv alleles (like c lv1-7; Clark et al, 1993). In addition, the floral phe-
notype observed in sol2 suggests that some of the components of the pathway
might be shared among roots and shoots. Cloning of SOL2 will uncover the
molecular identity of this potentially shared component in the future.
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c lv1 mutants do not show any root phenotype, suggesting that not CLV1
itself but homologous root-expressed receptors are involved in transduction of
the LLP1 signal in roots. Why didn't we uncover root CLV1-like receptors as
suppressors in our screen? In Arabidopsis there are more that 400 receptor like
kinases (RLK), but only in very few cases a function has been identified (Shiu
and Bleecker, 2001), suggesting there is high level of redundancy among the
RLK members. In addition, in a reverse genetic approach we identified CLV1-
like receptors specifically expressed in the root meristem, but loss-of-function
mutations in these genes revealed no phenotype, not even in double mutant
combinations (Chapter 3). These results support the notion of a high level of
redundancy among LRR-RLKs in roots.

Root meristem size is tightly regulated implying stringent control of the
balance between cell division and cell differentiation. It has recently been
shown that this balance is impaired in scr-1 and shr-1 mutants due to stem cell
differentiation caused by QC mis-specification (Sabatini et al, 2003).The root
meristem differentiation defect observed in RCH1-LLP1 is not caused by QC
mis-specification or failure in stem cell maintenace, as QC25, QC184, and 
columella markers are primarily properly expressed. In addition, our studies
with scr-1 and shr-1 show that ectopic LLP1 acts through a novel pathway
independent of SHR and SCR.To our knowledge, this is the first indication of
a pathway in roots promoting differentiation without affecting QC activity
and/or stem cell maintenance, suggesting a new level of meristem regulation.

Interestingly, the CLV pathway in the SAM is involved in control of
meristem size by regulating expression of WUS in the organizing center and
therefore stem cell function.The role of the WUS-expressing organizing cen-
ter could be considered analogous to the SCR-expressing QC. No WUS
expression occurs in the shoot apex of 35S::CLV3 plants (Brand et al, 2000).
Also in RCH1-LLP1 arrested meristems starch granules eventually appear in
the columella initials indicating loss of stem cell identity. Double mutant 
studies indicated that WUS acts downstream of the CLV signaling, while the
double homozygote RCH1-LLP1,scr-1 indicates that the root pathway acts
independently from SCR.This suggests that the CLV pathway in the SAM and
the putative root CLV-like pathway control meristem maintenance through
different mechanisms. Once the critical components of a root CLV pathway are
isolated, it will be interesting to investigate the evolutionary relationships
between root and shoot meristem maintenance mechanisms.

The sol1 suppressor in the RCH1-LLP1 background grows faster than
control roots and this correlates with a greater amount of cells in the meris-
tem, suggesting that SOL1 is involved in either suppression of cell division or
promotion of cell differentiation.We cloned SOL1 and showed that it encodes
a putative regulatory Zn2+-carboxypeptidase with a possible ortholog in rice
but no homologues in Arabidopsis. In animals, there are 5 members of the sub-
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family of regulatory carboxypeptidases (Reznik and Fricker, 2001). SOL1
shows the highest homology to the carboxypeptidase domains of animal CPD
and CPE, which have been shown to cleave terminal R and K residues, and are
known to be involved in neuropeptide and prohormone processing (Nillni et
al, 2002).

Neuropeptides and peptide hormones are biosynthesized as precursors
that must undergo an endoproteolytic cleavage followed by removal of C-ter-
minal basic amino acids by carboxypeptidases E or D to become active (Nillni
et al, 2002). Similarly, it can be envisaged that SOL1 may process inactive CLE
peptides with terminal R and K residues, to a bioactive form. From the 24
Arabidopsis CLE members (Cock and McCormick, 2001), seven, including
LLP1, contain a terminal R or K after the CLE box, which might be cleaved
by SOL1 (Fig 7a). Eight CLE members, including CLV3, contain a terminal
small peptide sequence after the CLE box with internal R or K residues.These
peptides might be first cleaved by an endopeptidase and then the terminal R
or K residues might be removed by SOL1 to make them active (Fig 7b). The
other CLE members do not have any amino acids after the conserved CLE
box, and they might be constitutively active (Fig 7c).Alternatively, all members
contain a conserved R in the CLE box in favor of a two step activation process
as described for animal neuropeptides (Fig 7d). Biochemical activity assays with
SOL1 protein will be required to test this model.

One prediction of the model is that a c lv3 phenotype should occur in sol1
mutants, while this is not the case. It is of note that currently it is not known
whether any of the four sol1 alleles is a null.Thus, there may be residual SOL1
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F igure  7 .  Model  for  SOL1 act ion.  

(a) SOL1 cleaves terminal K and R residues from CLE proteins (like LLP1) to activate them. (b) A puta-

tive endopeptidase cleaves the terminal peptide after the CLE box present in some CLE proteins, up to

the internal K or R, which would then be removed by SOL1, activating the CLE protein. (c) Some CLE

members do not have any amino acids after the CLE box, and they might not require carboxypeptidase

cleavage for activation. (d) An endopeptidase cleaves the CLE peptides up to the conserved R present

in the CLE box of all CLE members, which is then removed by SOL1 for activation.
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carboxypeptidase activity sufficient for activation of CLV3. Alternatively, the
serine carboxypeptidase BRS1 might be functionally redundant with SOL1.
BRS1, which has homology to yeast Kex1p, has been proposed to act in ligand
processing in the brassinosteroid signal transduction pathway (Li et al, 2001a).
In yeast, Kex1p is required together with Kex2p for the excision of signaling
peptides from their inactive precursors (eg. α-mating pre-hormone and K1
killer toxin; Dmochowska et al, 1987; Fuller et al, 1989). Kex2p is an endopro-
tease that specifically cleaves on the carboxyl side of pairs of basic amino acids,
and after its action Kex1p cuts the amino acid from the C terminus of
processed intermediates.Thus, it is plausible that even though BRS1 and SOL1
belong to structurally different classes of carboxypeptidases, they might be
redundant at the functional level. Double mutant combination of brs1,sol1 will
clarify this point.

In the near future, analysis of complete loss-of-function mutations in
SOL1 and cloning of SOL2 should give more insight into either function and
the role they play in a CLV-like pathway controlling root meristem mainte-
nance.

M AT E R I A L  A N D  M E T H O D S

P l a n t  g r o w t h  c o n d i t i o n s ,  p l a n t  l i n e s  a n d  m u t a g e n e s i s

Seeds were sterilized in 5 % sodium hypochloride, imbibed for 2-5 days
at 4 °C in the dark in sterile water containing 0.1 % agarose, and germinated
on plates containing 0.5x Murashige and Skoog (MS) salt mixture, 1% sucrose
and 0.5 g/l 2-(N-morphilino) ethanesulfonic acid (MES) pH 5.8, in 0.8 % agar.
Plates were incubated in a near vertical position at 22 °C and a cycle of 16
hours light/8 hours dark. Starch granules and β-glucoronidase activity were
visualized as described (Willemsen et al, 1998).

QC25 and QC184 promoter trap lines were selected from the INRA T-
DNA collection (Bechtold et al, 1993) and described in Sabatini et al (2003).

scr-1 and shr-1 mutants were kindly provided by Philip Benfey (Duke
University, USA). Double homozygous combinations of RCH1-LLP1 and shr-
1 were selected for presence of high GFP (indicative of full activity of the
RCH1-LLP1 transgenes) and absence of lateral roots as seen in shr-1 mutants
6 dpg. Double homozygotes were confirmed by genotyping for the shr muta-
tion using the primers: SHR-1F [5'- ATTCATCACGTTGGAGATTTATCT-
GAGTTT 3'] and SHR-1R [5'-ACCAAACACCTTCTTTATATCTCC
TCAACA-3]' which amplify a 517 bp region of the SHR gene, containing a
50 bp deletion in shr-1 mutants.

Double homozygous combinations of RCH1-LLP1 and scr-1 were
selected for high GFP expression (indicative of RCH1-LLP1 homozygosity)
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and closed cotyledons indicative of scr-1 homozygosity, and confirmed in the
next generation for re-segregation of the same phenotype in all the seedlings.

For mutagenesis experiments the Arabidopsis thaliana ecotype Utr
(Willemsen, 2003) homozygous for a single copy of RCH1-LLP1 was used.
8100 dry seeds were divided in two pools and mutagenized with freshly made
5 or 10 mM ethyl methane sulphonate (EMS) in water, for 24 hours at 22 °C.
Seeds were sown on soil and grown in a plant chamber at 22 °C, 75 % humi-
dity with a 16 hours light and 8 hours dark cycle. Between 11400 to 20000 M2
seedlings from 10 independent pools were analyzed per pool.

Complementation analysis was done by pair-wise crossing of the suppres-
sors. If the F1 of the cross showed the phenotype of RCH1-LLP1, suppressors
were considered to be from different complementation groups, and when the
RCH1-LLP1 phenotype was suppressed we grouped them into the same com-
plementation group.

M a p  b a s e d  c l o n i n g

Homozygous sol1 plants (containing RCH1-LLP1 in homozygosity)
were crossed to L-er. In the F2, sol1 mutants still containing the RCH1-LLP1
homozygous (selected for long roots and high GFP expression) were selected
and DNA was isolated using a CTAB method (Lukowitz et al, 2000).

We initially mapped the SOL1 gene to chromosome 1 between nga 128
(83.3 cM) and nga 111 (115.5 cM). Primers for further mapping were designed
using information from the CEREON collection (http://www.arabidopsis
.org/) and Primer 3 software (http://www-genome-wi.mit.edu/cgi-bin
/primer/primer3_www.cgi).The interval was narrowed down to 270 kb span-
ning four BACs (F23N20, F3I17, F26A9 and F14O23).

We sequenced the sol1 alleles using the Big Dye Terminator (Genpak
Ltd.) on an ABI PRISM 310 Genetic Analyzer.The primers used to PCR the
SOL1 genomic region for sequencing were: CARB-F1: [5'-AAAGTTTCAT-
GTCCGTTTTGGAAGAAG-3']; CARB-R1 [5'-TTTCATTAAGCGCT
ATGAACAAAAATTAGA-3']; CARB-F2 [5'- CTAATTTCGACTGT-
GATCTGCTTTTTCCT-3']; CARB-R2 [5'- TATTACCAAAGGAAATC-
CATTGACACTCTT-3']; CARB-F3 [5'- TATTTCTCTCTTTGAGGG
TTTTCTGGAAC-3']; CARB-R3 [5'-ATCTAGCTACCATCATGAAAAT-
CACAGCAT-3']; CARB-F4 [5'-GATGGCTTTTCAATCAGGAAACG-
TAATAA-3']; CARB-R4 [5'- CATTGGTGATTCCTTCCTCAAATTCTT-
3']; CARB-F5 [5'-ATACTATTATGCATGTCCTGACGATGAGAC-3'] and
CARB-R5 [5'-GCTCGTATCATAATCTTATAACAGTGGACAA-3'].

For predictions of the signaling peptide and transmembrane domain we
used SignalP V2.0 and TMHMM v 2.0 software.
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SOL2 was roughly mapped to the bottom arm of chromosome II within
a region spanning from BAC F11C10 to the telomere.

P l a n t  v e c t o r s  a n d  t r a n s f o r m a t i o n

For the RCH1-ERGFP construct, a 2.2 kb fragment upstream of the
RCH1 gene was cloned in front of a GAL4VP16 transcriptional activator
gene, in the pGreen vector carrying a kanamycin resistance cassette (Hellens et
al, 2000). In this vector, the ERGFP gene cloned behind the UAS promoter
was introduced to form the RCH1-ERGFP vector (Fig 1a).

To form the RCH1-LLP1 construct, the AtLLP1 gene cloned behind
the UAS promoter was introduced into the RCH1-ERGFP vector (Fig 1a).
The Brassica LLP1 cDNA is smaller than the predicted CLE19, thus we used
the CLE19 coding sequence starting at the second methionine which corres-
ponds to the BrLLP1 cDNA region. The primers used to clone the
Arabidopsis LLP1 are ArDD3B-F [5'- AATGAAGATAAAGGGTTTGATGA-
3'] and ArDD3-R [5'-AGTTACCTGTTGTGGAGTGG-3'].

To create a stop codon at the beginning of AtLLP1 in the RCH1-LLP1
contruct the QuickChangeTM Site-Directed Mutagenesis Kit from Stratagene
was used.The stop codon was introduced two codons away from the expected
ATG of AtLLP1, using the primers DD3-StopF: [5'-GACCAAAAATAGA-
CAAATGAAGATATAGGGTTTGATGATATTGGC-3'] and DD3-StopR
[5'-GCCAATATCATCAAACCCTATATCTTCATTTGTCTATTTTTGG
TC-3'].

Plants were transformed by the floral dip method (Clough and Bent,
1998).

R o o t  l e n g t h  a n d  m e r i s t e m  s i z e  a n a l y s i s

Root length of WT Utr, RCH1-LLP1, sol1-1, sol1-2, sol1-3, sol1-4,
sol2-1, sol2-2 seedlings were measured 2, 4, 7 and 15 days after germination as
described (Willemsen, 1998).

Meristem size was expressed as the number of cells in cortex files proxi-
mal to the QC  that did not yet rapidly elongate.

F l o r a l  o r g a n  c o u n t s

We established co-segregation of floral and suppression phenotypes based
on the following two observations. First, independent sol2 alleles showed the
same floral phenotype. Second, all sol2 plants with suppressor phenotype
showed the flower defects even when outcrossed twice to RCH1-LLP1.
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Only the first ten flowers of any given plant were analyzed.Values repre-
sent the mean value ± standard deviation of the mean of indicated floral
organs. 60 flowers from RCH1-LLP1 and 120 from sol2-1L were counted for
each mean calculated.

M i c r o s c o p y

Plant material for light microscopy was prepared as described in Scheres
et al (1994). Images were taken on a Zeiss Axioskop 2 microscope with a
Nikon DXM1200 digital camera. For confocal microscopy a Leica SP2 was
used. Files were assembled in Adobe PhotoShop VI (Adobe System Inc.
Mountain View, CA, USA).

R N A  i s o l a t i o n  a n d  R T- P C R

RNA of SOL1 variants was obtained using the Purescript® RNA isola-
tion kit from BIOzym. Chromosomal DNA contamination was removed upon
Dnase I (Promega) treatment. cDNA was made using SuperScriptTM III reverse
transcriptase protocol from Invitrogen. The primers used to PCR the full
length cDNA were cDNA-F [5'-CGAAGGAGAAACAGTTATCACATAG-
GAATA-3'] and Carb-cDNAL-R [5'-CTCAATTGTTTGGATTTTGGTT-
GTTCTTAT-3'].

The transcriptional start and stop of the SOL1 RNA was determined by
5' and 3' RACE-PCR. For the 3' RACE we made cDNA using primer RACE-
T [5'-CATCTAGAG GATCCG AATTC(T) 16-3']. We then amplified the 3'
ends in two rounds of nested PCR using primers RACE-A [5'-CATCTA-
GAGGATCCGAATTC-3'] and CARB-F4; and RACE-A and CARB-F5
primers. PCR products were isolated from gel and sequenced. For the 5'
RACE we made cDNA using primer RACE-R3 [5'-TCTCCAGGCCT-
GTCTGAAAT-3] after which terminal transferase was used to add a polyA tail.
Two rounds of nested PCR reactions were then performed with primers
RACE-T and RACE-R2: [5'-CCATTAGACACTCTTTCCGATG-3'] and
RACE-A and RACE-R1 [5'-CTTGGTGAAATCCTTCATTGC-3']. The
products of this last PCR were isolated from gel and sequenced.

Reverse Trancriptase (RT) PCR was performed using total cDNA
obtained as previously described, and for the amplification the primers cDNA-
F and Carb-cDNAL-R were used for SOL1, and Act8f [5'-ATGAAGAT-
TAAGGTCGTGGCA-3'], Act8r [5'-TCCGAGTTTGAAGAGGCTAC-3'] for
ACTIN 8. The cDNAs were amplified during 32 cycles for SOL1 and 23
cycles for the ACTIN8.
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C h a p t e r  3

Express ion  and  funct iona l  ana lys i s
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E x p r e s s i o n  a n d  f u n c t i o n a l  a n a l y s i s  o f  t h e  R O O T
C L AVATA 1  H O M O L O G U E 1 ( R C H 1 )  c l a d e  o f  r o o t
e x p r e s s e d  l e u c i n e - r i c h - r e p e a t  r e c e p t o r  k i n a s e s .

A B S T R A C T

The leucine-rich-repeat (LRR) receptor like kinase (RLK) CLAVATA1
(CLV1) is expressed in the shoot apical meristem and required for shoot and
floral meristem maintenance. Here we describe the isolation of the CLV1-like
receptors RCH1 and RCH2 that are specifically expressed in Arabidopsis
roots. RCH1 is expressed in the root meristem only, posing the question
whether this gene has a role in root meristem maintenance. RCH1 and RCH2
belong to subfamily LRRXI of the RLK family, and form a clade together
with M3E9.30, MDA7.8 and F12G12.7. RCH2, M3E9.30 and MDA7.8
are all expressed in the proximal portion of the meristem at the transition to
the elongation zone, suggesting a role for these genes in cell-cell communica-
tion in this region. However, loss-of-function studies of single and double
mutant combinations for these genes did not reveal any phenotype, suggesting
a high level of redundancy in this family.

I N T R O D U C T I O N

Organ formation in plants continues post-embryonically through the
activity of the meristems. Stem cells in meristematic regions are able to renew
themselves and give rise to differentiating progeny cells. During embryogene-
sis, two meristems are formed at opposite poles of the embryo.The shoot api-
cal meristem (SAM) will give rise to all aboveground organs, and the root
meristem is responsible for the formation of all of the root system. It has been
shown that in both shoot and root meristems the position of a cell and not its
clonal origin determines its fate underlining the importance of cell-cell com-
munication in plant development (Irish and Sussex, 1992; van den Berg et al,
1995).

More than 400 RLKs have been identified in Arabidopsis, but only in
very few cases a role has been reported (Shiu and Bleecker, 2001). One of the
RLKs with a known function in stem cell homeostasis is CLAVATA1, a LRR-
RLK involved in shoot meristem maintenance. c lv1 mutants have enlarged
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shoot and floral meristems indicating that CLV1 is involved in promotion of
cell differentiation or inhibition of cell division in these meristems (Clark et al,
1993; Clark et al, 1995). CLV1 has been shown to form a complex with CLV2,
a LRR receptor without kinase domain, which is predicted to become activa-
ted upon binding its ligand, CLV3 (Trotochaud, 1999; Jeong et al, 1999). The
CLV signaling pathway ultimately leads to transcriptional repression of the
putative homeodomain transcription factor WUSCHEL (WUS), which in
turn acts to promote stem cell fate and CLV3 expression in the stem cells
(Laux et al, 1996; Mayer et al, 1998). The current view is that a negative feed
back loop between CLV3, through the CLV1/CLV2 complex, and WUS con-
trols the size of the stem cell population in the shoot (Brand et al, 2000; Schoof
et al, 2000).

Root meristem maintenance also depends on a population of stem cells
(or initials), which surround four mitotically less active cells, the quiescent cen-
ter (QC). It has previously been shown that the role of the QC is to promote
stem cell fate in the surrounding cells (van den Berg et al, 1997; Sabatini et al,
2003), in analogy to the role of the WUS-expressing organizing center in the
SAM. Since there are similarities between shoot and root meristem mainte-
nance, we sought to investigate whether CLV1-like receptors in roots are
required for root meristem size control.We identified the LRR-RLKs ROOT
CLAVATA1 HOMOLOGUE 1 and 2 (RCH1 and RCH2), specifically
expressed in the root meristem and in the transition from meristematic to
elongation zone respectively, the sequence of which are closely homologous to
CLV1. Single and double mutant loss-of-function analysis and RCH1 gain-of-
function mutants did not reveal their role in root development. We extended
our study to the three closest homologues of RCH1 and RCH2, and analyzed
their expression profile and function by loss-of-function analysis of single and
double mutant combinations.

R E S U LT S

R o o t  C L A VATA 1  H o m o l o g u e s

To isolate CLV1-like genes specifically expressed in the root meristem,
we designed degenerated primers against the LRR and the kinase domain of
the consensus sequence obtained by alignment of different receptor genes.We
created three degenerated primers for the LRR region (LRR 1, 2 and 3) and
three for the kinase domain (KINR1, 2 and 3), based on sequences of CLV1,
HAESA, XA21, CF2, CF9, ERECTA and INRPK1 for the LRR, and on
CLV1, HAESA, ERECTA, PTO, XA21, TMK1 and SERK for the kinase,
with preference for the CLV1 sequence (Fig 1a).
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(L--L-L--N-L-G-IP--L--L--)n                                                   

LRR1 5' AAYAAYTTMASYGGTKMDWTHCC 3     KINR1 5' THCCWTTWGSCATGTANTCATA 3'
LRR2  5' AAYCARYTHAMCGGWGAAATHCC 3'    KINR2 5' RTAYTCDGGDGCHAHGTADCC 3'  
LRR3 5' AAYMAYYTSAIYGGAHCTATHCC 3' 

KINR1                                     KINR2     KINR3

  KINR3 5' AYMAYHCCRAARCTRTAVACATC 3'

C (cotelydons + SAM)

T (root tip)

100
 bp

T        C

F     C      T       F      C      T               F      C   

RCH1          RCH2                   UBI

a

b dc

 I.....II.....III.....IV.....V.....VI.....VII.....VIII.....IX.....X.....XI

F igure  1 .  Di fferent ia l  RT-PCR strategy to  i so late  root  CLV1 - l ike  homologues .

(a) Design and sequence of degenerated primers for the LRR and the kinase consensus with prefe-

rence for the CLV1 sequence. (b) Schematic drawing of the regions in the seedling used for mRNA iso-

lation: cotyledons with the SAM (C) and the root tip including the root meristem (T). (c) Example of

agorose gel electroforesis with cDNAs from C and T amplified under one of different conditions used.

In this case specific RNA's could be amplified only from root tip. (d) RT-PCR expression analysis of

RCH1 and RCH2 using RNA from flowers (F), cotyledons and SAM (C) and root tips (T). Specific primers

for RCH1, RCH2 and UBIQUITIN (control) were used. 

Table  1 .  Isolation, identity and RT-PCR expression analysis of cDNA clones from the differentia root-

cotyledon (T,C) RT-PCR. Clones are ordered according to the frequency at which they were isolated.

Clones Gene Frequency Expression 

1-2 RCH2 28 T

3-2 CLV1 18 T+C

2-7 RCH1 6 T

2-8 BRI1 5 T+C

1-9 MDA7.8 3 T+C

1-5 T1N24.22 2 T+C

2-2 M3E9.30 2 T+C

3-4 MPA24.5 1 T+C

1-5 HAESA 1 T+C

1-20 T32A17.160 1 T+C

2-4 T3F20.25 1 T+C

2-12 MBM17.3 1 T+C

4-20 MNI5.4 1 T+C

4-24 MMG15.8 1 T+C

Eva;chapter 3  28-04-2003  13:51  Pagina 53



We isolated RNA from Cotyledons and SAM (C) and root tips (T; Fig 1b)
that was reverse transcribed to make cDNA, followed by PCR amplification
using all combinations of LRR and KINR primers. In total we isolated 14 dif-
ferent clones, of which 2 seemed root specific.We sequenced all and we com-
pared the sequences to the database to determine their identity. As expected,
some clones corresponded to genes with known function as CLV1, HAESA
and BRI1 (Table 1).

The two cDNA clones amplified from root RNA only were novel genes,
which we named ROOT CLAVATA1 HOMOLOGUE 1 and 2 (RCH1 and
RCH2). We confirmed their root specificity using gene specific primers for
each gene in a reverse transcriptase (RT) PCR reaction with independent
RNA isolates from root tips, cotyledons and SAM, and flowers (Fig 1d).

By RACE-PCR we determined the full size RNA's of both genes. Both
RCH1 (accession number AJ550162) and RCH2 (accession number
AJ550163) contain an open reading frame predicted to encode LRR-RLKs,
with extracellular LRRs flanked by pairs of conserved C residues (Fig 2 
asterisk), a transmembrane domain (Fig 2 double underlined) and all the con-
served cytoplasmic Ser/Thr kinase motifs (Fig 2 underlined) present in CLV1.
They contain one intron, in the same position as in the CLV1 gene, in the
region encoding the conserved domain VIII of the kinase. RCH1 and RCH2
are 60% identical and 75% similar to each other, while CLV1 shows 32.6% and
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**

* *

I II III

VIb VII VIII IX

IX

F igure  2 .  RCH1 and RCH2 are  h ighly  homologous  to  each other  and to  CLV1.

Protein alignment of RCH1, RCH2 and CLV1. The conserved pair of C's flanking the  LRRs are marked

with an asterisk, the predicted transmembrane domain is double underlined and the conserved

domains in the kinase region are underlined and indicated with Roman numbers. 
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32% identity and 49% and 48% similarity with RCH1 and RCH2 at the 
protein level, respectively.

As RCH1 and RCH2 were the only root-specific close homologues of
the CLV1 LRR-RLK and we are interested in CLV1-like genes which might
be involved in root meristem maintenance, we chose them for further analysis.

R C H 1 a n d  R C H 2 E x p r e s s i o n  P a t t e r n s

To test whether the expression of RCH1 and RCH2 was consistent with
a role in root meristem maintenance, we constructed promoter fusions for
RCH1 and RCH2 using the ER-GFP and the β-Glucoronidase (GUS) genes
as reporters, respectively. In both cases several independent transformants were
analyzed, all showing the same expression pattern.

For RCH1 we used the GAL4-UAS transactivation system to express
ER-GFP under the control of a 2.2 kb promoter region of RCH1. RCH1 is
specifically expressed in the root meristem, in all tissues except in the columella
(Fig 3a and b). Its expression is high in endodermis, cortex, epidermis and 
lateral root cap while it is low in the QC and vascular bundle (Fig 3a). RCH1
expression is progressively lower in the elongation zone and undetectable in
the differentiation zone (Fig 3b). In embryos RCH1 expression is detected
from heart stage onwards, initially only in a subset of epidermal and lateral root
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F igure  3 .  RCH1 i s  spec i f i ca l ly  expressed in  the  root  mer istem from heart  s tage

embryo onwards .

(a) GFP expression marking the root meristematic expression domain of RCH1 in a one-week-old

seedling. (b) GFP binocular image showing RCH1 expression in the meristem, fading away in the elon-

gation zone and absent from the differentiation zone that is apparent for the presence of root hairs.

(c-f) RCH1 expression domain in heart stage, early and late torpedo stage, and bent cotyledons stage

embryos, respectively. (g) RCH1 expression in a lateral root primordium.
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cap cells (Fig 3c, d), while later on in embryogenesis, at late torpedo and bent
cotyledon stage its expression extends to all the root embryonic meristem
except the columella, as in seedlings (Fig 3e and f). In addition, RCH1 is also
expressed in lateral root primordia (Fig 3g).

We introduced the RCH1 promoter fusion into the expansion mutants
l ion's tail, cobra and sabre to test whether RCH1 is expressed in the non elon-
gated cells of these mutants outside the meristem or if its expression correlates
with meristematic activity.These mutants have highly reduced elongation, and
expansion is proportionally greatest in the epidermis of cobra, in the stele of
l ion's tail, and in the cortex of sabre (Benfey et al, 1993; Hauser et al, 1995).
RCH1 is still expressed in the meristematic cells of these mutants even though
these cells are expanded, and it is not expressed in non-elongated cells outside
the meristem, suggesting that RCH1 expression is always correlated with the
dividing cell population (data not shown).
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F igure  4 .  RCH2 i s  spec i f i ca l ly  expressed in  roots ,  in  the  t rans i t ion f rom meris -

tematic  to  e longat ion zone.

(a-b) RCH2 expression in the transition from meristematic to elongation zone in a five- days-old

seedling. (c-d) RCH2 expression in early lateral root primordia.
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To study the expression pattern of RCH2, we cloned a 2.3 kb region
upstream of RCH2 in front of the GUS reporter gene. RCH2 is expressed in
a more proximal position than RCH1 in the root meristem, in the transition
from meristematic to elongation zone (Fig 4a, b). In addition, RCH2 is
expressed early in lateral root formation (Fig 4c), and high expression is
observed in lateral root primordia (Fig 4d).The expression patterns of RCH1
and RCH2 were confirmed by whole mount in situ hybridization (data not
shown).

The specific expression of RCH1 in the root meristem from embryoge-
nesis onwards and its high homology to CLV1 suggests a possible role for
RCH1 in root meristem maintenance. In addition, the RCH2 expression
domain suggests a possible role for this gene in cell-cell communication among
cells in the transition from meristematic to elongation zone.

R C H 1 a n d  R C H 2 l o s s - o f - f u n c t i o n  m u t a n t s

To study possible functions of RCH1 and RCH2 in the root meristem,
we screened the En-1 mutagenized Arabidopsis seed collection described in
Baumann et al (1998), and the SIGnAL T-DNA collection to find loss-of-func-
tion mutants for these genes. Two different En insertions were identified for
RCH1: rch1-1 with an insertion 115 bp upstream of the predicted ATG and
rch1-2 with the insertion at the beginning of the kinase domain (Fig 5c). In
addition, a T-DNA insertion was present in the RCH1 LRR region in the
SALK_038309 line, which was renamed rch1-3 (Fig 5c).Two En insertion lines
were recovered for RCH2: rch2-1 with the insertion at the beginning of the
kinase domain, and rch2-2 with the insertion at the end of the kinase region
(Fig 5c). Homozygous seedlings for all the alleles of both genes were analyzed,
but no phenotype was apparent for any of them.

To test for conditional phenotypes, we studied the response of the diffe-
rent rch1 and rch2 alleles to a concentration range of metabolites (sugar,
nitrate), hormones and cell cycle regulators as well as their response to tropism
and light (Table 2). In all the cases all alleles tested behaved as the WT controls
(data not shown).

Since RCH1 and RCH2 are highly homologous to each other (60 %
identity at the protein level) and their expression domain overlaps in the pro-
ximal part of the root meristem it is possible that both genes act redundantly
in this region and have separate roles redundant with other RLKs in the non-
overlapping domain.To investigate this possibility we created a double mutant
using the rch1-1 and the rch2-1 alleles. However, rch1-1/rch1-1,rch2-1/rch2-
1 plants were indistinguishable from WT controls, even when tested for con-
ditional phenotypes (Table 2).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

C h a p t e r  3 • 5 7

<t> µm
<b>alt.m

<tb> µm

Eva;chapter 3  28-04-2003  11:14  Pagina 57



A n a l y s i s  o f  o t h e r  m e m b e r s  o f  t h e  R C H 1  c l a d e

RCH1 and RCH2 belong to the LRRXI subfamily of plant RLKs from
the  Shiu and Bleecker (2001) classification, based on the phylogenetic relation
of all RLKs using the kinase domain (Fig 5a). We aligned the LRR region of
all LRRXI RLKs and constructed a phylogenetic tree (Fig 5b). In both kinase
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F igure  5 .  The  RCH1 c lade belongs  to  the  subfami ly  LRRXI  of  RLKs .  

(a) Phylogenetic tree of the  kinase domain of the subfamily of LRRXI (modified from Shiu and

Bleecker, 2001). (b) Phylogenetic tree of the LRR region of all LRRXI members. (c) Schematic represen-

tation of all RCH1 clade members. Insertion mutants are indicated with an arrowhead, the position of

the insertion in the protein sequence is represented by the number below the allele name, except for

rch1-1 in which the number represents base pairs before the predicted translation start. 
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rch1 
mutants

rch2 
mutants

Double 
mutants

rch1-1 rch1-2 rch2-1 rch2-2 rch1-1,rch2-1

Metabolism

1% sucrose

3 % sucrose

0 Nitrate

0.1 mM Nitrate

0.6 mM Nitrate

6 mM Nitrate

60 mM Nitrate

Hormones

1 µM IAA

10 µM IAA

1 µM 2,4-D

10 µM NPA

50 µM NPA

10 µM TIBA

30 µM TIBA

10 µM Etaphon

100 µM Etaphon

10 µM AC

100 µM AC

10 µM AV

100 µM AV

10 µM GA3

5 µM Zeatin

10 µM ABA

Cell Cycle

70 µM GSH

1 mM BSO

5 mM BSO

Tropisms

Touch response (45º)

Gravitropism (90º)

Others

Darkness

Continuous light

Sand

Table  2 .  Conditional phenotype tests for rch1 and rch2 single and rch1,rch2 double mutants. X

marks the condition tested.
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and LRR trees, RCH1 and RCH2 form a clade together with 3 other pro-
teins: M3E9.30, MDA7.8 and F12G12.7. We searched for ESTs from these
genes and found ESTs from roots for M3E9.30 and MDA7.8 . For
F12G12.7, ESTs had been recovered only from aboveground organs and
siliques. The fact that at least M3E9.30 and MDA7.8 are expressed in roots
and that they are highly homologous to each other and to the other members
of the clade, suggests that they might have redundant functions with RCH1
and RCH2.

As in situ and promoter fusions of RCH1 and RCH2 revealed identical
expression patterns, we decided to create promoter fusions to study if these

genes have overlapping expression domains with RCH1 or RCH2.Therefore
we cloned the 2.2 kb and 2.1 kb upstream regions of M3E9.30 and MDA7.8
respectively, in front of the GUS reporter gene (M3E9.30::GUS and
MDA7.8::GUS, hereafter).

The M3E9.30::GUS is expressed during embryogenesis in the QC and
columella cells from torpedo stage onwards (Fig 6a, b). In seedlings, high
expression in the QC and columella is also observed (Fig 6c, e). In addition,
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F igure  6 .  M3E9.30: :GUS express ion analys is .

(a-b) M3E9.30::GUS is expressed in torpedo stage embryos  in the distal cell types: QC and columella.

(c, e) Expression of M3E9.30::GUS in six-day-old seedlings  in QC, columella (e) and in all tissue types

in the transition from meristematic to elongation zone (c). (d-g) M3E9.30::GUS is expressed in lateral

root primordia (d), vascular tissue of cotyledons and leaves (f) and trichomes (g).
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the M3E9.30::GUS is expressed in the proximal root meristematic region, in
the transition from meristematic to elongation zone, in a similar domain as
RCH2 (Fig 6c).The M3E9.30::GUS is also expressed, as RCH2 and RCH1,
in young lateral root primordia (Fig 6d). Aboveground, expression in the vas-
cular tissue of the leafs (Fig 6f) and trichomes (Fig 6g) was observed but only
after prolonged incubation with GUS (over-weekend), indicating that
M3E9.30::GUS is lower expressed in these cell types.

MDA7.8::GUS expression in the root is confined to the transition from
meristematic to elongation zone like RCH2 and M3E9.30, with the highest
expression in vascular bundle and endodermis, lower expression in cortex and
absent in the epidermis (Fig 7a, b). But unlike RCH2, RCH1 and M3E9.30,
MDA7.8::GUS is not expressed in young lateral root primordia.
Aboveground, MDA7.8::GUS is expressed in the vascular bundle of cotyle-
dons and leaves and in stipules (Fig 7c, d). In flowers a low expression was
detected at the position where the filament joints the anthers, and in the ovules
expression was observed at the micropyle region (Fig 7e-g).

The overlapping expression domain of RCH2, M3E9.30 and MDA7.8
in the transition from meristematic to elongation zone and their high homo-
logy, suggests a possible redundant role for these genes in this region.
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F igure  7 .  MDA7.8: :GUS express ion analys is

(a-b) Six-day-old roots showing MDA7.8::GUS expression in the transition from meristematic to elon-

gation zone, which is high in vascular tissue, low in ground tissue and absent in the epidermis. (c-d)

MDA7.8::GUS expression in cotyledons (c) and stipules (d). (e-g) In flowers MDA7.8::GUS is expressed

in the micropilar region of the ovule (f) and in the position where the filament joints the anther (g).
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A n a l y s i s  o f  R C H 1  f a m i l y  l o s s - o f - f u n c t i o n  m u t a n t  

c o m b i n a t i o n s

To study the function of M3E9.30, MDA7.8 and the putative role of
F12G12.7 in the root, and their relation with RCH1 and RCH2, we looked
for T-DNA insertions in these genes using the SIGnAL and the Syngenta
GARLIC collections (McElver et al, 2001).

For M3E9.30 we obtained the Garlic_1220b_B03 (renamed m3e9.30-
1), which contains a T-DNA insertion at the beginning of the kinase domain
(Fig 5c). For MDA7.8 we found two insertion lines, the Garlic_18b_F04 and
the SALK_008060 both supposed to contain the T-DNA insertion at the LRR
region, and renamed mda7.8-1 and mda7.8-2, respectively. For F12G12.7,
the T-DNA SALK _014726 line from the SIGnAL collection containing an
insertion in the kinase domain was used for analysis, and renamed f12g12.7-1.

By PCR we confirmed the insertion site and determined which plants
contained the T-DNA insertion except for MDA7.8 (see material and
methods). No phenotype was observed in homozygous plants.

We next created double mutant combinations using one of the alleles for
each of our genes of interest (Table 3). Double mutant combinations of these

genes were obtained and confirmed by
PCR, but again no phenotypes were
observed.

The lack of phenotypes for the
single and double mutants of the 4
members that we were able to analyze,
reinforces the notion that there is a
high level of redundancy among
LRR-RLKs, and that multiple mutant
combinations might be required to
unravel the function of these genes.

R C H 1 g a i n - o f - f u n c t i o n  

To try overcoming the problem of genetic redundancy we chose to study
the effect of RCH1 gain-of-function.We created transgenic plants containing
the genomic RCH1 coding region behind the 35SCaMV promoter
(35S::RCH1 hereafter). 35 independent transgenic plants were selected and
RNA was isolated from the leaves of all these transgenic plants to determine
expression levels on a Northern blot. While RCH1 is not expressed in the
leaves of  WT plants, different levels of expression were detected in the leaves
of transgenic plants confirming overexpression of RCH1 in these plants (Fig
8). EtBr staining of RNA in the gel used for Northern blotting was taken as
loading control (data not shown). No phenotypes were observed even in the
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Table  3 .  Double mutant combinations.

rch1-1 x rch2-1

rch1-3 x m3e9.30-1

rch1-3 x f12g12.7-1

rch2-1 x m3e9.30-1

rch2-1 x f12g12.7-1

m3e9.8-1 x f12g12.7-1

irk x rch1-3
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higher overexpressor lines like 5 or 15. This suggest that RCH1 is not a 
limiting component of a signaling pathway whose overactivation gives a visible
phenotype.

D I S C U S S I O N

We studied a clade of five members from the LRRXI family of RLK with
high homology to CLV1 (from Shiu and Bleecker classification, 2001), and
show that at least four of the five members of the clade: RCH1, RCH2,
M3E9.30, MDA7.8 are expressed in roots, and RCH1 and RCH2 are speci-
fically expressed in roots only. The specific expression of RCH1 in the root
meristem makes it a likely candidate for playing an important role in root
meristem homeostasis. RCH2, M3E9.30 and MDA7.8 expression in the
transition between meristematic and elongation zone suggests a role for these
genes in cell-cell-communication in this region.

Our loss-of-function studies of single and double mutant combinations
among four members of the clade did not reveal the function of any of these
genes. In the Arabidopsis genome more than 400 RLKs have been identified
(Shiu and Bleecker, 2001), but only few LRR-RLKs have been reported to
reveal their function in forward or reverse genetic screens. This suggests high
redundancy among family members. Our loss-of-function study for this clade
reinforces this idea, since double mutant combinations even with genes having
clear overlapping expression patterns, like RCH2 and M3E9.30, did not
reveal any phenotypes. MDA7.8 is also expressed in a similar pattern as these
two genes, but unfortunately no loss-of-function mutations in this gene are
available at the moment.When this becomes available, multiple mutant combi-
nations might be needed to uncover their functions.

In addition, RCH1 seems to be the only member of this clade expressed
in the full root meristem region (except in the columella). F12G12.7 expres-
sion data should help clarify if this gene is expressed in a similar domain. But
double mutant combinations between these two genes did not reveal any phe-
notype suggesting that perhaps other LRR-RLKs, may be outside the LRRXI
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F igure  8 .  Northern b lot  of  RCH1 overexpress ion l ines .

Northern blot from leaf RNA isolated from transgenic 35S::RCH1 lines 1-35. 
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clade, can function redundantly with RCH1. One such candidate gene is IRK,
which is a member of the LRRVII subfamily, of which promoter fusions
revealed completely overlapping expression domain with RCH1 in the root
meristem (Dr Takemura, personal communication). No phenotype was
observed in double mutants irk,rch1-3, hence no redundant function could be
shown among these two members of different subfamilies.Alternatively, the loss
of RCH1 function might induce the other members of the clade to expand
their expression domain into the whole meristematic region.There are exam-
ples for this among the MADS-box family of transcription factors: although
AGL8 expression does not overlap with that of AP1, in ap1 mutants AGL8
expression expands into the AP1 domain and can partially compensate for loss
of AP1 function (Martienssen and Irish, 1999). Introducing the promoter
fusions of each gene in the loss-of-function mutants for other members and
more combinations of mutant alleles should help to clarify this point.

Overexpression of RCH1 in the whole plant using the 35SCaMV pro-
moter did not induce any phenotypes, suggesting that the levels of this recep-
tor are not limiting in the RCH1 signaling pathway. This observation is not
unexpected, as in the SAM the levels of the CLV3 ligand and of the homeo-
domain transcription facor WUSCHEL seem to control the size of the SAM,
while the CLV1 receptor levels do not seem to be limiting (Brand et al, 2000;
Schoof et al, 2000).

The question remains if besides a putative role for the RCH1 clade mem-
bers in root development, a role in more general signal transduction mecha-
nisms could be plausible. Although we cannot exclude a role in general signal
transduction, we do not consider this likely since different conditional tests
affecting the metabolic status, the hormone levels and the light conditions did
not yield to any variations as compared to WT controls.

Lastly, a role in disease-resistance could be envisaged as many LRR-RLKs
in plants are involved in pathogen recognition. However, no mutations in any
of the RCH1 clade members have been reported from screens with different
pathogens. This may suggest that this clade of LRR-RLKs is not involved in
disease-resistance signaling. However, there may be a wide variety of pathogens
in the wild, which might be difficult to test under laboratory conditions, and
hence this possibility cannot be excluded.

M AT E R I A L  A N D  M E T H O D S

P l a n t  g r o w t h  c o n d i t i o n s  a n d  p l a n t  l i n e s

Seeds were sterilized in 5 % sodium hypochloride, imbibed at 4 °C in the
dark in sterile water containing 0.1 % agarose for 2-5 days, and germinated on
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plates containing 0.5x Murashige and Skoog (MS) salt mixture, 1% sucrose and
0.5 g/l 2-(N-morphilino) ethanesulfonic acid (MES) pH 5.8, in 0.8 % agar.
Plates were incubated in a near vertical position at 22 °C and a cycle of 16
hours light/8 hours dark. β-glucoronidase activity was visualized as described
(Willemsen et al, 1998).

For all experiments the Col0 ecotype was used.

G r o w t h  c o n d i t i o n s  f o r  c o n d i t i o n a l  p h e n o t y p e s  t e s t s

For the sucrose response test, seeds were germinated on 1/2 MS plates:
containing 0.5x Murashige and Skoog (MS) salt mixture, and 0.5 g/l 2-(N-
morphilino) ethanesulfonic acid (MES) pH 5.8, in 0.8 % agar, in which 1% or
3% sucrose was added to the medium.

For the nitrate response seeds were germinated on medium which com-
position for 1000 ml was: 33.22 ml calcium chloride (10g/l), 17 ml potassium
phosphate (10g/l), 35.35 ml magnesium sulfate (10g/l), 62 ml boric acid
(100mg/l), 250 µ>l of cobalt chloride 6 Η2O (100mg/l), 250 µl cupric sulphate
5 H2O (100mg/l), 16.9 ml manganese sulphate H2O (1g/l), 2.5 ml natrium
molibdat (100 mg/l), 8.3 ml potassium iodide (100mg/l), 86 ml zinc sulphate
(100mg/l) and 30 ml NaFe EDTA (30 mg/l) and 31.24 g of sucrose. The pH
was adjusted to 5.6-5.8 with KOH. In addition, 165 ml, 16.5 ml, 1,65 ml, 165
µl and none amonium nitrate (10g/l); 190ml, 19 ml, 1.9 ml, 190 µl and none
potassium nitrate (10g/l) and none; 117 ml, 128.7 ml, 129.8 ml and 130 ml of
potassium chloride (10g/l) were added to the 60 mM, 6mM, 0.6 mM, 0.1 mM
and 0 nitrate medium, respectively.

To test the response of the different alleles to different concentrations of
hormones and cell cycle regulators we added the appropriate concentrations to
the 1/2 MS medium, before pouring the medium into the plates.The concen-
trations used are described in Table 2.

D e s i g n i n g  d e g e n e r a t e  p r i m e r s

To RT-PCR members of the LRR receptor kinase gene family we com-
pared the sequences of the CLV1, HAESA, XA21, CF2, CF9, ERECTA,
INRPK1, PTO, TMK1 and SERK genes and their encoded proteins. The
degenerate LRR primers (LRR1, 2 and 3; Fig 1a) were designed against the
NxLxGxIP encoding region of the LRR consensus xLxxNxLxGxIPxxLxx
LxxLxxL, with preference for the CLV1 sequence. Degenerate kinase primers
were designed for different conserved regions of the kinase domain also with
bias for the CLV1 sequence (primers KINR1, 2, and 3; Fig 1a).
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R N A  i s o l a t i o n

For RNA isolation the root tips and the hypocotyl/cotyledon part inclu-
ding the shoot apical meristem of Arabidopsis thaliana (Col0) plants, 4 days
after germination, were collected (Fig 1b).

Total RNA was isolated as described in Pawlowski et al (1994) and chro-
mosomal DNA contamination was removed upon Dnase I (Promega) treat-
ment. The amount and quality of RNA was determined using spectrophoto-
metry and agarose gel electrophoresis.

D i f f e r e n t i a l  R T- P C R

Reverse transcription was performed using 5 µg of root tip (T) and
hypocotyl/cotyledon (C) total RNA in a 20 µl reaction volume with 0.5 µg
oligodT12-18 (Pharmacia) and 200 U Superscript II (LifeTechnologies).
Following first strand cDNA synthesis the samples were treated with RNase H
(LifeTechnologies) and subsequently diluted to a total volume of 100 µl with
water.

Amplification reactions were performed with all degenerate LRR and
KIN primer pairs. For the PCR reaction 2.5 µl of the T or C cDNA sample
was amplified in a total volume of 50 µl containing 100 µM dNTPs, 100 ng
LRR and KIN primer, 1 U Taq polymerase (Roche) and its accompanying
buffer. The cDNAs were amplified during 40 cycles (94°C, 1 min; 45-55°C,
1 min; 72°C, 3 min).

C l o n i n g  a n d  s e q u e n c i n g

The amplified T and C cDNAs from the same reaction conditions were
separated and compared with agarose gel electrophoresis (Fig 1c).

The root specific fragments, e.g. fragments present in T and not in C, were
isolated from gel, cloned into the pGEM-T vector (Promega) and transformed
into E.coli (strain DH5α).

Several PCR fragments of the same size but from different members of
the LRR receptor kinase gene family may be generated using degenerate
primer pairs. Therefore, 24 randomly picked colonies obtained after transfor-
mation were used in a colony PCR. Aliquots of the amplified inserts were 
separated on agarose gel followed by Southern transfer to a Supercharge N+
membrane (Schleiger and Schluel) to create a "colony blot". An aliquot of one
insert was labeled with 32P-dCTP and hybridized to the colony blot to deter-
mine the number of clones it represented in the pool of 24.This procedure was
repeated until all clones were identified.

A single representative of each pool of clones was sequenced and the
sequence was analyzed using the BLAST program (Table 1).
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For predictions of the transmembrane domain we used TMHMM v 2.0
software. The different conserved domains of the kinase were determined by
comparison to the CLV1 sequence (Clark et al, 1997).

R T- P C R

The relative expression levels of RCH1 and RCH2 in root tip (T),
hypocotyl/cotyledon (C) and flowers (F) were determined using RT-PCR.
Primers specific for the RCH1: RCH1F: [5'-CGATCAGACACAAGAACA
T-3'] and RCH1R: [5'-AGCAATGGTGTTGGAAGAA-3'] and RCH2 :
RCH1F and RCH2R: [3'-AGCAACGGTATTAGAACAC-5'] were used. The
PCR samples were analyzed with agarose gel electrophoresis. Ubiquitin (Ubi)
mRNA was used as an internal control. Polyubiquitin genes consist of multi-
ple units and the Ubi primers hybridize with the ends of each single unit. For
RT-PCR we used the Ubiquitin primers UBIF: [5'-TGCAGATCTTYGT-
GAAGAC-3'] and UBIR: [5'-GACTCCTTCTGGATGTTG-3'].

Independently isolated total RNA was reverse transcribed and for the
PCR reaction 2 µl of the cDNA sample was amplified in a total volume of 50
µl as described above. The RCH1, RCH2 and Ubi cDNAs were amplified 
during 26, 26  and 20 cycles (94°C, 30 sec; 56°C, 30 sec; 72·C, 30 sec), respec-
tively.

R A C E - P C R

RACE-PCR was performed as described in chapter 2 of this thesis. For
the 5' RACE we used the gene specific primers: RACE27F1 [5'-TTACTTG-
CACCATGACTGTG-3'] and RACE27F2 [5'- ACATTGGAGATTTCG-
GACTC-3'] for RCH1 and RACE12F1 [5'- ATCTTCGCTTGATTGGGAT
C-3'] and RACE12F2 [5'-AAAGCCAACAACATCT TGATC-3'] for RCH2.

For the 3'RACE we used  primers RACE27R2 [5'-TATCAGGTAT
CTTGCCAGTC-3'] and RACE27R3 [5'-AGAGACATCAAGTACTTGA
AG-3'] for RCH1 and  RACE12R2 [5'-GTGAGAAGATTGTCGAAGAG-3']
and RACE12R3 [5'-TCTTGAGTTTCGAACATTTGC-3'] for RCH2.

L R R  Tr e e

The sequences of all LRRXI as classified in Shiu and Bleecker (2001)
were obtained from the MIPS database.To select the LRR domain, we used the
PlantsP prediction of the LRR region, with the exception of RCH2 and
F12G12.7 (http://plantsp.sdsc.edu). For RCH2 the PlantsP predicts a 
smaller gene than what we confirmed by RACE-PCR and we selected the
LRR region by alignment to the RCH1 protein. For F12G12.7 the PlantsP
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does not predict any LRR region and we selected this region by comparing
the F12G12.7 predicted protein to RCH1.

LRR protein domains were aligned using Lasergene software (Madison,
WI).

P r o m o t e r  f u s i o n s  

For RCH1 a 2.2 kb  fragment upstream of the RCH1 gene was cloned
in front of a  GAL4VP16 transcriptional activator gene, in the pGreenII vec-
tor carrying a kanamycin resistance cassette (Hellens et al, 2000). In the same
vector, the  ERGFP gene was cloned behind the UAS promoter  to form the
RCH1-ERGFP vector.

For RCH2, M3E9.30 and MDA7.8 we cloned a 2.3kb, 2.2 kb and 2.1
kb promoter region respectively, in front of the β-Glucoronidase (GUS)
reporter gene in a pGreenII vector which contains a  basta resistance cassette.

Plants were transformed by the floral dip method (Clough and Bent,
1998).

I n s e r t i o n  M u t a n t s  

En insertion mutants for RCH1 and RCH2 were obtained by screening
the  En mutagenized Arabidopsis seed collection described in Baumann et al
(1998). For RCH1 we used primers FS27F3: [5'-GCGTTAAACTTGAGCT
GGAATTCATTAGATGG-3'] and FS27R3: [5'-CTGTTATGAGAGAT-
GTTCAGAGAAACCAAG-3']. For RCH2 primers FS12F2: [5'-TACTT
GATGTTTCAGCTAACCAGTTTTCAG-3'] and FS12R2: [5'-CTTC-
CCAGTGAGTC TATTGCTACTCAAGTT-3'] were used.

For a M3E9.30 KO the T-DNA insertion line Garlic_1220b_B03 from
the Syngenta GARLIC collection was used, which was renamed m3e9.30-1.
To genotype for the insertion we used the M3E9.30 genomic  primers
GM3E9-F: [5'-GGAATAGGATTGTTGACAGAGCTTACAAAG-3'] and
GM3E9-R: [5'-GAGGACCCAATAAGACATTCATAGCTTTAAC-3'] and
primer GARLIC-LB3 which lies in the T-DNA insertion: [5'- TAGCATCT-
GAATTTCATAACCAATCT 

CGATACAC-3'].
For a MDA7.8 KO the T-DNA insertion line Garlic_18b_F04 from the

Syngenta GARLIC collection was used and renamed mda7.8-1, but we were
not able to confirm the T-DNA insertions. The primers used for genotyping
were GARLIC-LB3 in the T-DNA insert and ANTMDA7-F: [5'-ATCC-
CGGGGGCGCGCCTGATTTAGCTGATAATTCTCTCTCTGGTGA-3']
and ANTMDA7-R: [5'- ACGGATCCATTTAAATTTAACACTTAGCT-
GAAGCTCTTGGAGATTT-3'] for MDA7.8.
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T-DNA insertions from the SALK collection were also obtained for
RCH1, M3E9.30, MDA7.8 and F12G12.7. Insertion mutant information
was obtained from the SIGnAL website at http://signal.salk.edu . For a RCH1
KO the SALK_038309 line was used and renamed rch1-3. The primers used
for genotyping were ANTRCH1-F: [5'-ATCCCGGGGGCGCGCCAAGCT-
CAAATAGTCTTGTTGGTGAAATACC-3'] and FS27R3: [5'- CTGTTAT-
GAGAGATGTTCAGAGAAACCAAG-3'], and SalkLB: [5'- GCGTGGAC-
CGCTTGCTGCAACT-3']. For a second MDA7.8 KO the SALK_008060
line (renamed mda7.8-2) was used for analysis but also here no T-DNA inser-
tion could be confirmed.The primers used for genotyping were MDA7i-F: [5'-
TCAGACAATAGCTCTTTACACGTCACTCTT-3'] and FSMDA7R: [5'-
AGGTGATTGCAGCTGAGATTTAGAGA-3'] in the MDA7 genomic region
and SalkLB in the T-DNA insert. For a F12G12.7 KO the SALK _014726
line was used and renamed f12g12.7-1.The primers used for genotyping this
line were SalkLB for T-DNA insertion and  G-F12-F: [5'-CTCCAT-
CAACAGCAGAAGATTTCTCATAC-3'] and G-F12-R: [5'-CAAATTTCC-
CCCAATTTCTTGTAGTAATG-3'] for the F12G12.7 genomic region.

R C H 1  O v e r e x p r e s s i o n

To make the 35S::RCH1 construct, the full genomic region of RCH1
(including  50 bp before the predicted ATG) was subcloned  in  the 35S cas-
sette from the pGreen vector series, containing the 35SCaMV promoter and
the 35S terminator (Hellens et al, 2000). The 35S Cassette containing the
RCH1 genomic region was cloned into the pGreenII vector containing a basta
resistance cassette, and transformed into plants using the floral dip method
(Clough and Bent, 1998).

For the Northern blot, RNA was isolated from leaves of 35 independent
transgenic plants as described above. We performed the Northern blot as
described in Ausubel et al (1999), loading 20µg of total RNA for each sample
and using RCH1 as a probe.

M i c r o s c o p y

Plant material for light microscopy was prepared as described in Scheres
et al (1994). Images were taken on a Zeiss Axioskop 2 microscope with a
Nikon DXM1200 digital camera. For confocal microscopy a Leica SP2 was
used. Files were assembled in Adobe PhotoShop VI (Adobe System Inc.
Mountain View, CA, USA).
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S U M M A R I Z I N G  D I S C U S S I O N

Post-embryonic plant development depends on the activity of a popula-
tion of stem cells residing at opposite poles of the seedling in the shoot and
root meristems. Clonal analysis in shoots and laser ablation experiments in
roots have demonstrated that positional cues and not the clonal origin of a cell
determines its fate, underlining the importance of cell-cell communication in
plant development (Irish and Sussex, 1992; van den Berg et al, 1995). The
research described in this thesis was aimed  to identify  signaling components
required for root meristem maintenance.

In the shoot apical meristem (SAM) the current view is that a negative
feed-back loop between the CLV3 small peptide ligand and the homeodomain
transcription factor WUS, through the CLV1/CLV2 receptor complex, main-
tains the population of stem cells (Brand et al, 2000; Schoof et al, 2000). The
WUS-expressing "organizing center"  in the SAM acts to promote stem cell
fate in the overlaying cells. In analogy, the QC in roots promotes stem cell fate
in the cells surrounding it (van den Berg et al, 1997; Sabatini et al, 2003).This
suggests that  similar signaling pathways might act in both meristems to con-
trol meristem maintenance.

In chapter 2 of this thesis we investigated whether a CLV-like pathway
acts in the control of root meristem homeostasis by ectopically expressing a
CLV3-like gene (LLP1) in the root meristem ("RCH1-LLP1" plants). Ectopic
LLP1 expression causes root meristem differentiation, suggesting that LLP1
acts by overactivating an endogenous root pathway. The LLP1 homology to
CLV3 prompted us to think that LLP1 functions through a root LRR-RLK
with homology to CLV1. We performed a suppressor mutagenesis screen on
RCH1-LLP1 plants aimed at the identification of the root LRR-RLK(s)
through which LLP1 might act as well as other components of the presumed
endogenous root meristem maintenance signaling pathway.

Suppressor screens on transgenic plants ectopically expressing a certain
component  might have the advantage of sensitizing the pathway through
which the component is presumed to act. This can lead to isolation of novel
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mutants that would have been missed in forward genetic screens, for example
mutants with mild phenotypes in a WT background. However, a disadvantage
of such strategy is that ectopic expression creates an artificial situation and the
uncertainty remains as to whether the ectopically expressed component utilizes
an analogous endogenous pathway. Identification of the molecular identity of
the suppressors and analysis of their function in a WT background should 
clarify this point.

In our screen for suppressors of RCH1-LLP1, we identified two loci,
SOL1 and SOL2. SOL1 encodes for a Zn2+-carboxypeptidase likely to be
involved in ligand processing. SOL2 has not yet been cloned, although initial
mapping located this gene into a region at the bottom of chromosome II that
does not contain any predicted LRR-RLKs or LRR receptors. Why did we
not identify the receptor of the presumed root CLV-like pathway? We consi-
der genetic redundancy among this class of receptors as the most likely expla-
nation. However, other possibilities cannot be excluded. First, our screen
might not have been saturating, although we recovered multiple alleles for each
suppressor (four for sol1 and two for sol2). Second, LLP1 might not overacti-
vate a LRR-RLK, but act by blocking an endogenous LRR-RLK forming a
poisoned complex or by blocking an unrelated pathway. However, due to the
homology of LLP1 to CLV3 and the dependence of the phenotype on correct
translation of this protein we expect LLP1 to act analogous to CLV3, and hence
through LRR-RLK(s).

Identification of SOL1 as encoding a putative Zn2+-carboxypeptidase
with homology to carboxypeptidases D (CPD) and E (CPE) from animals
involved in  neuropeptide and prohormone processing, suggests a role for
SOL1 in ligand processing (Nillni et al, 2002).This raises the question whether
SOL1 has a role in processing endogenous root ligands, and hence in root
meristem maintenance, or whether in sol1 mutants the suppression phenotype
is merely caused by failure to activate the ectopic LLP1.The presence of poten-
tial carboxypeptidase cleavage sites in all CLE members and the expression of
SOL1 throughout the plant (in all tissues tested) would support the idea of a
general role for SOL1 in ligand processing. Biochemical and loss-of-function
sol1 studies (in WT background) will be necessary to test this possibility.

Strikingly, mutations in all four sol1 alleles are sufficient to fully suppress
the root phenotype induced by LLP1 ectopic expression, but no other pheno-
types were detected, e.g. the c lv3 like phenotypes that would be expected from
the proposed model. One explanation is that  different thresholds of SOL1
activity might be required for sufficient activation of different ligands. Testing
whether there is any carboxypeptidase activity left in the different sol1 alleles,
and analysis of a complete loss-of-function sol1 in  the future should help to
clarify this point. SOL1 is a single copy gene in Arabidopsis, although redun-
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dancy of SOL1 with  different types of carboxypeptidases cannot be excluded.
One such candidate might be the  Ser-carboxypeptidase BRS1, which was
identified in an activation tagging screen to isolate novel components of the
signaling pathway that involves the LRR-RLK BRI1 (Li et al, 2001a). BRS1
has many homologues in Arabidopsis, and shows homology to Kex1p car-
boxypeptidase involved in signal peptide processing in yeast. Analysis of
sol1,brs1 double mutants can test whether non-structural redundancy occurs
between these two genes.

A second component of the putative CLV-like root pathway is SOL2.
Mutations in sol2 lead to floral phenotypes which resemble those of  weak c lv
alleles, suggesting that some components of a CLV pathway might be shared
between shoots and roots. The penetrance of the sol2 phenotype seems to be
enhanced in a L-er background. Interestingly, c lv mutant phenotypes are also
stronger in a L-er background, indicating that there is a modifier in L-er able
to modulate both sol2 and c lv mutations.

Preliminary analysis of sol2 mutants in a WT background revealed the
same floral phenotype as sol2 mutants in the RCH1-LLP1 background, but no
root phenotype. Even though the nature of the mutations in sol2 is unknown
at the moment, if sol2 mutants would be nulls it could mean that SOL2 is a
non-limiting or redundant component in  root but limiting in shoot signaling.
Cloning of SOL2 will unravel the nature of this possibly shared component,
and help to clarify  similarities and differences of the (presumed) CLV path-
ways in the control of both shoot and root homeostasis. Double mutant analy-
sis of sol2,c lv and sol2,wus should clarify if SOL2 is a component of  the
shoot CLV pathway.

In chapter 3 we addressed whether CLV1-like LRR-RLKs operate in
roots. We identified a clade of  five genes (the RCH1 clade), from which
RCH1 is specifically expressed in the root meristem, while three of the other
four members are expressed in the transition from the meristematic to the
elongation zone. Single and double mutant analysis and RCH1 overexpression
did not unravel the function of these genes.

Both our suppressor screening study (chapter 2) and the reverse genetic
approach failed to identify the receptor(s) for a putative root CLV-like pathway.
Currently, it cannot be formally excluded that there is no such CLV-like recep-
tor involved in root meristem maintenance. However, the existence of such a
receptor is likely since ectopic expression of LLP1, a CLV3-like ligand, in roots
has profound effects on  root meristem maintenance, suggesting that it acts by
overactivating an endogenous pathway involving CLV-like receptors able to
respond to LLP1. Another perhaps more plausible explanation for our inabili-
ty to identify the receptor(s) is genetic redundancy among them.Two lines of
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evidences support this idea. First, single and double mutant analysis of the
RCH1 clade did not yield any phenotypes. And second, we did not identify a
receptor through which LLP1 might act in our suppressor screen.

Indeed, in Arabidopsis there are more than 400 receptors but only in very
limited cases a function has been identified (Shiu and Bleecker, 2001). What
could be the advantage for the plant in retaining redundant genes? Presumably,
duplicated genes have been retained over evolutionary time due to unique
functions which might be difficult to asses under laboratory conditions
(Martienssen and McCombie, 2001). Finding the right experimental condi-
tions is crucial to detect an effect under these circumstances. Kimura's theory
of neutral evolution predicts that in large populations, small selection coeffi-
cients are sufficient to fix a gene that conveys a selective advantage. This pre-
dicts that there should be genes or genetic functions that have only a very small
effect on the fitness of an individual, but are nonetheless important for long-
term fitness within a population (Tautz, 2000). Being generally sessile orga-
nisms, plants have to respond to local environmental conditions by changing
their physiology or redirecting their growth. It could be envisaged that a wide
variety of receptors which are partially redundant but each conferring speci-
ficity to respond to a particular range of environmental stimuli such as light,
pathogens, temperature, water, nutrients, touch or gravity might confer a selec-
tive advantage.This could be the case for RCH1 and RCH2 which show 60%
identity and 75% similarity at the protein level, suggesting they are not pro-
ducts of a recent duplication event. It seems difficult to imagine that the 40%
difference at the protein level would not yield to acquisition of new func-
tion(s).

With the availability of the rice genome sequence and the sequencing of
genomes of other plant species on the way the level of expansion of different
clades can be compared. In addition, comparison of expression patterns from
conserved genes in different species should uncover which genes are truly
orthologous. For example, RCH1 and RCH2 in Arabidopsis are specifically
expressed in roots. Preliminary database searches identified  putative rice
homologues of RCH1 and RCH2 (data not shown), and it would be interest-
ing to compare their expression patterns to assess whether the root specificity
is conserved and therefore likely to be a relevant feature. Furthermore, such
comparative studies should uncover whether  receptor kinase redundancy is a
common theme in the plant kingdom.

How could we overcome genetic redundancy when assessing the deve-
lopmental role of redundant receptors? Large scale reverse genetics can be an
option. It would involve expression pattern profiling, and selection of receptors
with overlapping expression domains in the region of interest. Multiple com-
binations of loss-of-function alleles of these genes may ultimately uncover their
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function. In addition, dominant-negative or dominant-active versions of
receptors of interest, such as the RCH1 clade of receptors might provide a use-
ful tool to determine their functions.

Even though we did not yet succeed in the identification of the putative
CLV-like root receptor(s), two types of evidence indicate that a CLV-like path-
way acts in roots in the control of root meristem maintenance. First, ectopic
expression of a CLV3-like gene in roots (LLP1) causes root meristem diffe-
rentiation (like CLV3 overexpression phenotypes in the shoot). Second, the
sol2 suppressor has  flower phenotypes reminiscent of c lv weak alleles.

Interestingly, we have shown that the putative root CLV-like pathway
appears to promote cell differentiation or restrict cell division without prima-
rily mis-specifiying the QC and/or affecting stem cell status. In addition, the
root pathway does not act through SCR which has recently been shown to be
required for QC specification and hence stem cell maintenance, in  analogy to
the role of  WUS in the organizing center (Sabatini et al, 2003).Thus, the puta-
tive CLV-like root pathway may control root meristem homeostasis by a dif-
ferent mechanism than the CLV pathway in the SAM.

Besides shr and scr mutants, the root mer istemless 1 and 2 (rml1,2) and
the hobbit (hbt) mutants are also disturbed in  control of cell division in the
root and it can be questioned whether these genes act in parallel or in the same
pathway as the presumed CLV-like root pathway. The root mer istemless 1 and
2 mutants  have roots in which post-embryonic cell divisions are absent or li-
mited respectively, and the root meristem differentiates soon after germination
(Cheng et al, 1995). RML1 encodes γ-glutamylcysteine synthetase, the first
enzyme of glutathione (GSH) biosynthesis (Vernoux et al, 2000). rml1 mutants
can be rescued by GSH application, and WT roots treated with BSO (an
inhibitor of GSH biosynthesis) show a similar phenotype as rml1 roots. Because
the oxidized form of GSH (GSSG) could not rescue rml1 mutants, GSH might
directly affect the redox state of developmental regulators (Vernoux et al,
2000). In animals, some transcription factors have been shown to change their
ability to bind the DNA in a redox-dependent manner (Abate et al, 1990;
Mihm et al, 1995). In addition, Jiang et al (2003) have shown in maize that
commencement of more rapid cell divisions in the QC is preceded by changes
in the overall redox status of the QC, which become less oxidizing. In the
maize QC, GSH is reported to be about 10x lower in concentration than in
the proximal meristem. Interestingly, location of the auxin maximum correla-
ted with oxidative stress in the QC and it was suggested that auxin might pro-
vide positional cues by virtue of its ability to influence, on a localized scale, the
redox status of tissues (Jiang et al, 2003). It is possible that in rml1 post-em-
bryonic cell division is blocked in the meristem because of oxidative stress,
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which might interfere with auxin accumulation or responsiveness in the meris-
tem, but more direct evidence is needed to test this hypothesis.

Several scenarios are possible to explain the similar phenotypes encoun-
tered in rml1 and RCH1-LLP1 roots: the putative CLV-like root  pathway
might negatively regulate RML1 transcription and hence deplete the level of
GSH in the meristem; RML1 might modulate components of the pathway
post-transcriptionally, or both pathways may be independent. Combinations of
rml1 mutants with RCH1-LLP1  together with application of GSH and BSO
to RCH1-LLP1 roots should help clarify if they act in the same pathway con-
trolling restriction of cell division rather than promotion of differentiation in
the root meristem. In addition, it will be interesting to test if the QC and stem
cell status is affected in rml1 mutants. Double mutants rml1,scr and rml1,shr
should clarify if the corresponding genes act in the same pathway.

Mutations in the hobbit (hbt) gene interfere with postembryonic cell divi-
sion and differentiation of the distal cell types: QC, columella and lateral root
cap, which depend on distal accumulation of auxin (Willemsen et al, 1998;
Sabatini et al, 1999). hbt mutants show reduced auxin sensitivity and accumu-
late the AXR3/IAA17 repressor of auxin responses (Blilou et al, 2002). HBT
encodes a homologue of the CDC27 subunit of the anaphase-promoting com-
plex (APC), which might couple cell division to cell differentiation by regu-
lating cell cycle progression in the meristem or by restricting the response to
differentiation cues, such as auxin, to dividing cells (Blilou et al, 2002). HBT
might act in a different pathway than the proposed CLV-pathway because hbt
mutants show primary defects in the QC region, and do not express SCR in
the QC post-embryonically, suggesting that QC identity and stem cell mainte-
nance may be affected prior to cell differentiation. However, preliminary analy-
sis of post-embryonic hbt loss-of-function clones suggests that cell differentia-
tion may be affected prior to QC identity and stem cell maintenance (Olivier
Serralbo, unpublished results).Thus, it is possible that a root CLV-like pathway
in differentiation is connected to HBT activity. Double mutant combinations
of hbt,sol1 and hbt,sol2 should clarify whether sol1 and/or sol2 are able to
suppress the root differentiation phenotype observed in hbt. In addition, intro-
duction of a HBT:GFP protein fusion in RCH1-LLP1 plants would uncover
whether HBT is a downstream target of the presumed CLV-like pathway. It will
be also  interesting to test whether downstream targets of HBT, as AXR3 (and
may be other AXR/IAA proteins) are downregulated in RCH1-LLP1 plants.

Once the components of a CLV-like root pathway are known, the evolu-
tionary relationships between signaling pathways involved in shoot and root
meristem homeostasis can be investigated. The earliest unequivocal evidence
for roots in the fossil record comes from Early Devonian vascular plants, which
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have modified prostrate stems bearing rhizoids resembling those of living
bryophytes (Kenrick and Crane, 1997). Regardless of their origin, the fossil
record shows that many vascular-plant organs can be interpreted in terms of
modification of basic structural units such as the spore-bearing tissues and the
stems (Kenrick and Crane, 1997).Thus, possibly roots are derived from ances-
tral shoot structures like bifurcating leafless stems. Our preliminary data sup-
port a model in which shoot and root meristem maintenance through a CLV-
like pathway could work differently. In shoots, the CLV pathway acts by
restricting the expression of WUS in the organizing center, which in turn con-
trols stem cell fate in the overlaying layer. In roots, the putative CLV-like path-
way may promote differentiation or restrict cell division directly, without ini-
tially interfering with QC specification and stem cell maintenance. An inte-
resting question that arises is which of these mechanisms resembles most the
ancestral use of CLV signals in meristem development. Expanding knowledge
of the molecular components acting in shoots and roots in different plant
species should further our understanding of meristem evolution in vascular
plants.
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Samenvatt ing  in  het  Neder lands

De ontwikkeling van een plant stopt niet na de embryogenese maar duurt
zolang de plant leeft mogelijk gemaakt door de aanwezigheid en activiteit van
kleine groepen continu delende cellen, de meristemen.Vanuit de meristemen
worden de organen gevormd door een process van gebalanceerde celdelingen
en differentiatie. In het hart van het wortelmeristeem van Arabidopsis thaliana
bevinden zich 4 mitotisch inactieve cellen, genaamd het "quiescent center
(QC)", welke zijn omgeven door de stamcellen die verantwoordelijk zijn voor
het genereren van alle cellen die samen de wortel vormen. Een functie van het
QC is het behouden van de stam cel status van deze omliggende cellen.

Het doel van dit proefschrift was om signaalcomponenten te identificeren
die nodig zijn voor het behoud van het wortelmeristeem. In hoofdstuk 2 heb
ik uiteengezet dat overexpressie van een CLV3-homoloog gen (LLP1) onder
een wortel-meristeem-specifieke promoter differentiatie veroorzaakt van het
wortelmeristeem. Dit doet vermoeden dat een CLV-homologe signaaltrans-
ductie cascade verantwoordelijk is voor het behoud van het wortelmeristeem.
Daarnaast werkt dit CLV-homologe signalering in de wortel onafhankelijk van
SHR en SCR activiteit en zonder in eerste instantie de specificatie van het QC
of de stamcellen te beïnvloeden.

Om de genen te identificeren die betrokken zijn bij deze signaal trans-
ductie heb ik een "suppressor"-mutagenese uitgevoerd op een lijn waarin
LLP1 ectopisch tot expressie is gebracht specifiek in het wortelmeristeem.

In twee verschillende loci, sol1 en sol2, zijn mutaties geïdentificeerd als
suppressors van ectopische LLP1 expressie fenotypes.

Ik heb SOL1 gekloneerd welke voor een op basis van de sequentie voor-
spelde Zn2+-carboxypeptidase codeert en daarom mogelijk een rol heeft in het
processen van eiwitliganden. sol2 mutanten laten bloemfenotypes zien die
lijken op die van zwakke c lv mutanten wat kan betekenen dat deze komponent
zowel in een CLV signaaltransductie in de wortel als in de scheut een rol speelt.

In hoofdstuk 3 beschrijf ik een "reverse genetics" aanpak om te onder-
zoeken of CLV1-homologe receptoren betrokken zijn bij het behouden van
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een actief wortelmeristeem. Hiervoor is een "clade" van 5 receptoren, waarvan
2 specifiek in het wortelmeristeem tot expressie komen, onderzocht op func-
tionaliteit tijdens wortelontwikkeling. Er zijn onder andere expressie studies en
enkele en dubbel mutant analyses gedaan. Het feit dat tot nu toe geen fenotype
ondekt in deze mutanten wijst op de hoge mate van redundantie van deze
receptoren.
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